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Abstract

We prove the stochastic stability of resource allocation under Network Utility Maximization (NUM) under
general arrival process and file size distribution with bounded support, for α-fair utilities with α sufficiently small
and possibly different for different sources’ utility functions. In addition, our results imply that the system operating
under α-fair utility is 1/(1 + α)-approximate stable for any α ∈ (0,∞) for any file size distribution with bounded
support. Our results are in contrast to the recent stability result of Bramson (2005) for max-min fair (i.e. α = ∞)
under general arrival process and file size distribution, and that of Massoulie (2006) for proportional fair (i.e. α = 1)
under Poisson arrival process and phase-type distributions. To obtain our results, we develop an appropriate Lyapunov
function for the fluid model established by Gromoll and Williams (2006)1.

I. INTRODUCTION

In 1998, Kelly, Maullo, and Tan [15] identified the current Internet congestion control protocol with an algorithm
that allocates rates to flows according to certain ‘fairness criteria’ reflected through concave utility functions, which
are maximized under linear capacity constraints. An extensive amount of research since then has shown many
applications of this approach, from reverse-engineering of all major types of TCP congestion control protocols
in use today to development of substantially improved new protocols. In [21], [27], an interested reader can find
detailed surveys on the philosophy of viewing a resource allocation or congestion control algorithm as implicitly
solving a global Network Utility Maximization (NUM) problem. In particular, such optimization problems have
been studied as ‘monotropic programming’ [25] for a long time, and admit a simple, iterative, and distributed
solution based on dual decomposition. Over the last several years, this line of work has further evolved to the
following view of ‘Layering as Optimization Decomposition’: the entire protocol stack of network architecture
can be thought of as optimizing a generalized network utility function over a constraint set of various types of
variables, with different decomposition schemes corresponding to different layering architectural alternatives. Under
a particular decomposition, the decomposed subproblems correspond to the functional modules (i.e., layers), and the
interfaces among the layers are represented by some specific function of the primal or dual variables. As surveyed
in [6], many researchers have contributed to this research area.

However, many results in the area adopt a deterministic NUM formulation. In reality, flows arrive to the network
with finite workloads and depart after finishing the work. The service rates are determined by the solution to the
NUM problem, which in turn takes in the number of flows as an argument. The key property of stochastic stability
has been extensively studied since 1999. In [26], Robert and Massoulie introduced a stochastic dynamic model for
Internet congestion control where flows with different service requirement (or file size when flow requests are ‘file
transfers’) arrive, the rate allocation is done according to appropriate NUM, and flows depart on completion on
their service. Subsequent to this work, de Veciana, Konstantopoulos and Lee [9], as well as Bonald and Massoulie
[2], studied the stability property of the above introduced model under the assumption that arrival process has
Poisson distribution while service requirement of flows have exponential distribution. In [9], stability of max-min
fair and proportional fairness was established, while in [2], the stability of all weighted α-fair policies, α ∈ (0,∞)
was established. These results assumed that the rate allocation according the appropriate optimization is done
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instantaneously. This is called the ‘time-scale separation’, i.e., the time scale at which rate allocation algorithm
operates is extremely fast compared to the time scale of the system dynamics. Lin and Shroff [19], as well as Srikant
[28], established stability without time-scale separation assumption for α-fair policies for α ≥ 1 under the Poisson
and exponential distributional assumptions. Natural generalizations of these results to other convex constraint sets
were also obtained [31], [20].

While assuming a Markov traffic model (Poisson arrival with exponential file size distribution) leads to analytic
tractability, it is widely recognized that file sizes in the Internet or wireless networks do not follow the exponential
distribution. In this paper, we are interested in answering the question of whether the network is stable, under
α-fair rate allocation, for general distributional assumption on arrival process and service requirement of the flows.
Here, stability means that the departure rate is the same as the arrival rate, i.e., rate stability, or fluid stability. This
question has been of great recent interest as a positive answer will provide justification for using NUM and its
generalizations for network resource allocation and architecture design. A stable system essentially means that the
capacities that can be utilized in a deterministic NUM can also be utilized in the stochastic setting.

The following is a brief summary of what is currently known about this question (to the best of authors’
knowledge based on the available preprints and personal communication). Bramson [5] has established stability
for max-min fair (corresponding to α = ∞) rate allocation under general arrival and file size distribution, and
Massoulie [22] has established stability for proportional fair (corresponding to α = 1) rate allocation for Poisson
arrival and phase-type service distribution. The result of [22] is established by (a) justifying fluid model for system
with exponential and Poisson assumption with routing, (b) establishing stability of this fluid model, and (c) using
the known observation that network with phase type distribution for service requirement can be mapped to network
with exponential-Poisson assumption and routing. We also make note of the following two results. Lakshmikantha,
Beck and Srikant [18] established stability of Proportional fairness for a two resource linear network and 2 × 2
grid network for Poisson arrival and phase-type distribution of service requirement; Kelly and Williams [16] had
formulated a proper fluid model for exponential service requirement to study the ‘invariant states’ as an intermediate
step for obtaining diffusion approximation for all α ∈ (0,∞).

Recently, Gromoll and Williams [13] have established fluid model for α-fair rate allocation, α ∈ (0,∞), under
general distributional condition on arrival process and service distribution. This is a very important step in the process
of establishing stability via the means of fluid models. Using this fluid model, they have obtained a characterization
of ‘invariant states’. This led to stability of network under α-fair allocation, α ∈ (0,∞), when the network topology
is a tree.

We will establish the approximate stability of any α-fair rate allocation for any network topology under general
distribution for α ∈ (0,∞). We prove that any network with α-fair rate allocation is 1/(1 + α)-approximate
stable2 under general distribution conditions. In a stronger characterization, we prove that the system is stable for
a continuum of sufficiently small and strictly positive αi, possibly different αi for each source i. We will crucially
use the fluid model established in [13] to obtain our results.

The paper is organized as follows. In Section II we present notations, technical preliminaries, system description,
and stochastic model. In Section III we present the fluid model scaling and formal statement establishing relation
between fluid model solutions and the stochastic system. The fluid model scaling presented in the paper is different
from that used in [13] or [22] as it allows for heterogeneous utility functions for different sources, with possibly
utilities coming from a larger class of utility functions compared to that in [13]. In Section IV, we present the main
result of this paper (Corollary 7 and Theorem 6) establishing 1/(1+α)-approximate stability of network operating
under α-fair rate allocation and general distributional conditions. This also implies the stability of network for a
range of sufficiently small α. The stability is established by use of a new Lyapunov function, which is inspired
by known Lyapunov functions in this research literature. However, as reader will notice, in contrast to the Markov
arrival model, it is substantially more challenging to work with the fluid model for general distribution due to
limited amount of information about fluid dynamics. We present some simple extensions and limitations of our
results along with a discussion on future directions in Section V.

Even though our fluid model scaling is different, its justification is identical to that in [13]. For completeness,
we present a sketch of the proof (of Theorem 5) in Appendix. An interested reader is encouraged to read [13] for

2Definition of 1/(1 + α)-approximate stability will be made clear in Corollary 7. Roughly speaking, it means 100/(1 + α) % utilization
of network’s resource.
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any of the missing details.

II. SETUP

This section describes notation, necessary technical preliminaries, network model with NUM, and the stochastic
model that will be studied in the paper. Our notation and representation of variables are almost identical to those in
[13], so as to make it easier for an interested reader to re-construct the missing details in the proof of fluid model
justification based on [13].

A. Notation and Technical Preliminaries

Let the natural number set be N = {1, 2, . . . }, and the real number set be R = (−∞,∞) and R+ = {x ∈ R :
x ≥ 0} = [0,∞). Let Rd be d-dimensional Euclidian space; similarly Nd and Rd

+. Let x ∨ y = max{x, y} and
x ∧ y = min{x, y}. Let identity function be denoted by χ, i.e. χ(x) = x for all x ∈ R+. Let unit function be
denoted by 1, i.e. 1(x) = 1 for all x ∈ R+. For vectors u = (u1, . . . , uI) and v = (v1, . . . , vI), let u ◦ v denote
component-wise multiplication (u1v1, . . . , uIvI).

For a real-valued function defined on R+, say f : R+ → R, its sup-norm is defined as ‖f‖∞ = supx∈R+
|f(x)|.

Similarly, for f : [0, T ] → R define ‖f‖T = supx∈[0,T ] |f(x)|. Let f ′ denote the derivative of f , if exists. For any
function f , let f(· − s), s > 0, be its shifted copy by s, with the understanding that f(x− s) = 0 for all x < s.

Let Cb(R+) denote the set of bounded continuous functions defined on R+, C1(R+) denote the set of once
continuously differentiable functions and C1

b(R+) denote the set of f ∈ C1(R+) that have both f, f ′ bounded on
R+. Define, C = {f ∈ C1

b(R+) : f(0) = 0, f ′(0) = 0} and Cc = {f ∈ C : f has compact support}.
Let M be set of finite non-negative measures (not necessarily probability measures) on R+. Let it be endowed

with the topology induced by weak convergence: ζk w→ ζ in M if and only if 〈f, ζk〉 → 〈f, ζ〉 for all f ∈ Cb(R+),
where we have used notation3 that, for ζ ∈ M,

〈f, ζ〉 =
∫

R+

fdζ.

This topology is induced by the Prohorov’s metric defined as follows: for ζ, ξ ∈ M, define

d[ζ, ξ] = inf{ε > 0 : ζ(B) ≤ ξ(Bε) + ε, and ξ(B) ≤ ζ(Bε) + ε, for all closed B ⊂ R+}, (1)

where Bε = {x ∈ R+ : infy∈B |x− y| < ε}. For product space MI for any I ∈ N, define metric dI as follows: for
ζ = (ζ1, . . . , ζI), ξ = (ξ1, . . . , ξI) ∈ MI,

dI(ζ, ξ) = max
1≤i≤I

d(ζi, ξi).

It is well known that the metric space MI thus defined is a complete and separable, i.e. Polish space.
Let D([0, T ],MI) denote the set of functions from [0, T ] to MI that are right continuous with left limits, also

known as cadlag functions. In this paper, the domain [0, T ] will be time and hence use of ‘time’ should not
confuse the reader. We will endow D([0, T ],MI) with Skorohod’s J1-topology. Our interest will be in convergence
of probability distributions on D([0, T ],MI), for finite (time-interval) T . For this, we will be interested in an
appropriate metric on D([0, T ],MI) defined next.

Let Φ be set of nondecreasing function ϕ : [0, T ] → [0, T ] with ϕ(0) = 0, ϕ(T ) = T . Define ‖ϕ‖o =
sup0≤s<t≤T

∣∣∣log ϕ(t)−ϕ(s)
t−s

∣∣∣. Let Φb = {ϕ ∈ Φ : ‖ϕ‖o < ∞}. Now, for any ζ, ξ ∈ D([0, T ],MI), the distance
between them is defined as

do(ζ, ξ) = inf
ϕ∈Φb

{
‖ϕ‖o ∨

(
sup

0≤t≤T
dI(ζ(t), ξ(ϕ(t))

)}
.

The space D([0, T ],MI) endowed with the above metric is complete and separable, i.e. Polish. Before we char-
acterize the relatively compact sets in D([0, T ],MI), we define the modulus of continuity for ζ ∈ D([0, T ],MI).
Consider any δ ∈ (0, 1) and any sequence {ti} of some v ≤ 2T/δ points, such that 0 = t0 < t1 < · · · < tv = T

3The notation 〈f, ζ〉 for ζ = (ζ1, . . . , ζd) ∈ Md will naturally mean (〈f, ζ1〉, . . . , 〈f, ζd〉).
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and mini ti − ti−1 > δ. Call the set of all such sequences as Tδ. Then, the modulus of continuity of ζ with δ
precision is

w′
T (ζ, δ) = inf

{ti}∈Tδ

max
i

sup
s,t∈[ti−1,ti]

dI[ζ(s), ζ(t)].

In D([0, T ],MI), a set A is relatively compact if the following holds: (1) there exists a compact set K ⊂ MI

such that for any ζ ∈ A, ζ(t) ∈ K for all t ∈ [0, T ], and (2) limδ→0 supζ∈A w′
T (ζ, δ) = 0. This characterization of

relatively compact set suggests the following criteria for proving tightness of a sequence of probability measures
Pn, n ∈ N, on D([0, T ],MI) as follows: the sequence of probability measures Pn, n ∈ N is tight if (1) for any
ε > 0 there exists a compact set Kε ⊂ MI such that lim infn Pn(ζ(t) ∈ Kε, ∀ t ∈ [0, T ]) ≥ 1− ε, and (2) for any
ε > 0, limδ→0 lim supn Pn({ζ : w′

T (ζ, δ) ≥ ε}) = 0. This characterization of tightness of probability measures is
used crucially in fluid model justification.

Finally, for completeness we make the following note. We will be interested in probability measures defined
on the product of finite number of spaces. Let there be complete separable metric spaces S1, . . . ,Sd with metric
dS1 , . . .dSd

, respectively. Their product space S = S1×· · ·×Sd will be endowed with topology induced by metric
dS defined as

dS(a,b) = max
k≤d

dSk
(ak,bk), for a,b ∈ S.

Recall that under this metric S will be complete and separable as well 4.

B. Networks with Rate Allocation By NUM

We consider a connected network G = (V,J , C, I), where V is the set of all vertices, J is the set of J links,
C = (Cj)1≤j≤J denote the capacity vector of the links, and I is the set of I routes. Let A be J × I routing
incidence matrix, with Aji = 1 if route i passes through link j and 0 otherwise.

In a network, multiple flows can be active on the same route. Further, flows of different routes (or types) can
be sharing a link. The links have limited capacity. Hence, network need to assign the rates to the flows passing
through it. In this paper, we are interested in bandwidth sharing policies in which each flow of the same type gets
the same bandwidth allocated. Let λi be net bandwidth allocated to flows on route i. Since the links have limited
capacity, we immediately have the following requirement:

Aλ ≤ C.

The set of all λ = (λ1, . . . , λI) ∈ RI
+ satisfying the above inequality are called feasible bandwidth allocation.

In this paper, we are interested in the bandwidth allocation policies that maximizes certain network utility.
Equivalently, bandwidth allocation corresponds to a solution of an appropriate Network Utility Maximization (NUM)
problem. Let Ui(x) be utility of a flow of type i when it is allocated rate x. If there are zi flows of type i and
each one is allocated rate xi, then the net bandwidth allocated to flows of type i is λi = xizi. In this paper, we are
primarily interested in the α-fair utility function, introduced by Mo and Walrand [23], which is commonly used in
studying NUM type network resource allocation. For any α ∈ (0,∞), define 5

ϕα(x) =
{

x1−α

1−α for α ∈ (0,∞)\{1}
log x for α = 1.

Then, under unweighted α-fair allocation, the utility of each flow i is Ui = ϕαi , αi ∈ (0,∞). In the weighted α-fair
allocation, Ui = κiϕ

αi , with κi some positive weights (constants). In this paper, for simplicity we will assume that
κi = 1 for all i. However, as it will be clear to the reader that the results of this paper hold true for any choice of
κi > 0.

Now the bandwidth or rate allocation happens according to an optimization problem which uses number of flows
as argument. Let z = (z1, . . . , zI) be vector of number of flows. Then, each flow of type i is allocated rate xi(z),

4We refer an interested reader to the book by Billingsley [1] for exposition on the topic of convergence of probability distribution on
metric spaces (and some facts stated here).

5The general definition of α-fair utility allows for α = 0, but such linear utility function leads to potential starvation and is not considered
here.
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1 ≤ i ≤ I, where x(z) = (x1(z), . . . ,xI(z)) is a solution to the following optimization problem over x ≥ 0:

maximize
I∑

i=1

Ui(xi)zi

subject to Ax ◦ z ≤ C,

xi = 0 if zi = 0, for all i ≤ I, (2)

where x ◦ z = (x1z1, . . . , xIzI) is the vector of net bandwidth allocated to flows. In this paper the utilities Ui(·)
are strictly concave on (0,∞). This will imply the uniqueness of the solution of the above optimization problem
from standard arguments. Thus, x(z) can be viewed as a function from RI

+ to RI
+. We will assume that choice of

utilities is such that x(·) satisfies the following assumptions.
Assumption 1: For each i ≤ I, xi(z) is a continuous function on {z ∈ RI

+ : zi > 0}. Further, if zi > 0 then
xi(z) > 0.
Kelly and Williams [16] showed that Assumption 1 holds when for all i ≤ I, the utility functions are the same
and Ui = ϕα for some α ∈ (0,∞) for all i ≤ I. This assumption was verified by Ye, Qu and Yuan [32] as well.
Next, we establish that Assumption 1 is satisfied even when the utilities of flow types are α fair with different α
for different flow types.

Lemma 1: The Assumption 1 is satisfied when Ui = ϕαi with αi ∈ (0, 1) for all i ≤ I.
Proof: In [16] Kelly and Williams established this lemma when αi = α ∈ (0, 1) for all i ≤ I. However, their

proof used only the following key facts: (a) On (0,∞) the utility function Ui is continuous and strictly concave
for i ≤ I; (b) U ′i(x) →∞ as x→ 0 for i ≤ I and (c) Ui(x) > 0 if x > 0, Ui(x) → 0 as x→ 0. Using these facts
(especially (b)), they established that xi(z) > 0 if zi > 0. Similarly, they used them to provide a detailed argument
of the continuity of xi(z) on {z : zi > 0}.

The proof of [16] for the case when αi = α ∈ (0, 1) for all i, does not require the fact that all αi are equal.
Hence, their proof establishes this Lemma6. We refer reader to [16] for details.

Finally, define the vector of bandwidth allocated to flows, when vector of flows is z, as

Λ(z) = x(z) ◦ z = (x1(z)z1, . . . ,xI(z)zI).

We note the following obvious but crucial property of rate-allocation function x(·) : RI
+ → RI

+.
Lemma 2: For any z ∈ RI

+ such that zi ≥ ε, xi(z) ≤ ‖C‖/ε.
Proof: By definition of optimization problem, we have

‖Λ(z)‖ = max
i≤I

Λi(z) ≤ max
j≤J

Cj = ‖C‖. (3)

The above equation states that the simple fact that the net rate allocated to any flow type is at most ‖C‖. Hence,
for zi ≥ ε,

xi(z) ≤ ‖Λ(z)‖/zi ≤ ‖C‖/ε.

C. Network Dynamics and Stochastic Model

Let t ∈ R+ denote the time index. Let Z(t) = (Z1(t), . . . , ZI(t)) denote the vector of the numbers of flows
at time t. Let E(t) = (E1(t), . . . , EI(t)) be vector of cumulative number of arrivals of flows to the network in
[0, t] with E(0) = 0. Let Uik, k ≥ 0, denote the arrival time of kth flow of type i with Ui0 = 0. Each flow
arrives with service requirement (or file-size). Let Vik denote the service requirement of kth flow of type i. Denote
Vi = (Vik, k ≥ 1) and V = (V1, . . . , VI). The system is assumed to start empty7 at time t = 0.

Given the bandwidth allocation rule, the dynamics of the whole system can be obtained from the starting condition,
arrival process, and service requirement process. We assume that the arrival process and service requirement process

6In general, when all αi are different and possibly αi ∈ (0,∞), one needs to use the argument of [16] for three different region (0, 1), {1}
and (1,∞) together and patch them properly. We believe that proof of [16] extends easily but requires detailed argument. We skip it here
but it is a good excercise establishing Lemma 1 for different αi ∈ (0,∞) for an interested reader.

7Instead of empty, starting condition can be anything that is not too bad. Usually, such starting conditions are handled in a standard manner
and we refer an interested reader to see [13].
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are defined on a common probability space, say (Ω,F ,P), with E denoting the expectation. To this end, we assume
that arrival process is such that inter-arrival times for flow i ≤ I, i.e. Uik − Ui(k−1), k ≥ 1 are independent and
identically distributed (i.i.d.) with ν−1

i = E[Ui1−Ui0] = E[Ui1] ∈ (0,∞). The service requirements for flow i ≤ I,
{Vik} also form an i.i.d. sequence with density of distribution ϑi such that 〈1{0}, ϑi〉 = 0. Let the average service
requirement be 〈χ, ϑi〉 = µ−1

i ∈ (0,∞). The traffic intensity is defined as ρi = νi/µi. We assume that system is
underloaded, that is,

Aρ < C. (4)

The above condition is necessary for stability: the system can become unstable otherwise. We note that we have
assumed the arrival and service processes to be i.i.d. just for simplicity. The only requirement is the existence of
functional law of large numbers (equivalently, the validity of Lemma 11). As long as it is true, the fluid model
(based on the proof in [13]) is justified and result of this paper holds true.

Now, we describe system dynamics that will lead to the definition of a succinct system descriptor. Given the
vector of number of flows in the system at time t, Z(t), the rate allocation happens according to mapping x(Z(t)).
Define Si(t) to be the total amount of service allocated to a flows of type i in [0, t]. That is,

Si(t) =
∫ t

0
xi(Z(τ))dτ. (5)

Also define Si(t, t+ τ) = Si(t+ τ)− Si(t) for τ ∈ R+. Finally, let Vik(t) be the remaining amount of service of
kth flow of type i at time t. Then,

Vik(t) = (Vik − Si(Uik, t)).

Let Wi(t) =
∑Ei(t)

k=1 V +
ik (t) be the total amount of unfinished work in the system at time t, where x+ = x1{x>0}.

All of the above system information can be compactly represented via measure on R+ as follow: define Z(t) =
(Z1(t), . . . ,ZI(t)) ∈ MI as

Zi(t) =
Ei(t)∑
k=1

δ+
Vik(t),

where δ+
x ∈ M is a point mass measure at x if x > 0 and is 0 if x ≤ 0. The Zi(t) puts a unit amount of mass for

each flow of type i in the system at time t at the positive value corresponding to the unfinished amount of work
of the flow. For example, if the system has two flows of type 1 with remaining amount of work 2 and 4 at time
t, then Z1(t) = δ+

2 + δ+
4 . The Z(t) is sufficient to recover most of the relevant system information. For example,

for i ≤ I

Zi(t) = 〈1,Zi(t)〉, (6)

Wi(t) = 〈χ,Zi(t)〉 = Li(t)− Ti(t), (7)

where Li(t) =
∑Ei(t)

k=1 δ+
Vik

and the process Ti is defined as follows: let T (t) = (T1(t), . . . , TI(t)) track the
cumulative amount of work given to flows. That is,

Ti(t) =
∫ t

0
xi(Z(s))Zi(s)ds =

∫ t

0
Λi(Z(s))ds. (8)

Similarly, let process U track the cumulative amount of unused bandwidth in the network. That is,

U(t) = Ct−AT (t). (9)

In summary, the system is determined by parameters (A,C, ν, ϑ,U), where U = (U1, . . . ,UI). The processes
describing system dynamics are (Z,W, T, U), which are induced by (E,Z) and the NUM given that system starts
empty, i.e., Z(0) = 0.
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III. FLUID MODEL SCALING

In this section, we describe fluid model scaling by considering a sequence of systems, indexed by scaling
parameter r ∈ N8. Specifically, the rth system has corresponding parameters (A,Cr, νr, ϑ,U) obeying the following
relation: Cr = rC = (rC1, . . . , rCJ) and νr = rν = (rν1, . . . , rνI). That is, the capacity of each link and the
arrival rate are scaled r times. However, the network routing matrix A, service requirement ϑ, and utility of the
network remains the same. We make a quick remark that under this scaling the loading is ρr = rρ, and, from (4),

rAρ = Aρr < Cr = rC.

Now, we describe the arrival process and service requirement process of the rth system. In this notation, the
original system corresponds to the rth system with r = 1. Recall that the original system’s cumulative arrival
process is E and its service requirement is given by V . The arrival process of the rth system, denoted by Er is
Er(t) = E(rt). That is, requests arriving to the original system in time [0, rt] arrive to the rth system in time
[0, t]. The requests retain their service requirement, that is, V r = V . The stochastics of a system is completely in
the arrival and service processes. Given the above described scaling, we have all the r systems, r ∈ N, living on
the same probability space (Ω,F ,P).

Now, we define the scaled system variables. Let (Zr,W r, T r, U r,Zr) be the variables corresponding to the rth

system. Now, define the scaled variables as follows. Given (6)-(9), it is sufficient to describe the scaled measure
valued descriptor. Let it be defined as

Z̄r(t) =
1
r
Zr(t). (10)

Given the scaling of (10), we obtain that for other scaled variables

Z̄r(t) = 〈1, Z̄r(t)〉 =
1
r
〈1,Zr(t)〉 =

1
r
Zr(t),

W̄ r(t) = 〈χ, Z̄r(t)〉 =
1
r
〈χ,Zr(t)〉 =

1
r
W r(t).

(11)

Denote by xr : RI → RI the mapping from vector of number of flows to rates allocated to flows under NUM for
rth system with capacities Cr in place of C in (2).

Lemma 3: For any r > 0,

xr(rz) = x(z). (12)
Proof: Given r > 0, consider the following.

xr(rz) = arg max

∑
i≤I

Ui(xi)rzi : Ax ◦ rz ≤ Cr; xi = 0 if rzi = 0 and x ≥ 0


= arg max

r∑
i≤I

Ui(xi)zi : Ax ◦ z ≤ Cr/r; xi = 0 if zi = 0 and x ≥ 0


= arg max

∑
i≤I

Ui(xi)zi : Ax ◦ z ≤ C; xi = 0 if zi = 0 and x ≥ 0


= x(z).

(13)

This completes the proof of Lemma 3.
Lemma 3 implies that for bandwidth allocation

Λr(rz) = xr(rz) ◦ rz = x(z) ◦ rz = rx(z) ◦ z = rΛ(z).

8We call parameter r instead of n, as scaling parameter is traditionally called r. This notation hopefully will not create much confusion.
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Also, from Lemma 3, we have that, for i ≤ I and t, τ > 0,

S̄r
i (t, t+ τ) =

∫ t+τ

t
xi(Z̄r(s))ds =

∫ t+τ

t
xi

(
Zr(s)
r

)
ds

=
∫ t+τ

t
xr

i (Z
r(s))ds = Sr

i (t, t+ τ),
(14)

T̄ r
i (t) =

∫ t

0
Λi(Z̄r(s))ds =

∫ t

0

1
r
Λr

i (rZ̄
r(s))ds =

1
r

∫ t

0
Λr

i (Z
r(s))ds =

1
r
T r

i (t), (15)

Ū r(t) = Ct−AT̄ r(t) =
1
r

(Crt−AT r(t)) =
1
r
U r(t), (16)

W̄ r(t) =
1
r
Lr(t)− 1

r
T r(t) = L̄r(t)− T̄ r(t). (17)

Here our interest is in studying the behavior of (Z̄r, W̄ r, T̄ r, Ū r, Z̄r) as r →∞. Under the stochastic assumptions
on the arrival process and service requirement process, we will find that they will satisfy deterministic fluid model
equations as defined below almost surely. Before proceeding further, we make the following remark about the
scaling considered in this paper.

Remark. The scaling described above is different from the ‘standard’ fluid model scaling considered in [13],
where the rth system is obtained by scaling the variables of original system in time and space. For example, the
Z̄r(t) = Z(rt)/r. For fluid model to be meaningfully defined, it is required that, for all i ≤ I, Ui(rz) = g(r)Ui(z)
for some function g(r) (same for all i ≤ I) such that g(r) > 0 when r > 0. Instead, here we are scaling capacity,
speeding up the arrival process, and scaling down the variables. A main advantage of such scaling is that it does not
require the strictly concave utilities to have the above stated property. This allows for considering heterogeneous
utility functions unlike in [13]. We again note that, despite of difference in scaling, the proof techniques of [13]
are still sufficient here, primarily because the dynamics of our scaled system is the same as those of the scaled
system in [13].

Definition 1 (Auxiliary variables): Given function ζ : R+ → MI, define (z, w, τ, u) as follows:

z(t) = 〈1, ζ(t)〉,
w(t) = 〈χ, ζ(t)〉,

τ(t) = (τi(t))i≤I, where τi(t) =
∫ t

0

(
xi(z(s))zi(s)1{zi(s)>0} + ρi1{zi(s)=0}

)
ds,

u(t) = Ct−Aτ(t).
Definition 2 (Fluid model solution): Given system with parameters (A,C, ν, ϑ,U), we call ζ : R+ → MI

a solution to fluid model equation if ζ and corresponding auxiliary variables (z, w, τ, u) satisfy the following
conditions:
(a) ζ is continuous.
(b) ‖〈1{0}, ζ(t)〉‖ = 0 for all t ≥ 0.
(c) For any f ∈ C and i ≤ I,

〈f, ζi(t)〉 = νi〈f, ϑi〉
(∫ t

0
1{zi(s)>0}ds

)
−
∫ t

0
〈f ′, ζi(s)〉xi(z(s))ds. (18)

The following are useful properties of the auxiliary variables (z, w) associated with a fluid model solution. These
properties are stated in [13] (specifically, Lemma 3.3 for property of w).

Lemma 4: Suppose ζ is a fluid model solution with ζ(0) = 0. Then, for each i ≤ I, t ≥ 0,

zi(t) ≤ νit, (19)

wi(t) =
∫ t

0
(ρi − zi(s)xi(z(s)))1{zi(s)>0}ds = ρit− τi(t), (20)

τi(t) ≥ 0 and τi(t) ≤ (‖C‖+ ‖ρ‖) t. (21)
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Proof: We present proof from [13] for completeness. It is easy to show that there exists functions fn ∈ C
such that fn ↑ 1(0,∞) and f ′n are non-negative. For such functions, (18) implies that

〈fn, ζ〉 ≤ νi〈fn, ϑi〉
(∫ t

0
1{zi(s)>0}ds

)
≤ νi〈fn, ϑi〉t.

Now, use of monotone convergence theorem, property of ζ that ‖〈1{0}, ζ(t)〉‖ = 0, 〈1{0}, ϑi〉 = 0, and ϑi being
probability density together give us the desired result (i.e., (19)):

zi(t) = 〈1(0,∞), ζi(t)〉 ≤ νit.

Now, we argue for (20). Again, it can be shown that χ can be approximated by sequence of function fn ∈ C so
that fn ≤ χ and fn ↑ χ, f ′n ↑ 1(0,∞). Let ζ be a fluid model solution. From (18)

〈fn, ζ〉 = νi〈fn, ϑi〉
(∫ t

0
1{zi(s)>0}ds

)
−
∫ t

0
〈f ′n, ζi(s)〉xi(z(s))ds.

Taking the limit as n → ∞, monotone convergence theorem and the property of fluid model solution that
‖〈1{0}, ζ(t)〉‖ = 0 together imply that

wi(t) =
∫ t

0
(ρi − zi(s)xi(z(s)))1{zi(s)>0}ds

Finally, we justify (21). Definition of τi(t) implies τi(t) ≥ 0. Further,

τi(t) =
∫ t

0

(
xi(z(s))zi(s)1zi(s)>0 + ρi1zi(s)=0

)
ds

≤
∫ t

0
(xi(z(s))zi(s) + ρi) ds. (22)

Now, by property of optimization problem corresponding to rate allocation function xi(·), we have xi(z(s))zi(s) ≤
maxj≤JCj = ‖C‖. Hence, the above inequality gives us desired conclusion

τi(t) ≤ (‖C‖+ ‖ρ‖) t.

The following is a direct adaptation of Theorem 4.1 in [13] for the scaling described above. For this, let PT
r

denote the joint distribution of (Z̄r, Er, Z̄r, W̄ r, T̄ r, Ū r) restricted to (compact) time interval [0, T ]. Note that PT
r

has its support on the product space D([0, T ],MI) × D5([0, T ],RI
+) with the appropriately defined topology as

described in Section II.
Theorem 5: Fix any T > 0. Then, the sequence of probability measures PT

r , r ∈ N is tight (component-wise and
hence with respect to the product topology as well). Hence, any weak limit point is a probability measure on the
same space. Under any such weak limit point, with probability 1 the tuple (Z, E, z, w, τ, u) is such that E(t) = νt
and (Z(t), z(t), w(t), τ(t), u(t)) is a solution to fluid model for all t ∈ [0, T ].
For completeness, we provide some details on proof of Theorem 5 in Appendix, which are based on a direct
adaption of arguments for Theorem 4.1 [13]. We refer an interested reader to [13] for a complete treatment.

IV. MAIN RESULT

We state and prove the main result of this paper regarding stability of the network operating under α fair utility
based rate allocation for strictly positive and sufficiently small αi, possibly a different αi for each source i. The
general approximate stability result, which is a Corollary of Theorem 6 is stated in the next subsection.

Theorem 6: Consider a sequence of networks (A,Cr, νr, ϑ,U), r ∈ N, as defined in Section III. Further,
(a) there exists B > 0 such that ϑi([B,∞)) = 0 for i ≤ I;
(b) there exists δ > 0 such that (1 + δ)Aρ < C; and
(c) utility of a flow i ≤ I is Ui = ϕαi so that Assumption 1 is satisfied as well as αi <

δ
Bµi

.
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Then, for any finite T > 0 and θ > 0,

lim inf
r→∞

PT
r

(
max
i≤I

sup
0≤t≤T

Z̄r
i (t) < θ

)
= 1.

Before we dive into the proof of Theorem 6, we explain its consequences. The main claim of Theorem 6 implies
that for large enough r, Z̄r(·) is uniformly close to 0 in the interval [0, T ] for any finite T with probability close
to 1. Recall that Z̄r(·), the scaled vector of flows in the system, is equal to the difference between arrivals and
departures at any time. Hence, we have that, for the limiting system as r →∞, the normalized cumulative arrivals
is the same as normalized cumulative departures for any time t ∈ [0, T ]. That is, the system is rate-stable. The
main conditions required to prove the Theorem are uniform boundedness of file-size (or service requirement) by
B and the fair utility parameter αi being small enough (or close to, but strictly greater than, 0).

A. Another Implication of Theorem 6

Theorem 6 can be interpreted as an approximate stability result as well. Before we state a general implication,
consider the following example.

Example 1: Suppose ϑi be uniform distribution on [0, B] for i ≤ I. Then µi = 2/B. Then for δ = 2, condition
(c) is satisfied for any αi ∈ (0, 1). That is, the Theorem 6 proves stability of any ρ such that 3Aρ < C. Thus,
Theorem 6 implies 1/3-approximation of stability for the uniform distribution with bounded file-size.

Next, we state the implication of Theorem 6 that essentially shows that the system is 1/(1 + α)-approximate
stable when all αi = α ∈ (0,∞) for any system with bounded file size distribution.

Corollary 7: Consider a sequence of networks (A,Cr, νr, ϑ,U), r ∈ N, as defined in Section III. Further,
(d) there exists 0 < b ≤ B <∞ such that ϑi([0, b] ∪ [B,∞)) = 0 for all i ≤ I;
(e) utility of flow i ≤ I is Ui = ϕα for α ∈ (0,∞); and
(f) (1 + α)Aρ < C.

Then, for any finite T > 0 and θ > 0,

lim inf
r→∞

PT
r

(
max
i≤I

sup
0≤t≤T

Z̄r
i (t) < θ

)
= 1.

Proof: The condition (f) implies that there exists an ε > 0 such that

(1 + ε)(1 + α)Aρ < C. (23)

That is

(1 + δ)Aρ < C, (24)

where δ = α(1+ ε)+ ε. Now define interval Ik = [b(1+ ε)k, b(1+ ε)k+1). Let Kε = dlog(B/b)/ log(1+ ε)e. Then

[b, B) ⊂ ∪Kε

k=0Ik.

Now consider ϑi any i ≤ I. Since the support of ϑi is contained in [b, B) we can write ϑi as follows.

ϑi =
Kε∑
k=0

pikϑik,

where
pik = 〈1Ik

, ϑi〉 and ϑik = p−1
ik ϑi1Ik

.

Also, define νik = νipik, µ−1
ik = 〈χ, ϑik〉 and ρ̂ik = νik/µik. For completeness, we adopt notation that if pik = 0

then ϑik = 0, ρ̂ik = 0.
The above suggests that flow of type i with parameters νi, ϑi is equivalent to Kε different flows, denoted by

flow (i, k), 0 ≤ k ≤ Kε with parameters (νik, ϑik)0≤k≤Kε
. That is the original system with I flows is equivalent

to KεI flows. The J× I routing matrix A naturally extends to J×KεI matrix Â. Then, (24) implies that

(1 + δ)Âρ̂ < C. (25)
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We want to remind reader that this newly created system with Kε times more flows has all the stochastic properties
of the original system - primarily the arrival process and service requirement process of each satisfy the functional
law of large numbers (as stated in Lemma 11). This can be checked easily given how the construction of new
system is done from the original system. Now to complete the proof it is sufficient to show that this new system
satisfies the conditions of Theorem 6.

To this end, consider conditions (a)-(c) of Theorem 6. Given (25) it is straightforward to check that conditions
(a)-(b) are satisfied and Ui = ϕα ∈ (0,∞) for all i ≤ I satisfy Assumption 1 (i.e. all KεI flows satisfy it as well).
Thus we are required to check the second part of condition (c). Now for flow (i, k), 0 ≤ k ≤ Kε, i ≤ I, the bound
on service requirement is Bk

4
= b(1 + ε)k+1 while support of ϑik is on interval [b(1 + ε)k, b(1 + ε)k+1). Hence,

µ−1
ik ∈ [b(1 + ε)k, b(1 + ε)k+1). That is,

1
1 + ε

≤ 1
µikBk

. (26)

Now the definition of δ in (25) and (26) imply the following.

α < α+
ε

1 + ε

=
α(1 + ε) + ε

1 + ε

=
δ

1 + ε

≤ δ

µikBk
. (27)

The (27) completes the verification of the condition (c) of Theorem 6. Given that the sum of the number of flows
of (i, k), 0 ≤ k ≤ Kε is the same as the number of flows of type i, conclusion of Theorem 6 implies the desired
conclusion of Corollary 7 and thus completes its proof.

B. Proof of Theorem 6

We will use Theorem 5 crucially to obtain proof of Theorem 6. We state the following result about the fluid
model solutions.

Lemma 8: Consider any system satisfying conditions (a)-(c) of Theorem 6. Let Z be corresponding fluid model
solution with auxiliary variables (z, w, τ, u), and Z(0) = 0 since system starts empty. Then, for any t ∈ [0, T ],

max
i≤I

zi(t) = 0,

where recall that zi(t) = 〈1,Zi(t)〉.
The proof of the Lemma 8 will be presented in the next sub-section. First, we use it to complete the proof of

Theorem 6. To this end, consider the following. Let

SB = {Z ∈ D([0, T ],MI) : 〈1(B,∞),Zi(t)〉 = 0, i ≤ I, ∀t ∈ [0, T ]}.

The SB is closed set of D([0, T ],MI) justified as follows. Let {Zk} ⊂ SB and Zk → Z . Then Zk
i (t) w→ Zi(t)

for t ∈ [0, T ] and i ≤ I. But we know that 〈1(B,∞),Zk
i (t)〉 = 0 for all i ≤ I. Hence, Portmantau’s theorem implies

that (for open set (B,∞))
0 = lim inf

k
〈1(B,∞),Zk

i (t)〉 ≥ 〈1(B,∞),Zi(t)〉.

That is, Z ∈ SB . Thus, SB is closed. Hence, the SB is complete and separable as well under the topology induced
by do as well. In what follows, we will be interested in this Polish space SB .

For θ > 0, let Aθ = {Z(·) ∈ SB : maxi≤I sup0≤t≤T 〈1,Zi(t)〉 < θ}. Then, we claim that Aθ is open set with
respect to topology induced by metric do on SB . It is justified as follows. Consider Bθ = Ac

θ ⊂ SB . It is sufficient
to show that Bθ is closed (w.r.t. topology induced on SB by do). Equivalently, it is sufficient to show that if ζk → ζ
with {ζk} ⊂ Bθ then ζ ∈ Bθ. Since the topology is induced by metric do, we have that do(ζk, ζ) → 0.
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Proposition 9: For any ζ, ξ ∈ SB ,∣∣∣∣max
i≤I

sup
t
〈1, ζi(t)〉 −max

i≤I
sup

t
〈1, ξi(t)〉

∣∣∣∣ ≤ do(ζ, ξ).

Proof: Recall from Section II that

do(ζ, ξ) = inf
ϕ∈Φb

{
‖ϕ‖o ∨

(
sup

t∈[0,T ]
dI(ζ(t), ξ(t))

)}
.

Note that by definition of Φb, all ϕ ∈ Φb must be continuous in addition to being nondecreasing and ϕ(0) =
0, ϕ(T ) = T . Hence, every ϕ ∈ Φb map [0, T ] onto [0, T ]. Given δ > 0 there exists ϕ ∈ Φb such that

max
i≤I

sup
t∈[0,T ]

d[ζi(ϕ(t)), ξi(t)] ≤ do(ζ, ξ) + δ.

Let `δ = do(ζ, ξ) + δ. Then from above and definition of Prohov’s metric d(·, ·) imply that for any Borel set S

ζi(ϕ(t))(S) ≤ ξi(t)(S`δ) + `δ; ξi(t)(S) ≤ ζi(ϕ(t))(S`δ) + `δ.

Now, since ζ, ξ ∈ SB we have ζi((B,∞)) = ξi((B,∞)) = 0. Hence, we have that for S = [0, B + 2`δ]

ζi(ϕ(t))(S) = ζi(ϕ(t))(S`δ); ξi(t)(S) = ξi(t)(S`δ).

Further, for such choice of S

ζi(ϕ(t))(S) = 〈1, ζi(ϕ(t))〉; ξi(t)(S) = 〈1, ξi(t)〉.

Putting above together, we have that

〈1, ζi(ϕ(t))〉 ≤ 〈1, ξi(t)〉+ `δ; 〈1, ξi(t)〉 ≤ 〈1, ζi(ϕ(t))〉+ `δ.

Now since ϕ maps [0, T ] onto [0, T ], the above implies that∣∣∣∣∣max
i≤I

sup
t∈[0,T ]

〈1, ζi(t)〉 −max
i≤I

sup
t∈[0,T ]

〈1, ξi(t)〉

∣∣∣∣∣ ≤ `δ = do(ζ, ξ) + δ.

Since δ > 0 is arbitrary, we conclude that∣∣∣∣∣max
i≤I

sup
t∈[0,T ]

〈1, ζi(t)〉 −max
i≤I

sup
t∈[0,T ]

〈1, ξi(t)〉

∣∣∣∣∣ ≤ do(ζ, ξ).

From Proposition 9, we obtain that if ζk → ζ with {ζk} ⊂ SB , then

max
i≤I

sup
t∈[0,T ]

〈1, ζk
i (t)〉 → max

i≤I
sup

t∈[0,T ]
〈1, ζi(t)〉.

Hence, if {ζk} ⊂ Bθ then ζ ∈ Bθ. That is, Bθ is closed and hence Aθ is open in SB .
Now suppose Theorem 6 is false for a given θ > 0. Then, from above discussion it must be that there is a

sequence rq, q ∈ N, rq → ∞, such that PT
rq

(Aθ) < 1 − δ for all q and some δ > 0. By Theorem 5, there exists a
further subsequence rqm

,m ∈ N of rq, q ∈ N, so that PT
rqm

converges to some PT
? under which the system satisfies

fluid model solution with probability 1. By Lemma 8, we have that, for any θ > 0,

PT
? (Aθ) = 1.

By Portmantau’s characterization of weak-convergence and Aθ being open we have that

lim inf
rqm

PT
rqm

(Aθ) ≥ PT
? (Aθ) = 1. (28)

This contradicts our assumption that Theorem 6 is false. This completes the proof of Theorem 6.
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C. Proof of Lemma 8

Consider a system satisfying hypothesis (a)-(c) of the Theorem 6. Let Z be a fluid model solution with its
auxiliary variables (z, w, τ, u), and Z(0) = 0. Let yi(t) = (1+δ)ρi/zi(t) for i ≤ I. Define the following Lyapunov
function

L(t) =
∑
i≤I

Li(t), where Li(t) = wi(t)U ′i(yi(t)).

Now
U ′i(x) = x−αi and U ′′i (x) = −αix

−1−αi .

In what follows, we wish to upper bound lim suph→0+
L(t+h)−L(t)

h for all t. By Fatou’s Lemma,

lim sup
h→0+

L(t+ h)− L(t)
h

≤
∑
i≤I

lim sup
h→0+

Li(t+ h)− Li(t)
h

. (29)

Next, we bound lim suph→0+
Li(t+h)−Li(t)

h . To this end, replacing the value of U ′i(·) and using simple manipulation
give us

Li(t+ h)− Li(t)
h

= y−αi

i (t)
wi(t+ h)− wi(t)

h
+ wi(t+ h)

y−αi

i (t+ h)− y−αi(t)
h

. (30)

Next, we bound (30) as h→ 0+ in many steps as follows.

Step 1. Bound on y−αi

i (t): We have y−αi

i (t) = zαi

i (t)(1 + δ)−αiρ−αi

i . For any t ∈ [0, T ], (19) of Lemma 4 imply
that zi(t) ≤ νit ≤ νiT . Putting this together, we have that, for any t ∈ [0, T ],

y−αi

i (t) ≤ (1 + δ)−αiρ−αi

i ναi

i Tαi
4
= KT

1 . (31)

Step 2. Bound on wi(t): From (20) of Lemma 4, for any t ∈ [0, T ], we have

wi(t) ≤ ρit ≤ ρiT. (32)

Step 3. Bound on lim suph→0+
wi(t+h)−wi(t)

h : The (20) and (21) of Lemma 4 imply that wi(·) is a Lipschitz
continuous function with constant (‖C‖+‖ρ‖). It is well-known that Lipschitz continuous function are differentiable
almost everywhere. Since we have finite I, we have that all wi, i ≤ I, are differentiable almost everywhere. Such t
are called regular points. At such t, the term lim suph→0+

wi(t+h)−wi(t)
h = dwi(t)

dt . From Lemma 4, for such regular
point t, we have

lim sup
h→0+

wi(t+ h)− wi(t)
h

=
dwi(t)
dt

= (ρi − xi(z(t))zi(t))1zi(t)>0 ≤ ρi − xi(z(t))zi(t). (33)

Here the last inequality follows from the fact that, for zi(t) = 0, xi(z(t))zi(t) = 0. Note that Lipschitz continuity
of wi(·) implies that, for all t, we have lim suph→0+

wi(t+h)−wi(t)
h ≤ (‖C‖+ ‖ρ‖) and limh→0+ wi(t+ h) = wi(t).

Step 4. Bound on lim suph→0+
y
−αi
i (t+h)−y−αi (t)

h : Consider the following.

y−αi

i (t+ h)− y−αi(t) =
zαi

i (t+ h)− zαi

i (t)
(1 + δ)αiραi

i

≤
(zi(t) + hνi)αi − zαi

i (t)
(1 + δ)αiραi

i

, (34)

where the last inequality follows from Lemma 4. Taking h→ 0+ in (34), we obtain

lim sup
h→0+

y−αi

i (t+ h)− y−αi(t)
h

≤ αiνi

(1 + δ)αiραi

i z
1−αi

i (t)
=

αiνiy
1−αi

i

(1 + δ)ρi
. (35)

Using the bounds from Steps 1-4, we obtain the following: for almost every t,

lim sup
h→0+

L(t+ h)− L(t)
h

≤
∑
i≤I

[
(ρi − xi(z(t))zi(t))y−αi

i (t) +
wi(t)αiνiy

1−αi

i

(1 + δ)ρi

]
. (36)
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Further, for any t ∈ [0, T ], there exists a finite constant KT
2 <∞ such that

lim sup
h→0+

L(t+ h)− L(t)
h

≤ KT
2 . (37)

Next, we study the bound on the right hand side (RHS) of (36) with goal of establishing it to be negative if
maxi≤I zi(t) is positive. To this end let zi(t) > 0. Consider term

∑
i≤I(ρi − xi(z(t))zi(t))y−αi

i (t). For an i ≤ I,

(ρi − xi(z(t))zi(t)) y−αi

i (t) = −δρiy
−αi

i (t) + zi(t)
(

(1 + δ)ρi

zi(t)
− xi(z(t))

)
y−αi

i (t)

= −δρiy
−αi

i (t) + zi(t) (yi(t)− xi(z(t))) y−αi

i (t). (38)

From the hypothesis of Theorem 6, (1 + δ)Aρ < C. Hence, the vector y(t) = (y1(t), . . . , yI(t)) is a feasible rate
allocation. Now, utility function of ith flow corresponds to αi fair utility. Hence, it is strictly concave as discussed
earlier. That is, given z(t), the rate allocation vector x(z(t)) is unique and satisfies the zero gradient condition.
From this, using standard argument it follows that∑

i≤I

zi(t)(yi(t)− xi(z(t)))y−αi

i (t) ≤ 0. (39)

Therefore, ∑
i≤I

(ρi − xi(z(t))zi(t))y−αi

i (t) ≤ −δ
∑
i≤I

ρiy
−αi

i . (40)

Now, the term
∑

i≤I
wi(t)αiνiy

1−αi
i (t)

(1+δ)ρi
. For this, note that we have ϑi((B,∞)) = 0 from the hypothesis of Theorem

6. Subsequently, 〈1(B,∞),Zi(t)〉 = 0 for all i ≤ I and all t > 0. Hence,

wi(t) = 〈χ,Zi(t)〉 ≤ B〈1,Zi(t)〉 = Bzi(t). (41)

Using (41) and recalling the definition of yi(t), we obtain∑
i≤I

wi(t)αiνiy
1−αi

i (t)
(1 + δ)ρi

≤
∑
i≤I

Bαiνiy
−αi

i . (42)

Combining (40) and (42) in (36), we obtain that, for almost all t ∈ [0, T ],

lim sup
h→0+

L(t+ h)− L(t)
h

≤ −
∑
i≤I

(δρi − αiBνi)y−αi

i (t) = −
∑
i≤I

(δρi − αiBνi)zαi

i

(1 + δ)αiραi

i

. (43)

By property of fluid model solution, we have ‖〈1{0}, ζ(t)〉‖ = 0 for all t ∈ [0, T ]. Also, wi(t) ≤ Bzi(t). Hence,
we have that

L(t) = 0 ⇔ z(t) = 0.

This can be justified as follows. Define fm = 1[0, 1
m

]. By definition fm → 1{0} point-wise as m→∞. Further, fm ≤
1[0,1] for m ≥ 1 and ζ(t) is non-negative measure with 〈1[0,1], ζ(t)〉 <∞ by property of fluid model solution (and
estimates obtained in Lemma 11). Then, Dominated convergence theorem implies that 〈fm, ζ(t)〉 → 〈1{0}, ζ(t)〉.
But 〈1{0}, ζ(t)〉 = 0 for all t ∈ [0, T ] by property of fluid model solution. That is,

lim
m→∞

〈fm, ζ(t)〉 = 0.

Equivalent, for any ε > 0 there exists m(ε) such that for all m ≥ m(ε), 〈fm, ζ(t)〉 ≤ ε. Now, w(t) = 0 implies
〈χ, ζ(t)〉 = 0. Consider the following (with m ≥ m(ε))

z(t) = 〈1, ζ(t)〉 = 〈fm, ζ(t)〉+ 〈1( 1
m

,∞), ζ(t)〉
≤ ε+m〈χ, ζ(t)〉
= ε. (44)

Thus, z(t) ≤ ε for any ε > 0 if w(t) = 0. This completes the proof that if w(t) = 0 then z(t) = 0. That is, if
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L(t) = 0 then z(t) = 0 given 〈1{0}, ζ(t)〉 = 0.
In summary, we have the following: (1) for almost all t ∈ [0, T ], lim suph→0+

L(t+h)−L(t)
h < 0 if L(t) > 0; (2)

lim suph→0+
L(t+h)−L(t)

h ≤ KT
2 for all t ∈ [0, T ]. Given (1) and (2), a simple analysis in Lemma 10 in the next

subsection implies that L(t) = 0 for all t ∈ [0, T ] given that L(0) = 0. This immediately implies that z(t) = 0 for
all t ∈ [0, T ]. This completes the proof of Lemma 8.

D. Remaining Lemma

We state and prove the following remaining lemma used in proving Lemma 8. This result is standard analytic
result and can be found in literature in different guises.

Lemma 10: Let f : [0, T ] → R+ be any measurable function with properties: (1) for almost all t ∈ [0, T ],
lim suph→0+

f(t+h)−f(t)
h < 0 if f(t) > 0, and (2) lim suph→0+

f(t+h)−f(t)
h < A for all t ∈ [0, T ] with some finite

A > 0. Let f(0) = 0. Then f(t) = 0 for all t ∈ [0, T ].
Proof: In what follows, we use the standard properties of continuous functions, Fatou’s Lemma, and the fact

that g(x)
4
= lim supn→∞ n(f(x + 1/n) − f(x)) is measurable function if f is measurable. Define F (t) = f2(t)

and consider the following:

F (t)− F (s) = lim
n→∞

n

[∫ t+1/n

t
F (z)dz −

∫ s+1/n

s
F (z)dz

]

= lim
n→∞

∫ t

s
n (F (z + 1/n)− F (z)) dz

≤
∫ t

s
lim sup

n→∞
n (F (z + 1/n)− F (z)) dz

=
∫ t

s
2f(z) lim sup

n→∞
n (f(z + 1/n)− f(z)) dz

=
∫ t

s
2f(z)g(z)dz. (45)

Let B = {u ∈ [s, t] : Condition (1) holds at u }. By the hypothesis of the Lemma, we have the Lebesgue measure
of B, µ(B) = t− s, and µ(Bc) = 0 where Bc = [s, t]−B. The hypothesis of the Lemma implies that

f(z)g(z)1{z∈B} = f(z)g(z)1{z∈B;f(z)>0} ≤ 0,

f(z)g(z)1{z /∈B} < Af(z).
(46)

Therefore,

F (t)− F (s) ≤ 2
∫ t

s
f(z)g(z)1{z∈B}dz + 2

∫ t

s
f(z)g(z)1{z /∈B}dz

≤ 0µ(B) +A‖f‖Tµ(Bc) = 0. (47)

Here we used the fact that in [0, T ] the function f is bounded above by AT from the hypothesis of the Lemma.
Now using F (0) = 0 and replacing s = 0 in (47), we get F (t) ≤ 0 for all t ∈ [0, T ]. But by definition F (t) ≥ 0.
That is, F (t) = 0. Equivalently, f(t) = 0 for all t ∈ [0, T ].

V. CONCLUDING REMARKS AND FUTURE WORK

Deterministic versions of NUM and its generalizations have been extensively used in many network designs
recently. However, most results on stochastic stability of NUM rely on the assumption of exponentially distributed
file sizes. In this paper, we have established the stability of network operating under α-fair rate allocation with
general file size distributions, when the α corresponding to each flow is close to 0 and the service requirement has
bounded size. In addition, our results imply 1/(1+α)-approximate stability of network with any α-fair utility under
general file size distribution. Our method was based on Lyapunov function analysis for fluid model solution of the
scaled system. Due to different scaling, we could establish fluid model (and subsequently stability) for heterogeneous
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α-fair utilities for different flows. Our Lyapunov function is naturally valid for the fluid model scaling of Gromoll
and Williams [13] since the fluid model solutions are identical.

It is straightforward to extend Theorems 5 and 6 with same utility functions and convex constraints such that 0
is a feasible point under constraints. Extending these results for the case of general set of concave utilities beyond
α-fair would also be an interesting task.

The special cases of α = ∞ and α = 1 have recently been tackled in the preprints of [5] and [22], respectively.
In contrast, this paper provides guarantees for a continuum of α ∈ (0,∞), including stability for heterogeneous
and sufficiently small αi. However, stability for all α ∈ (0,∞) and general file size distribution is still open. Note
that we have ignored any dynamical information about the fluid quantity z(t) by upper bounding its rate of change
by ν. Further progress can be made by studying the details of the dynamics of z(t), which can be obtained based
on the fluid model solution of Theorem 5.
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APPENDIX

FLUID MODEL JUSTIFICATION

For completeness, we present a proof of Theorem 5 and thus justify fluid model solutions in this appendix. As
explained earlier, although our scaling is somewhat different, the proof is essentially the same as that of Theorem
4.1 of [13]. Hence, we only provide key steps of the proof. In what follows, whenever details are missing we
provide specific pointers in [13] for an interested reader. For a curious reader we make a note that the fluid model
techniques used in [13] have also been used in other similar contexts, e.g., [12], [24], [11]. The philosophy of using
measure valued descriptor for dynamical systems dates way back. Lecture notes by Dawson [8] is a good reference
for this.

Theorem 5 requires establishing two key properties: (1) Tightness of probability measures PT
r , r ∈ N, and (2)

Almost sure deterministic dynamics under any weak limit of these measures. We go through various key steps to
first establish (1) and then (2) in the following sections.

A. Limit of Primitive Processes

This section looks at the limiting primitive processes, the arrival process, and service process. Given the rth

system, recall that

Lr
i (t) =

Er
i (t)∑

k=1

δVik
, i ≤ I.

Let ν(t) = νt and ρ(t) = ρt with notation ν = (ν1, . . . , νI) and ρ = (ρ1, . . . , ρI). Define the fluid scaled quantity

L̄r
i (t) =

1
r
Lr

i (t).

Now L̄r(·) = (L̄r
1(·), . . . , L̄r

I(·)) is a function from [0,∞) to MI. Under stochastic assumption that arrival process
and service requirement process are i.i.d., the standard functional law of large numbers lead to the following result.

Lemma 11 (Theorem 5.1,[13]): As r →∞,(
L̄r(·), 〈χ, L̄r(·)〉

)
⇒ (ν(·)ϑ, ρ(·)) .

Here convergence in Lemma 11 is uniformly on compact time intervals on space D([0,∞),MI). We skip the proof
and reader can see Appendix in [13] (or any other known standard arguments, e.g. [1])

B. Dynamic Equations

This section provides an important characterization of system dynamics that will be crucial in proving the
characterization of fluid model solutions. The result stated next is a clone of Lemma 5.2 [13] for our scaling.

Lemma 12: Fix an r > 0. Consider any i ≤ I and f ∈ Cc. Then almost surely, for all [s, t] ⊂ [0,∞) satisfying
infu∈[s,t] Z̄

r
i (u) > 0,

〈f, Z̄r
i (t)〉 = 〈f, Z̄r

i (s)〉 −
∫ t

s
〈f ′, Z̄r

i (u)〉xi(Z̄r(u))du+ 〈f, L̄r
i (t)〉 − 〈f, L̄r

i (s)〉.
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Proof: We first connect the dynamics of the rth system to the fluid scaled system. For this, recall that system
is described completely by Zr(·). Now,

Zr
i (t) =

Er
i (t)∑

k=1

δ+
Vik(t).

Consider any two points 0 ≤ q < t. From definition,

Vik(t) = (Vik(q)− Sr
i (q, t)) for k ≤ Er

i (q); Vik(t) = (Vik − Sr
i (Uik, t)) for Er

i (q) < k ≤ Er
i (t).

Now, for any f ∈ Cc

〈f,Zr
i (t)〉 =

Er
i (t)∑

k=1

〈f, δ+
Vik(t)〉 =

Er
i (q)∑

k=1

〈f, δ+
Vik(q)−Sr

i (q,t)〉+
Er

i (t)∑
k=Er

i (q)+1

〈f, δ+
Vik−Sr

i (Uik,t)〉

=
Er

i (q)∑
k=1

〈f(· − Sr
i (q, t)), δ

+
Vik(q)〉+

Er
i (t)∑

k=Er
i (q)+1

f(Vik − Sr
i (Uik, t))

= 〈f(· − Sr
i (q, t)),Zr

i (q)〉+
Er

i (t)∑
k=Er

i (q)+1

f(Vik − Sr
i (Uik, t)). (48)

Now applying scaling by dividing both sides of (48) by r and (14), we have

〈f, Z̄r
i (t)〉 = 〈f(· − S̄r

i (q, t)), Z̄r
i (q)〉+

1
r

Er
i (t)∑

k=Er
i (q)+1

f(Vik − S̄r
i (Uik, t)). (49)

Given (49) that holds for any q < t, to establish the result of the Lemma, we will need to use it for q, t such that
|q − t| → 0 and apply the properties listed below.

1. On a time a interval [s, t], Z̄r
i (·) is right continuous with left limits. Since its infimum is strictly positive, there

exists ε,M > 0 such that

0 < ε ≤ inf
u∈[s,t]

Z̄r
i (u) ≤ sup

u∈[s,t]
Z̄r

i (u) ≤M. (50)

Further, we can assume that M is such that supu∈[s,t] ‖Z̄r(u)‖ ≤M .
2. From Lemma 2, xi(z) ≤ ‖C‖/ε on compact set {z : ‖z‖ ≤ M, zi ≥ ε}. Further, by Lemma 1 xi(·) is

continuous on this set.
3. For f ∈ Cc, there exists non-decreasing continuous function ψf : R+ → R+ such that ψf (0) = 0 and

sup
x∈R

|f ′(x+ h)− f ′(x)| ≤ ψf (|h|).

Now, rest of the proof is similar to establishing the validity of ‘Riemann Integration’ using appropriate filtration
for bounded continuous functions. Here is a quick sketch. Consider partition of interval [s, t] into n sub-intervals
of equal-size (t− s)/n and apply (49). Then using properties 1-3, standard convergence theorems for integration,
Taylor’s expansion, and definitions, the desired conclusion of Lemma follows.

C. Tightness

Now we prove that sequence of measures PT
r , r ≥ 1, is tight. That is, for any ε > 0 there exists a compact set

Kε ⊂ D([0, T ],MI) such that infr≥1 PT
r (Kε) ≥ 1 − ε. A known characterization of compact sets in metric space

D([0, T ],MI) suggests the following are sufficient conditions to establish tightness: for any ε > 0,
(T1). Compact containment: there exists compact set Kε ⊂ MI such that, for all r ≥ 1,

lim inf
r

PT
r (Z̄r(t) ∈ Kε, ∀ t ∈ [0, T ]) ≥ 1− ε,

(T2). Bounded oscillation: for any δ > 0, η > 0,
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lim sup
r

PT
r ({Z̄r : w′

T (Z̄r, δ) ≥ ε}) < η.

In what follows, we present the above two sufficient properties in order to establish tightness of the sequences.
Then, we will present proof of tightness that will complete the loop.

We want to note the following. The sufficient conditions (T1)-(T2) stated above suggest that it is okay to establish
the existence of Kε such that lim infr PT

r (Kε) ≥ 1− ε. It is well known that each probability measure is tight by
itself (i.e., most of its mass is inside a compact set) since the underlying metric space is complete and separable.
This fact, together with the (T1)-(T2), implies the sufficiency for tightness.

D. Compact Containment

For any finite G > 0, define

K(G) = {ζ ∈ MI : ‖〈1, ζ〉‖ ∨ ‖〈χ, ζ〉‖ ≤ G}.

Then closure of K(G) is compact (e.g., Theorem 15.7.5 [14] as stated in [13] ). The following Lemma (similar to
Lemma 5.3 [13]) establishes the required compact containment property.

Lemma 13: Let T > 0 be given. Consider any ε > 0. Then, there exists a compact set K ⊂ MI such that

lim inf
r

PT
r (Z̄r(t) ∈ K, ∀ t ∈ [0, T ]) ≥ 1− ε,

where K is closure of K(2T (‖ν‖+ ‖ρ‖) + 1).
The proof follows from the following facts: (a) Z̄r(0) = 0 and Lemma 11, (b) 〈1, Z̄r

i (t)〉 ≤ 〈1, L̄r(T )〉, ∀ t ∈ [0, T ]
and (c) 〈χ, Z̄r

i (t)〉 ≤ 〈χ, L̄r(T )〉, ∀ t ∈ [0, T ].

E. Regularity near 0

The following property, which is the most crucial in establishing the fluid model justification, is called asymptotic
regularity near 0 of Z̄r(·) [13].

Lemma 14: Let T > 0 be given. Consider any ε, η > 0. Then there exists a > 0 such that

lim inf
r

PT
r

(
sup

t∈[0,T ]
max
i≤I

〈1[0,a], Z̄r
i (t)〉 ≤ ε

)
≥ 1− η.

We will skip the details of the proof and again refer reader to consult [13]. However, we present some key
observations of [13] used in proving the Lemma. In what follows, fix an i ≤ I. We want to show that for appropriate
selection of a > 0, for any t ∈ [0, T ], 〈1[0,a], Z̄r

i (t)〉 ≤ ε with probability at least 1 − η. For this, consider large
enough r so that the estimates of Lemmas 11 and 13 hold simultaneously with probability at least 1 − η/2. We
restrict our attention to this high probability event.

Call Z̄r
i (·) ε-regular at t, if Z̄r

i (t) ≤ ε/8. First note that, since Z̄r(0) = 0, trivially Z̄r
i (·) is ε/8-regular at

t = 0. For t > 0, either Z̄r(·) is ε/8-regular or not. If yes, then trivially we have 〈1[0,a], Z̄r
i (t)〉 ≤ 〈1, Z̄r

i (t)〉 < ε.
If not, then consider θ, the supermum of 0 ≤ s < t such that Z̄r(·) was ε/8-regular at s. Now in interval [θ, t],
infu∈[θ,t] Z̄

r
i (u) ≥ ε/8. From Lemma 2, xi(u) ≤ 8‖C‖/ε for u ∈ [θ, t]. Since the estimates of Lemma 11 hold,

supu∈[θ,t] xi(u) ≤ 8‖C‖/ε and |t − θ| ≤ t ≤ T , the increment 〈1[0,a], Z̄r
i (t) − Z̄r

i (θ)〉 is bounded above by γa,
where γ is a finite number dependent on T, ν, ϑ, I, ε. So appropriate choice of a can make the increment smaller
than ε/2 and establish the desired result.

F. Bounded Oscillations

For T > 0, δ ∈ [0, T ] and ζ ∈ D([0,∞),MI), define

wT (ζ(·), δ) = sup
s,t∈[0,T ]:|s−t|<δ

dI[ζ(s), ζ(t)].

Lemma 15: Let T > 0 be given. Then for any ε, η ∈ (0, 1), there exists δ > 0 such that

lim inf
r

PT
r

(
wT (Z̄r(·), δ) ≤ ε

)
≥ 1− η.
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The proof of Lemma 15 is identical to the proof of Lemma 5.6 [13]. We skip it but present some basic ingredients.
To prove the Lemma, it is sufficient to show that there exists δ > 0 such that for r large enough with probability
at least 1− η the following holds: for any 0 ≤ s ≤ t ≤ T, |s− t| < δ, and any closed set B ⊂ R+,

〈1B, Z̄r
i (s)〉 ≤ 〈1Bε , Z̄r

i (t)〉+ ε, (51)

〈1B, Z̄r
i (t)〉 ≤ 〈1Bε , Z̄r

i (s)〉+ ε. (52)

The inequality (52) holds with high enough probability for large r, δ ≤ ε, due to Lemma 11 and the fact that

〈1B, Z̄r
i (t)〉 ≤ 〈1Bε , Z̄r

i (s)〉+ 〈1, L̄r
i (t)− L̄r

i (s)〉.

Proof of (51) is a bit more tricky. In a nutshell, it follows using argument similar to that used to establish Lemma
14.

G. Tightness: Closing the Loop

Now we are ready to establish the tightness of the sequence of probability measures of interest, which will settle
the first part of the statement of Theorem 5.

Lemma 16 (Theorem 5.7 [13]): Let T > 0 be given. Then under probability measure PT
r , r ∈ N, the sequence

{(Z̄r, Z̄r, W̄ r, T̄ r, Ū r)} is tight9.
Proof: First, tightness of Z̄r(·) on [0, T ]. From definitions, it can be shown (e.g. see [1]) that for any 0 ≤ δ ≤ T ,

w′
T (ζ, δ) ≤ wT+δ(ζ, δ). (53)

Now (53), along with Lemmas 13 and 15, satisfies properties (T1) and (T2) which are sufficient to establish the
tightness of Z̄r(·) on [0, T ]. By continuity of mapping ζ → 〈1, ζ〉, we obtain that Z̄r(·) is tight as well on [0, T ].

Now, by (3) we have ‖Λi(z)‖ ≤ ‖C‖ and Λi(z) ≥ 0 for all i ≤ I and z ∈ RI
+. Hence, from (15) we have that

T̄ r
i (·) is non-decreasing Lipschitz continuous with Lipschitz constant ‖C‖ for all r. By an application of Arzela-

Ascolli’s Theorem it follows that the sequence T̄ r
i (·) is tight for any compact time interval [0, T ]. The tightness

of T̄ r(·) implies the tightness of Ū r(·) on interval [0, T ] as well. Finally, tightness of W̄ r(·) will follow from:
Z̄r(0) = 0, i.e., W̄ r

i (0) = 0 for all i ≤ I, Lemma 11, and the following relation:

W̄ r
i (t) = 〈χ, L̄r

i (t)〉 − T̄ r
i (t).

H. Characterization of Limit Points

The tightness established in Lemma 16 implies that, for every subsequence PT
rq

, there is a further subsequence
PT

rqm
whose limit point, say PT

? , is a probability distribution on D([0, T ],MI). Such distributional limits are also
called weak limit points of sequence PT

r . Now we wish to establish the second part of Theorem 5 about the support
of such limit point being subsumed by the set of fluid model solutions.

In what follows, we are interested in any of the weak limit points. For that matter, fix a converging subsequence
{rq} ⊂ N so that PT

rq

w→ PT
? . For ease of notation, let (Z̄q, Z̄q, W̄ q, T̄ q, Ū q, L̄q) correspond to rq-system with

probability distributions induced by PT
rq

and (Z, z, w, τ, u,L) correspond to the limiting system with probability
distribution induced by PT

? . Next, we state Lemmas that will together lead to the completion of the proof of Theorem
5. The first one (and its proof) is identical to Lemma 5.8 [13].

Lemma 17: Under PT
? , the following properties are statisfied with probability 1: for t ≥ 0,

(i) ‖〈1{0},Z(t)〉‖ = 0,
(ii) z(t) = 〈1,Z(t)〉,

(iii) u(t) = Ct−Aτ(t),
(iv) w(t) = ρt− τ(t),
(v) w(t) = 〈χ,Z(t)〉,

(vi) w is uniformly Lipschitz continuous with Lipschitz constant ‖ρ‖+ ‖C‖,

9Also called C-tight since its about tightness on compact time-intervals.
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(vii) for i ≤ I,

τi(t) =
∫ t

0

(
Λi(z(s))1{zi(s)>0} + ρi1{zi(s)=0}

)
,

(viii) uj is non-decreasing for all j ≤ J.
Proof: We are given T > 0 and sequence {rq} ⊂ N so that PT

rq
converges to PT

? of our interest. We sketch
main arguments proving properties (i)-(viii) as follows.
Proof of (i). It is sufficient to prove (i) for t ∈ [0, T ) given the 〈1{0}, ϑ〉 = 0 and stochastic assumption on the
primitive processes. Using Lemma 14, it follows that there exists sequence {an : n ∈ N} so that an > 0 and

lim inf
n→∞

PT
rq

(
sup

t∈[0,T ]
‖〈1[0,an), Z̄q〉‖ ≤ 1

n

)
≥ 1− 1

n2
.

Define sets

An =
{
ζ ∈ MI : ‖〈1[0,an), ζ〉‖ ≤

1
n

}
, Bn =

{
ζ(·) ∈ D([0,∞),MI) : ζ(t) ∈ An for all t ∈ [0, T ]

}
.

It can be checked that both An and Bn are closed in their respectively topologies. Since PT
rq
⇒ PT

? , we have that
(Portmantau’s characterization)

PT
? (Z ∈ Bn) ≥ lim sup

q→∞
PT

rq
(Z̄q ∈ Bn) ≥ lim inf

q→∞
PT

rq
(Z̄q ∈ Bn) ≥ 1− 1

n2
.

By standard application of Borel-Cantelli’s Lemma and the fact that {0} ⊂ [0, an) for all n, we have the desired
conclusion that

PT
?

(
‖〈1{0},Z(t)〉‖ = 0

)
= 1.

Proof of (ii). Since 1 is a bounded continuous function and under PT
rq
⇒ PT

? , we have Z̄q ⇒ Z . By definition of
weak convergence on D([0, T ],MI), we have 〈1, Z̄q(·)〉 → 〈1,Z(·)〉. But Z̄q(·) = 〈1, Z̄q(·)〉 and Z̄q(·) ⇒ z(·).
This proves (ii).
Proof of (iii)-(iv). The (iii)-(iv) follow from: (a) under PT

rq
⇒ PT

? , we have (W̄ q, T̄ q, Ū q) ⇒ (w, τ, u), (b) dynamic
relations (16) and (17), and (c) Lemma 11.
Proof of (v). By definition, W̄ q(t) = 〈χ, Z̄q(t)〉 and w(t) = 〈χ,Z(t)〉. Under Skorohod’s topology, PT

rq
⇒ PT

?

implies Z̄q(t) ⇒ Z(t) for all t ∈ [0, T ], it suffices to show that {Z̄q(t)} are uniformly integrable for all t so as to
establish convergence 〈χ, Z̄q(t)〉 → 〈χ,Z(t)〉. But we know that for x > 0,

〈χ1[x,∞), Z̄q(t)〉 ≤ 〈χ1[x,∞), L̄q(t)〉.

Now use of Lemma 11 will imply the desired uniform integrability and hence the property (v).
Proof of (vi). Follows from (iv) and Lipschitz continuity of T̄ q(·) (and hence of τ(·)).
Proof of (vii). This requires use of a standard, simple, but very insightful trick, which is described in this paragraph.
To this end, recall that w, τ are Lipschitz continuous and hence differentiable almost everywhere in [0, T ]. Let
t be a point where both w, τ are differentiable (i.e. t is regular point for both w, τ ). Then by (iv), we have
dwi(t)/dt = ρi− dτi(t)/dt. If zi(t) = 0 then wi(t) = 0. We claim that due to non-negativity of wi(·), if dwi(t)/dt
exists then it is equal to 0 at wi(t) = 0. This is justified next. Suppose dwi(t)/dt 6= 0. Let dwi(t)/dt > 0. Then

lim
h→0+

wi(t)− wi(t− h)
h

> 0.

But, wi(t) = 0 and hence wi(t − h) < 0 for some h > 0. This is not possible since wi(·) is non-negative. That
is, dwi(t)/dt > 0 is not possible at wi(t) = 0. Similarly, dwi(t)/dt < 0 is not possible as well. Hence, we have
showed that dwi(t)/dt = 0 when wi(t) = 0. This implies that dτi(t)/dt = ρi when zi(t) = 0. If zi(t) > 0, then
dτi(t)/dt = Λi(z(t)) follows from: (a) continuity of z(·) given the continuity of Z(·), (b) continuity of Λi(z) on
{z : zi > 0} as stated in Assumption 1, (c) boundedness of Λi(z) ≤ ‖C‖, and (d) dynamic equation (15) along
with bounded convergence theorem.
Proof of (viii). uj is non-decreasing because of the dynamic equation (16) and the fact that Ū q ⇒ u uniformly on
compact intervals.
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Lemma 18 (Lemma 5.10, [13]): Fix f ∈ Cc and i ≤ I. for all intervals [s, t] ⊂ R+ such that infu∈[s,t] zi(u) > 0,

〈f,Zi(t)〉 = 〈f,Zi(t)〉 −
∫ t

s
〈f ′,Zi(u)〉xi(z(u)) + νi(t− s)〈f, ϑi〉.

The proof of this is identical to that of Lemma 5.10 [13] using Lemma 12.
Lemma 19 (Theorem 5.9, [13]): Almost surely, for all i ≤ I, f ∈ C and t ≥ 0,

〈f,Zi(t)〉 = −
∫ t

0
〈f ′,Zi(u)〉xi(z(u)) + νi〈f, ϑi〉

∫ t

0
1{zi(s)>0}ds.

Proof: As in [13], the proof for f ∈ C can be obtained by first proving it for f ∈ Cc and then using standard
truncation-style argument along with convergence theorems to obtain the result for all f ∈ C.

Now, let f ∈ Cc. A key property of f ∈ Cc that is very useful is that there exists constant κf so that f(x) ≤ κfx
for all x (and f is Lipschitz continuous with constant κf ).

Rest of the proof first establishes that, for such f ∈ Cc, 〈f,Zi(·)〉 is Lipschitz continuous. Then, establish that
|〈f,Zi(t) − Zi(s)〉| ≤ κf |wi(t) − wi(s)| using property of f ∈ Cc for some constant κf . Finally, using argument
similar to that used for establishing property (vii) in Lemma 17, one will be able to complete the proof.

First, we establish Lipschitz continuity. For this, the proof requires handling following two cases separately: (a)
{s : zi(s) > 0} and (b) {s : zi(s) = 0}. Consider an interval say [s, t]. Let γ0 = inf{u ∈ [s, t] : zi(u) = 0}, with
the definition that γ0 = t if infu∈[s,t] zi(u) > 0. Given this, for any [s, γ1] ⊂ [s, γ0), we have infu∈[s,γ1] zi(u) > 0.
For any such γ1, Lemma 18 implies that

|〈f,Zi(γ1)〉 − 〈f,Zi(s)〉| ≤ (γ1 − s)
(
‖f ′‖‖C‖+ ‖f‖νi

)
.

By continuity of the terms above and letting γ1 ↑ γ0, we obtain

|〈f,Zi(γ0)〉 − 〈f,Zi(s)〉| ≤ (γ0 − s)
(
‖f ′‖‖C‖+ ‖f‖νi

)
. (54)

Now, if γ0 < t, then by Lipschitz continuity property of f ∈ Cc, Lemma 17(vi), and the fact that w(γ0) = 0, we
have

|〈f,Zi(t)〉 − 〈f,Zi(γ0)| ≤ κf |〈χ,Zi(t)〉| = κfwi(t)

= κf |wi(t)− wi(γ0)| ≤ κf (‖ρ‖+ ‖C‖)(t− γ0). (55)

Note that (54) for γ0 = s and (55) for γ0 = t work as well. Given (54)-(55), we have

|〈f,Zi(t)〉 − 〈f,Zi(s)| ≤ (t− s)κf , (56)

where κf = κf (‖ρ‖+ ‖C‖) + ‖f ′‖‖C‖+ ‖f‖‖ν‖.
The Lipschitz continuity of 〈f,Zi(·)〉 implies that it is differentiable for almost everywhere in [0, T ]. Let t be a

regular point for 〈f,Zi(·)〉 as well as w(·). To evaluate the differential of 〈f,Zi(t)〉 consider two cases separately:
(a) If zi(t) > 0, then use Lemma 18 to evaluate the differential of 〈f,Zi(·)〉. (b) If zi(t) = 0, use the fact that
wi(t) = 0 implies (using argument similar to that in Lemma 17(vi)) dwi(t)/dt = 0. But the uniform bound on
〈f,Zi(t)〉 in terms of wi(t) implies that d〈f,Zi(t)〉/dt = 0 as well. Putting the above together, the proof of the
claimed Lemma follows.

I. Proof of Theorem 5

Here we wrap up the proof of Theorem 5 by consolidating the above justifications. Note that the Theorem 5 has
two main claims: (a) Tightness of measures PT

r and (b) Characterization of weak limit points as satisfying fluid
model solution with probability 1. Lemma 16 establishes (a). Lemmas 17 and 19 together establish the (b).

Finally, we remind reader once again that the above justification of fluid model (proof of Theorem 5) is identical
to that of proof of Theorem 4.1[13], with the only difference in the scaling (over capacity and arrival rates in our
scaling, and over time and space in [13]) to facilitate heterogeneous utility functions. More generally, proof of fluid
model of [13] (along with our scaling) relies primarily on and Assumption 1 and uniqueness of optimal solution
in the NUM based network resource allocation. Hence, the techniques of [13] are likely to extend for many other
problems.


