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ABSTRACT
We consider the problem of designing an online schedul-
ing scheme for a multi-hop wireless packet network with
arbitrary topology and operating under arbitrary schedul-
ing constraints. The objective is to design a scheme that
achieves high throughput and low delay simultaneously. We
propose a scheduling scheme that – for networks operating
under primary interference constraints – guarantees a per-
flow end-to-end packet delay bound of 5dj/1−ρj , at a factor
5 loss of throughput, where dj is the path length (number
of hops) of flow j and ρj is the effective loading along the
route of flow j. Clearly, dj is a universal lower bound on
end-to-end packet delay for flow j. Thus, our result is es-
sentially optimal. To the best of our knowledge, our result is
the first one to show that it is possible to achieve a per-flow
end-to-end delay bound of O(# of hops) in a constrained
network.

Designing such a scheme comprises two related subprob-
lems: Global Scheduling and Local Scheduling. Global Schedul-
ing involves determining the set of links that will be si-
multaneously active, without violating the scheduling con-
straints. While local scheduling involves determining the
packets that will be transferred across active edges. We de-
sign a local scheduling scheme by adapting the Preemptive
Last-In-First-Out (PL) scheme, applied for quasi-reversible

continuous time networks, to an unconstrained discrete-time
network. A global scheduling scheme will be obtained by us-
ing stable marriage algorithms to emulate the unconstrained
network with the constrained wireless network.

Our scheme can be easily extended to a network operat-
ing under general scheduling constraints, such as secondary
interference constraints, with the same delay bound and a
loss of throughput that depends on scheduling constraints
through an intriguing “sub-graph covering” property.
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1. INTRODUCTION
A central issue in communication systems is providing

various performance guarantees – throughput and delay be-
ing the most critical. We consider the problem of design-
ing a scheduling scheme that provides optimal throughput
and delay guarantees. These parameters depend on the
arrival traffic distribution, network topology and the con-
straints present in the network. These constraints seriously
limit choices and complicate the analysis of any scheduling
scheme. Additionally, any online delay optimization scheme
that requires learning the arrival traffic rate is impractical.
Thus, designing and analyzing scheduling schemes to obtain
optimal throughput and delay bounds for a network with ar-
bitrary topology and constraints – without any knowledge of
the arrival traffic distribution – is quite challenging. While
we may optimize throughput or delay, obtaining a simulta-
neous performance guarantee will require a trade-off.

We make some natural assumptions for this problem. The
network is assumed to be operating under primary inter-
ference constraints on simultaneous transmissions i.e., each
node can either transmit or receive – but not both – simul-
taneously. The network is loaded with various traffic flows
that are active simultaneously. Each flow consists of a source
node, a destination node and a predetermined route through
the network. The arrivals of packets for a flow occur accord-
ing to a continuous-time stochastic process.

Our goal in this paper is to answer the following ques-
tion: Is it possible to design an online scheduling scheme for
a constrained network that achieves high throughput and
low delay simultaneously? Specifically, we want to design a
scheme that requires no knowledge of arrival traffic rate, and
uses only the current state of the network to obtain a delay
bound of O(# of hops) with up to O(1) loss of throughput.
Before we give an answer, we discuss some related work ad-
dressing various forms of this question.
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1.1 Related Work
This question has been of interest for more than two decades.

We take note of two of the major relevant results; however,
there is a vast literature that addresses various forms of this
problem. The two papers we are going to describe subsume
most of the relevant work, and hence we shall restrict our-
selves to these papers.

Tassiulas and Ephremides (1992) [11] designed a “max-
pressure” scheduling scheme that is throughput optimal for
a network of arbitrary topology and constraints. This work
has recently received a lot of attention because of its appli-
cability to a wide class of network scheduling problems [6].
The scheduling scheme they propose is an online scheme that
assumes no knowledge of the arrival traffic distribution. In
addition to scheduling, their scheme also routes packets in
the network. However, the provable delay bounds of this
scheme scale with the number of queues in the network.
Since the scheme requires maintaining a queue for each flow
at every node, the scaling can potentially be very bad. For
example, in a very recent work of Gupta and Javidi [7], it
was shown through a specific example that such an algo-
rithm can perform very poorly in terms of delay.

Andrews, Fernandez, Harchol-Balter, Leighton and Zhang
[1] studied the problem of scheduling flows at each node so
as to minimize the worst-case delay bounds. They show
the existence of a periodic schedule that guarantees a de-
lay bound of O(dj + 1/λj), where λj is the arrival rate of
flow j. Their scheme also guarantees constant size queues
at the nodes. Their result is true for a network of arbitrary
topology and loaded with traffic such that the arrival rate at
every edge is < 1. This delay bound is asymptotically opti-
mal for periodic schedules. It is important to notice that this
result gives a per-flow delay bound. This is a big improve-
ment on the previously known bound of O(c + d) [8], where
d = max dj , and c = max cj with cj being the maximum con-
gestion along the route of each flow j. A per-flow end-to-end
delay bound is more useful because, otherwise existence of
a worst-case flow will seriously deteriorate the bound. How-
ever, the model they consider is limited – the only schedul-
ing constraints considered are link capacity constraints, the
arrival traffic model considered is non-stochastic, and the
scheduling scheme proposed is non-adaptive i.e., does not
change with change in the state of the network and requires
the knowledge of arrival rates. Further, the dependence over
1/λj is due to the adversarial requirement. As we shall see,
in our work, this requirement will be relaxed because of the
stochastic nature of traffic. It is worth noting that their
delay bound subsumes 1/1−ρ style term as constant in O(·)
notation.

In summary, these two approaches are inherently limited:
[11] has poor delay bounds and [1] considers a limited model.
Thus, these approaches cannot be directly extended to the
problem we are considering. At the same time, it is worth
pointing out that [11] considers routing while we assume
knowledge of predetermined routes, and [1] considers worst-
case delay bounds while we consider average delay bounds.

1.2 Our Contribution
Using an approach that overcomes the aforementioned

problems, we propose a scheduling scheme that is both through-
put and delay optimal. Our main contribution is a schedul-
ing scheme that guarantees a per-flow end-to-end delay bound
of 5dj/1−ρj , with a factor 5 loss of throughput. Some salient

aspects of our result are:

1. Our result provides a simultaneous throughput and de-
lay bound, showing an inherent trade-off, unlike other
previous results that concentrated either on through-
put or delay.

2. Our result does not require any knowledge of the ar-
rival rate or other traffic statistics. Also, it does not
learn them.

3. The delay bound we provide is a per-flow bound and
not an aggregate bound. As mentioned earlier, this
is much better because otherwise some bad flows can
deteriorate the bound.

4. We consider a wireless network with primary interfer-
ence constraints, but our result easily extends to a net-
work operating under arbitrary constraints. For such
a network, the delay bound remains the same (up to
a constant factor) with the throughput loss dependent
on the constraints (see Lemma 1 and the discussion
after it).

5. The scheme is online and adaptive.

6. We utilize the concept of emulation of a network – a
powerful technique with diverse applications – to de-
couple the problem into global and local scheduling
schemes.

7. Our implementation schemes are simple i.e., have O(N2)
complexity where N is the number of nodes in the
network. Further, they can be implemented in a dis-
tributed iterative manner (see Section 8).

8. We assume a deterministic service time for each packet.
For discrete-time networks, this is a more feasible as-
sumption than stochastic service times. As will be-
come apparent later, this assumption complicates the
analysis further.

Before we describe the model we use and formally state
the main results of our paper, we will provide an intuitive
explanation and motivation of our approach.

1.3 Our Approach
As mentioned earlier, we first recognize that the prob-

lem at hand comprises two related sub-problems: Global
Scheduling and Local Scheduling. Global Scheduling cor-
responds to determining a set of links that may be active
simultaneously without violating the scheduling constraints
of the network. On the other hand, local scheduling corre-
sponds to determining which packets to move across active
edges. In general these two sub-problems are not indepen-
dent. In order to make the problem tractable, our approach
will be to consider the two scheduling sub-problems sepa-
rately and then put everything together. We note that such
decoupling is non-trivial, and requires a careful breaking of
the problem into different layers as described next.

Our approach begins with realizing the existence of schedul-
ing schemes for a certain class of networks that guaran-
tee delay bounds of O(# of hops). Continuous time quasi-
reversible networks with a Poisson arrival process and oper-
ating under Preemptive Last-In-First-Out (PL) have a prod-
uct form queue size distribution in equilibrium (see Theo-
rems 3.2 and 3.8 of [3]). We use this fact to prove that such a
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network under PL scheduling scheme achieves a delay bound
of O(# of hops). Unfortunately, this scheme cannot be di-
rectly applied to our wireless network because we are con-
sidering discrete-time constrained scheduling in which frac-
tional packets cannot be transmitted. Thus, this scheme
should be adapted to our case, though it is not totally straight
forward.

Presence of constraints makes this adaptation complicated.
Hence, we first consider a “less-constrained” discrete-time
network in which we relax the primary interference con-
straints. For brevity, we make the following definitions:

Definition 1 (NC). Continuous-time quasi reversible

network with a Poisson arrival process.

Definition 2 (N2). Discrete-time wireless network op-

erating under primary interference constraints. Namely, in

every scheduling phase, each node can either transmit or re-

ceive – but not both – at most one packet.

Definition 3 (N0). Discrete-time“less constrained”net-

work in which primary interference constraints are relaxed.

Each node can transmit at most one packet in each schedul-

ing phase. There is no restriction on the number of packets

each node can receive in each scheduling phase.

The reason for the definition of N0 is not very clear right
now. But, we shall defer its motivation to the end of this
section.

After proving that NC , operating under PL scheduling
scheme, has the required delay bound we adapt this scheme
to the discrete-time network N0. The adaptation we propose
will retain the delay bound. This approach of modifying the
PL scheme to adapt to a discrete-time network was intro-
duced by El Gamal, Mammen, Prabhakar and Shah in [5].
Thus, we have obtained a scheduling scheme with maximum
throughput and the desired delay bound. We have not en-
countered any throughput-delay trade-off so far, indicating
that such a trade-off is the result of the presence of con-
straints.

Of course, we are not done yet because we need a schedul-
ing scheme for N2 and not N0. For that, we utilize the
concept of emulation, introduced and used in the context
of bipartite matching by Prabhakar and McKeown in [9].
Informally, we say that a network N emulates another net-
work N ′, if when viewed as black-boxes the departure pro-
cesses from the two networks are identical under identical
arrival processes. Thus, the delays of a packet in N and
N ′ are equal. We propose a mechanism using stable mar-

riage algorithms to emulate N0 with N2. As we shall show,
this requires running the network N2 at a speedup of 5 i.e.,
scheduling N2 5 times in each time slot. Thus, N2 running
at a speedup of 5 has the required delay characteristics.

Finally, since we have assumed that link capacities are 1,
we cannot have 5 schedules in each time slot. Therefore, we
establish an equivalence between N2 operating at speedup 5
and N2 operating at speedup 1. This equivalence increases
the delay by a factor 5 and decreases the throughput by the
same factor. Thus, we split the problem into 4 layers and
then put everything together. This approach is summarized
in Fig. 1.

Further Details: Before we end this section, we resolve the
mystery around the constraints of network N0. We want to

Throughput scales by 1/5

Continuous time quasi reversible network
operating under PL scheme

Discrete time "less constrained" network

Primary interference wireless network

Primary interference wireless network
operating at speedup 1

operating at speedup 5

Same delay bound 

Delay scales by a factor of 5

Same Throughput

Same delay
Same Throughput

Figure 1: Approach to the design of optimal delay

scheduling scheme

consider a constraint set such that the constraints do not
restrict our choice of a local scheduling scheme. We note
that, if we allow each node to transmit at most one packet
in each time slot, a local scheduling scheme automatically
determines a set of active links. Thus, we assume that N0

is constrained such that every node may send at most one
packet in each time slot.

The idea of emulation is central to our approach. This
concept was introduced by McKeown and Prabhakar in [9]
and used by Chuang, Goel, McKeowm and Prabhakar [2] in
the context of bipartite matching of switches. The emulation
scheme they propose utilizes the stable marriage algorithm
and is specific to a single-hop bipartite network with match-
ing constraints. Bipartite graphs with matching constraints
have a nice structure, and the emulation scheme they pro-
pose does not trivially extend to a general network case with
arbitrary constraints. In this paper, we will modify and ex-
tend this approach to the case of a general network with
arbitrary scheduling constraints. A bipartite graph with
matching constraints requires a speedup of 2 for emulation,
while we will show that a wireless network with primary in-
terference constraints requires a speedup of 5. If the graph
of the network does not contain any odd cycles, then this
speedup can be improved to 4. We will also prove the neces-
sity of a speedup of 4 for emulation, implying the optimality
of our result. We shall prove the following general result:

Lemma 1. For any constrained network N , represented

by graph G, let G′ denote any sub-graph with maximum de-

gree ≤ 4. Let σ(G′) denote the minimum number of schedul-

ing phases required to schedule transmissions correspond-

ing to all edges of G′, without violating the scheduling con-

straints. Let σ denote max{σ(G′) : G′ is degree 4 sub-graph

of G}. Then, there exists an emulation scheme E under

which, N running at a speedup of σ exactly emulates N0.

In the case of a wireless network operating under primary
interference constraints, no two edges incident on the same
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node can be simultaneously active. Vizing’s theorem states
that a graph with degree ∆ can be colored using either ∆ or
∆ + 1 colors. Since the sub-graph in our case has degree 4,
Vizing’s theorem guarantees the sufficiency of 5 scheduling
phases. Thus, it follows from Lemma 1 that a speedup of 5
is sufficient for emulation of N0 by N2.

In a network with secondary interference constraints, two
directed edges (t1, r1) and (t2, r2) cannot be simultaneously
active if either (t1, r2) or (t2, r1) is an edge in the network.
Thus, every edge has conflicts with at most 4∆2 edges, where
∆ is the degree of the network. Therefore, in this case, a
speedup of 4∆2 is sufficient. Using similar arguments, we
can extend our emulation scheme to a network of arbitrary
constraints.

2. MODEL AND NOTATION
We consider a constrained communication network con-

sisting of N nodes, connected by M links. The connectivity
of the system is represented by a directed graph G(V, E),
where V is the node set and E is the edge set. The graph
is assumed to be connected. A packet may enter or depart
the network at any node. Each entering packet is routed
through the network to its destination node. There are J
classes of traffic flows. Each flow j corresponds to a source
node, a destination node and a route through the network.

The routing matrix of the network, denoted by R, repre-
sents the connectivity of nodes in different routes. It is an
M × J matrix and the element rmj , corresponding to mth

edge and jth route is:

rmj =

(

1, if route j contains edge m

0, otherwise

We assume that external packet arrivals occur according
to a continuous-time stochastic process, but the packets be-
come available for transmission only at integral times (say
at the end of the time slot). We also assume that the inter-
arrival times are i.i.d. with mean 1/λj (i.e., rate λj) and
finite variance.

The arrival rate vector λ = {λj : j = 1, . . . , J} consists of
the arrival rates of all classes of traffic. The aggregate traffic
flow vector τ = {τm : m = 1, . . . , M}, which represents the
congestion in each link, is defined as:

τ = Rλ

Let Qn(t) denote the length of the queue at node n, n =
1, . . . , N . The vector Q(t) = {Qn(t) : n = 1, . . . , N} com-
prises the length of the queues at all nodes. Q(t) is called the
queue length process. The network system is said to be stable

if the queue length process Q(t) forms a positive recurrent
Markov Chain.

A link is said to be active if it is scheduled to move a
packet in that step. An activation set is a set of links that
may be active simultaneously. The activation set is repre-
sented by an activation vector s. It is a binary vector with
M elements, with the mth element corresponding to the mth

edge, and is equal to 1 if the mth edge is in the activation set
and to 0 otherwise. The constraint set S consists of all the
activation vectors of the system. This set completely speci-
fies the constraints of the network system. We assume that
the 0 ∈ S. We will primarily be concerned with primary
interference constraints. A node in a network operating un-
der primary interference constraints may either transmit or

receive but not both, at most one packet in each scheduling
phase. We denote such a constraint set by S2. We use S0 to
denote the constraint set corresponding to N0.

We say that an arrival rate vector λ is feasible, if there
exists a scheduling scheme that results in a queue length
process that is positive recurrent under the above model.
Let Λ(S) denote the set of all feasible arrival rate vectors λ.
Let Λ′(S) denote its interior. It is easy to prove that Λ(S) is
a convex set (in fact related to the convex hull of S through
the matrix R).

Let notation v ∈ j or j ∈ v denote that route j passes
through node v. Let λj be the rate at which packets are
arriving on route j and let fv =

P

j:j∈v λj be the net rate
at which data is arriving at node v.

We define effective loading ρj(λ) along a flow j as:

ρj(λ) = max
v∈j

fj

DΣ(λ) denotes the average delay experienced in a network
operating with a scheduling scheme Σ and arrival rate vec-
tor λ. The delay of a packet in the network is defined as the
number of time steps it takes for the packet to reach its des-
tination node after it arrives at the network. Let Dji

Σ (λ) de-

note the delay of the ith packet of traffic flow j, j = 1, . . . , J ,
under scheduling scheme Σ and arrival rate vector λ. Then,
the sample mean of the delay over all packets is:

Dj
Σ(λ) = lim sup

k→∞

1

k

k
X

i=1

Dji
Σ (λ)

When equilibrium distribution exists, Dj
Σ(λ) is just the ex-

pected delay of the packet along the path of flow j. When
the context is clear, we also denote Dj

Σ simply by Dj . We
also note here that the length of the path dj is a universal
lower bound on the delay.

3. MAIN RESULTS
We now state the main results of our paper:

Theorem 2. Consider a network N2 with a Poisson ar-

rival rate vector λ. If λ ∈ 1
5
Λ′(S0) then there exists a schedul-

ing scheme Σ∗ that is constant factor delay optimal, i.e,

Dj
Σ∗(λ) ≤

5dj

1−ρj(5λ)
, for every flow j.

Theorem 2 is true for a network with arbitrary topology.
In addition, if the network does not contain any odd cycles,
then the constant factor 5 in the theorem can be improved
to 4. We will also prove the necessity of a speedup 4 for our
approach, in Lemma 11 in Section 7, implying the essential
optimality of our result.

The theorem assumes that the arrival process is Poisson.
This is in no way restrictive because every arrival process
can be converted into a Poisson process using the procedure
of “Poissonization” described in Section 9.

We shall briefly comment on the factor 1/1−ρj(5λ) appear-
ing in the delay bound. A factor of the form 1/1−ρj(λ) is
inevitable in the delay bound. At a first glance, it might
seem that 1/1−ρj(5λ) can be arbitrarily smaller than 1/1−ρj(λ).
While this is true, we should realize that the capacity region
is shrinking by a factor 5 and hence effective loading in the
network will be a multiple of 5.

In accordance with the approach we described earlier, this
theorem will be a consequence of Lemma 1 and the following
two Lemmas:
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Lemma 3. Consider a network N0 with Poisson arrival

rate vector λ ∈ Λ′(S0). There exists a scheduling scheme Σ0

such that the per-flow end-to-end delay of flow j, denoted by

Dj, in the network N0 is bounded as:

Dj ≤
dj

1 − ρj(λ)

Lemma 4. Consider a network N ′ with an arrival traffic

of rate λ and running at a speedup of σ. Let N denote

the same network running at speedup 1. Suppose there is a

scheduling scheme Σ for N ′ that guarantees a delay of Dj

for flow j. Then, the same scheduling scheme Σ results in a

delay of σDj for N , operating with an arrival rate of λ/σ.

In the theorem and lemmas stated above, the proof is
going to be constructive i.e., we are going to prove the exis-
tence of Σ∗ and Σ0 by explicitly constructing them and then
proving that they possess the stated properties.

We will now prove Theorem 2 and postpone the proofs
of Lemmas 1, 3 and 4 to later sections. The proof of the
theorem will essentially be the approach we described earlier,
but with more formalism.

Proof of Theorem 2. Consider a network N0 operat-
ing with a Poisson arrival process of rate 5λ. Since, λ ∈
1
5
Λ′(S0), we have 5λ ∈ Λ′(S0). Thus, it follows from Lemma

3 that ∃ a scheduling scheme Σ0 such that the per-flow
end-to-end delay of flow j, denoted by Dj , is bounded by

dj

1−ρj(5λ)
.

Under the primary interference constraints of N2, no two
edges incident on the same node can be active simulta-
neously. Hence, it follows from Vizing’s theorem that a
speedup of 5 is sufficient to schedule any degree 4 sub-graph
of N2. Thus, Lemma 1 tells us that ∃ an emulation scheme
E under which N2 running at speedup 5 can exactly emulate
N0.

We now combine Σ0 and E to obtain a scheduling scheme

Σ∗ that guarantees a delay bound of
dj

1−ρj(5λ)
for N2 running

at a speedup of 5. By Lemma 4, this scheme results in a

delay bound of
5dj

1−ρj(5λ)
for N2 operating with an arrival

traffic of rate λ and speedup 1.
This completes the proof of the theorem.

4. ORGANIZATION
The rest of the paper is organized as follows: Section 5

establishes the equivalence of N2 operating at speedup 5 and
N2 operating at speedup 1 and proves Lemma 4. Section 6
describes the properties of NC , adapts the PL scheme to N0

and proves Lemma 3. Section 7 describes a mechanism to
emulate N0 with N2. It also proves Lemma 1 and provides
a counter-example to prove the necessity of speedup of 4 for
our approach. These three sections are independent of each
other and can be read in any order. Section 8 discusses the
running time complexity of our emulation schemes. Section
9 describes“Poissonization”procedure and finally Section 10
concludes.

5. SPEEDUP = LOSS OF THROUGHPUT
Under the assumption that the capacity of the links is 1,

we cannot run a network at a speedup > 1. Hence, we need
to establish a one-one correspondence between a network
running at a speedup 1 and a network running at a higher

speedup. This will enable us to implement a scheduling
scheme that requires the network to run at a higher speedup.
We establish this equivalence through the proof of Lemma
4.

Proof of Lemma 4. A network running at speedup σ is
similar to a network running at speedup 1, when the time
is dilated by a factor of σ. In this dilated time frame, the
arrivals to the network occur no more than once in every
σ time slots. This dilation of arrivals can be achieved by
sending the packets of each flow into the network of speedup
1 through an external buffer. The service process of the
buffer is such that, it sends out all the packets in the buffer
once every σ time slots.

We establish a correspondence between the two networks
N and N ′ as follows: Let Aj(t) denote the number of ar-
rivals of flow j, j = 1, 2, . . . , J , occurring at node sj in time
slot t. Let ∆j(t) denote the number of packets departing
from the external buffer for flow j, in time slot t. By con-
struction, ∆j(t) = 0 for t 6= kσ, for some integer k and
∆j(t) =

Pσ

i=1 Aj((k−1)σ+i) for t = kσ. The arrival process
to N ′ is denoted by A′

j(t) and is defined as A′

j(t) = ∆j(σt).
Thus, the arrival rate to network N ′ is σ 1

σ
λ = λ. With this

construction, N is just N ′ running in a dilated time frame.
Hence, we can use the same scheduling scheme in both the
networks. When the same scheduling scheme is applied to
both the networks, the departure process from N will be a
σ-dilated version of the departure process from N ′, i.e., a
packet that departs from N ′ in time slot t will depart from
N in time slot σt. Thus, the delay experienced by a packet
in N is σ times the delay experienced in N ′.

This completes the proof of this lemma.

6. SCHEDULING POLICY
In this section we will design a scheduling scheme Σ0 that

achieves a delay bound of
dj

1−ρj(λ)
. As mentioned before, we

leverage the results from a continuous-time quasi-reversible
network with a Poisson arrival process and operating un-
der PL queue management policy. We shall denote such a
network by NC . We will first describe some of the prop-
erties of NC and then prove that this network indeed has
the desirable delay properties. Once we prove that, we will
modify the PL scheme to obtain a scheduling scheme Σ0 for
the discrete-time network N0. There is a one-one correspon-
dence between N0 and NC operating with the same Poisson
arrival process and under PL and Σ0 scheduling schemes
respectively. We prove that the delay of a packet in N0 op-
erating under Σ0 is bounded above by the delay of the cor-
responding packet in NC operating under PL scheme. The
desired delay properties of N0 operating under Σ0, immedi-
ately follow from this bound.

6.1 Properties of NC

We consider a continuous-time open network of queues
NC , with the same topology and external arrival process as
N0. We assume that the service process of each server is
deterministically equal to 1 and a Preemptive LIFO (PL)
policy is used at each server. (Chapter 6.8 of [10]) The
queue size distribution for the continuous time network NC

with PL queue management has a product form in equilib-
rium (see Theorems 3.7 and 3.8 of [3]) provided the following
conditions are satisfied: (a) the service time distribution is
either phase-type or the limit of a sequence of phase-type
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distributions and (b) total traffic at each server is less than
its capacity. In our case, the second condition is trivially
satisfied. For the first condition, we note that the sum of
n exponential random variables each with mean 1

n
has a

phase-type distribution and converges in distribution to a
constant random variable, as n approaches infinity.

We now state and prove a theorem that bounds the ex-
pected delay experienced along each flow. Let Dj denote the
net delay of a packet traveling on route j, j = 1, 2, . . . , J , in
equilibrium. Let notation v ∈ j or j ∈ v denote that route j
passes through node v. Let λj be rate at which packets are
arriving on route j and let fv =

P

j:j∈v λj be the net rate
at which data is arriving at node v.

Theorem 5. In the network NC , in equilibrium

E[Dj ] =
X

v:v∈j

1

1 − fv

.

Proof. The network NC described above is an open net-
work with Poisson exogenous arrival process. Each queue
in the network is served as per LIFO-PL policy. The ser-
vice requirement of each packet at each queue is equal to
unit. That is, the service requirement of all packets are
i.i.d. with bounded support. Therefore, Theorem 3.10 [3]
implies that the network NC is an open network of quasi-
reversible queues. Therefore, by Theorem 3.8 [3] this net-
work has product-form distribution in equilibrium. Further,
the marginal distribution of each queue in equilibrium is the
same as if the queue is operating in isolation. For example,
consider queue at node v, whose size is denoted by Qv (in
equilibrium). In isolation, Qv is distributed as if the queue
has Poisson arrival process of rate fv. The queue is quasi-
reversible and hence it has distribution (by Theorem 3.10
[3]) such that

E[Qv] =
fv

1 − fv

.

Let Qj
v be the number of packets at node v of type j in

equilibrium. Then, another implication of Theorem 3.10 [3]
implies that

E[Qj
v] =

λj

fv

E[Qv] =
λj

1 − fv

.

By Little’s Law applied to the stable system concerning only
packets of route j at node v, we obtain that the average delay
experienced by packets of route j at node v, E[Dj

v], is such
that

λjE[Dj
v] = E[Qj

v].

That is,

E[Dj
v] =

1

1 − fv

.

Therefore, the net delay experienced by packet along route
j, Dj is such that

E[Dj ] =
X

v:v∈j

E[Dj
v] =

X

v:v∈j

1

1 − fv

.

This completes the proof of the Theorem.

6.2 Scheduling Scheme Σ0

As mentioned before, the PL policy in NC cannot be di-
rectly implemented in N0 because complete packets have to

be transferred in N0 unlike fractional packets in NC and
packets generated at time t become eligible for service only
at time ⌈t⌉.

Hence, we need to adapt the PL policy to our discrete-
time case. This adaptation was introduced and used in [5].
We will now present the adaptation of PL scheme and the
proof of a lemma relating the delays in both networks, that
is described in [5].

The PL queue management scheme is modified to using a
Last-In-First-Out (LIFO) scheduling policy using the arrival
times in NC . As described above, we assume that NC has
the same topology and exogenous arrival traffic pattern as
N0. Let the arrival time of a packet at some node in NC be
αC and in N0 at the same node be α0. Then, it is served
in N0 using a LIFO policy with the arrival time as ⌈αC⌉
instead of α0.

This scheduling policy makes sense only if each packet
arrives before its scheduled departure time in N0. According
to this scheduling policy, the scheduled departure time can
be no earlier than ⌈αC⌉, whereas the actual arrival time
is α0. Hence, for this scheduling policy to be feasible, it
is sufficient to show that α0 ≤ ⌈αC⌉ for every packet at
each node. Let δC and δ0 denote the departure times of a
packet from some node in NC and N0 respectively. Since the
departure time at a node is the arrival time at the next node
on the packet’s route, it is sufficient to show that δ0 ≤ ⌈δC⌉
for each packet in every busy cycle of each node in NC . This
will be proved in the following lemma.

Lemma 6. Let a packet depart from a node in NC and

N0 at times δC and δ0 respectively. Then δo ≤ ⌈δC⌉.

Proof. The proof will be through induction on the length
of the busy cycle k. Fix a server and a busy cycle of length
k of NC . Let it consist of packets numbered 1, . . . , k with
arrivals at times α1 ≤ . . . ≤ αk and departures at times
δ1, . . . , δk. Let the arrival times of these packets in N0 be
A1, . . . , Ak and departures be at times ∆1, . . . , ∆k. By as-
suming that Ai ≤ ⌈αi⌉ for i = 1, . . . , k, we need to show
that ∆i ≤ ⌈δi⌉ for i = 1, . . . , k.

Clearly this holds for k = 1 since ∆1 = ⌈A1⌉+1 ≤ ⌈α1⌉+
1 = ⌈δ1⌉. Now suppose it holds for all busy cycles of length
k and consider any busy cycle of k + 1 packets.

If ⌈α1⌉ < ⌈α2⌉, then because of the LIFO policy in ND

based on times αi, we have ∆1 = ⌈α1⌉+ 1 ≤ ⌈α1⌉+ k + 1 =
⌈δ1⌉. The last equality holds since in NC , the PL service
policy dictates that the first packet of the busy cycle is the
last to depart. Also, the remaining packets would have de-
parture times as if they are from a busy cycle of length k.

Otherwise if ⌈α1⌉ = ⌈α2⌉ then the LIFO policy in ND

based on arrival times αi results in ∆1 = ⌈α1⌉+k+1 = ⌈δ1⌉
and the packets numbered 2, . . . , k depart exactly as if they
belong to a busy cycle of length k. This completes the proof
by induction.

We now prove Lemma 3 using Lemma 6

Proof of Lemma 3. Suppose N0 is operating under a
LIFO scheduling policy using the arrival times in NC . Let’s
call this scheduling scheme Σ0. Let Dj and Dj

C denote the
expected delays of a packet along flow j in N0 and NC re-
spectively. Then, it follows from Lemma 6 that Dj ≤ Dj

C .
Theorem 5 tells us that:

Dj
C =

X

v:v∈j

1

1 − fv
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Therefore

Dj ≤
X

v:v∈j

1

1 − fv

By definition, 1
1−fv

≤ 1
1−ρj(λ)

, ∀v ∈ j. Hence,

Dj ≤
dj

1 − ρj(λ)

This completes the proof of this lemma.

7. EMULATION SCHEME
In this section we will prove Lemma 1 by describing an

emulation scheme E, for a network N with a general con-
straint set, to emulate N0. This problem is not tractable
when considered in such generality. Hence, as before, our
approach will be to carefully break the problem into lay-
ers, in order to make it more tractable. For that, we will
first consider the problem of designing an emulation scheme
E′, to emulate N0 by a network with d-matching (directed
matching) constraints. By d-matching constraints, we mean
that any node can either send or receive or simultaneously
send and receive at most one packet in each scheduling step.
We shall denote such a network by N1. It will turn out that
N1 requires a speedup of 2 to emulate N0. We will state this
result as a the following lemma:

Lemma 7. A speedup of 2 is sufficient to emulate N0 us-

ing N1.

Using this lemma we will now prove Lemma 1.

Proof of Lemma 1. By Lemma 7, N1 can emulate N0

by running at a speedup of 2. Thus, there are 2 scheduling
phases in each time slot. In each of the scheduling phases,
the network of active edges of N1 forms a sub-graph of max-
degree at most 2. When combined, it forms a sub-graph
G′ of max-degree at most 4. A network with arbitrary
set of constraints may require more than two scheduling
phases to schedule the edges in G′. With σ = max{σ(G′) :
G′ is degree 4 sub-graph of G}, it follows that operating the
network at a speedup of σ should be sufficient for emula-
tion.

7.1 Emulation Scheme E′

We will now describe the emulation scheme E′, and prove
that a speedup of 2 is sufficient to emulate N0 by N1. As
mentioned before, bipartite graphs have a nice structure and
it is easier to design a scheduling scheme for such graphs.
Our approach will be to design a scheduling scheme for a
bipartite graph and then translate to our network N1. For
that, we will establish a correspondence between N1 and
a bipartite graph. As we shall show shortly, in this corre-
spondence, the constraints present in N1 will just translate
to matching constraints in the bipartite graph; more specifi-
cally no node in the bipartite graph can be matched to more
than one node.

In order to utilize bipartite graphs for scheduling, we will
construct a 2N node bipartite graph from the given N node
network N1. We shall call this bipartite graph the “equiv-
alent bipartite graph of N1.” Suppose that the network is
represented by the graph G(V, E). We construct the equiv-
alent bipartite graph as follows: Take the N nodes of the
original graph and call them transmitters. Thus, Ti corre-
sponds to node i in the network. Make copies of these N

Graph

2 3

1
T1

T2

T3

R1

R2

R3

Equivalent Bipartite Graph

Figure 2: Construction of an equivalent bipartite

graph

nodes, introducing an additional N nodes, and call them
receivers. Now, Ri corresponds to node i in the network.
Complete the construction of the bipartite network by in-
troducing an edge between nodes Ti and Rj if and only if
(i, j) ∈ E .

As we shall see shortly, the queuing mechanism used at
each of the nodes plays a crucial role in the emulation scheme.
In fact, intelligent queue management at each node is the
reason why the emulation scheme works. Each node will
maintain three queues of packets: arrival queue, relay queue

and departure queue. In each scheduling step, every packet
arriving to a node is pushed into the arrival queue. The only
exceptions are packets that reach their destination node,
where they are pushed into the departure queue. In each
time slot, exactly one packet is moved from the arrival queue
and pushed into the relay queue. Only packets present in
the relay queue are scheduled, i.e., in each scheduling step
the packet present at the head of the relay queue is moved
across the active link.

It is now clear that our emulation scheme essentially com-
prises determining the set of active edges in each of the
scheduling phases and determining which packet to move
from the arrival queue and push into the relay queue in each
time slot. Before we can describe the emulation scheme, we
need to establish notation and definitions.

Notation: We shall denote the departure time of a packet
p from node v in network N0 by D(p, v, 0) and the departure
from the same node in N1 by D(p, v, 1). Similarly, A(p, v, 0)
and A(p, v, 1) denote the arrival times of the packet p at
node v in networks N0 and N1 respectively.

With this notation we shall formally define emulation as
follows:

Definition 4 (Emulation). Consider two networks N
and N ′ operating under the same arrival process i.e., for

any packet p, A(p, vs, 0) = A(p, vs, 1), where vs is the source

node of packet p. Then, we say that N ′ emulates N if and

only if D(p, vd, 1) = D(p, vd, 0), where vd is the destination

node of the packet.

The following definitions are crucial to the scheme that
we are going to describe:

Definition 5 (Cushion). Suppose a packet p is located

in the relay queue of node v. Denote the next hop of p
by v′. Then, the cushion of p is defined as the number

of packets p′ located in the arrival queue of v′ such that

D(p′, v′, 0) < D(p, v′, 0).

Definition 6 (Priority). Consider a packet p located

in the relay queue of node v. Then, its priority is defined as
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the number of packets that are ahead of it in the relay queue

of v.

Definition 7 (Surplus). The surplus of a packet p,
denoted by η(p), is defined as the difference between its cush-

ion and priority, i.e., η(p) = Cushion of p − Priority of p.

Definition 8 (Schedule Priority List). Consider a

packet p located in the relay queue of node v. Let v′ denote

its next hop. A packet p′ is present in the Schedule Priority

List of p if and only if D(p′, v′, 0) < D(p, v′, 0).

This completes the definitions and notation that we re-
quire. We will now describe the emulation scheme E′.

Emulation Scheme E′: One of the tasks of the emulation
scheme is moving a packet from the arrival queue and push-
ing it into the relay queue. This comprises choosing a packet
from the arrival queue and determining where to insert in
the relay queue. We now describe a procedure for this. In
each time slot t, the packet p in the arrival queue of node
v, that satisfies D(p, v, 0) = t will be chosen to be moved
from the arrival queue to the relay queue. This packet will
be inserted into the relay queue using the Urgent Cell First
(UCF) Insertion policy. According to this policy, a packet
being moved from an arrival queue will be inserted into the
relay queue such that its surplus is non-negative. This is
achieved by determining the packet’s cushion just before in-
sertion and then pushing it such that its priority ≤ cushion.

The only aspect of the emulation scheme left to be de-
signed is the policy to determine the set of active links in
each of the scheduling phases. As mentioned earlier, we
will first describe a scheduling scheme for the “equivalent
bipartite graph of N1”. Using the correspondence described
above, the schedule obtained for the bipartite graph will be
mapped back to the original network.

The equivalent bipartite graph of N1 will be scheduled
using stable marriage algorithms. In each of the scheduling
phases, we use the stable marriage algorithm to come up
with a stable matching of the bipartite graph. We define
stable matching as follows: A matching of the transmitters
and the receivers is called stable matching if for every packet
p in one of the relay queues, one of the following hold:

1. Packet p is transferred to its next hop.

2. A packet that is ahead of p in its relay queue is sched-
uled.

3. A packet that is in the Schedule Priority List of p is
transferred to the next hop of p.

This completes the description of the emulation scheme.
A stable matching can be obtained using Stable Marriage

Algorithms. Gale and Shapely [4] gave an algorithm that
finds a stable matching. We shall further discuss determi-
nation of stable matchings in Section 8.

7.2 Proof of Lemma 7
In each time slot t, the emulation scheme requires us to

move a packet p that satisfies D(p, v, 0) = t, from the arrival
queue to the relay queue of node v. This makes sense only if
the packet p arrives at node v of network N1 before D(p, v, 0)
i.e., for every packet p we have A(p, v, 1) ≤ D(p, v, 0). If
this condition is true for every node, then the packet p will

arrive at its destination node vd in N1 before its scheduled
departure from N0. Then, we can send the packet p from N1

in time slot D(p, vd, 0), thus perfectly emulating N0. Hence,
it is sufficient to prove that A(p, v, 1) ≤ D(p, v, 0), for every
packet at every node, to prove Lemma 7.

Thus, Lemma 7 is a direct consequence of the following
lemma:

Lemma 8. For every packet p of N1, operating under the

emulation scheme E′, we have

A(p, v, 1) ≤ D(p, v, 0)

for every node v on its path.

The result of the following lemma will be required for the
proof of Lemma 8 and hence we shall prove it first.

Lemma 9. For every packet p in N1 operating under E′,

its surplus η(p) ≥ 0.

Proof. Suppose that the packet p is present in the relay
queue of node v. When the packet enters the relay queue
of the node, UCF insertion policy ensures that its surplus
is non-negative. Therefore, it is sufficient to prove that the
surplus of the packet is non-decreasing with time. We will
prove that surplus is non-decreasing by essentially inducting
on time t.

To establish this, we will consider the change in η(p) dur-
ing a time slot t. During each of the scheduling phases of N1,
either the priority decreases by 1 or the cushion increases by
1 or both occur (because of stable matching). Thus, at the
end of the two scheduling phases η(p) would have increased
at least by 2. When a packet is moved from the arrival queue
and pushed into the relay queue, priority may increase by 1
or cushion may decrease by 1 or both an increase in priority
and decrease in cushion may occur. Thus, during this η(p)
decreases at most by 2. Thus, by the end of the time slot
t, η(p) does not decrease and hence η(p) is non-decreasing.
This completes the proof of this lemma.

Proof of Lemma 8. We use induction on time t. As the
induction hypothesis, we assume that A(p, v, 1) ≤ D(p, v, 0)
for all packets p such that D(p, v, 0) ≤ t. For t = 1, all
packets p in the network N1 that satisfy D(p, v, 0) ≤ 1 are
at their respective source nodes at the beginning of time slot
1. Thus, the condition A(p, v, 1) = A(p, v, 0) ≤ D(p, v, 0) is
satisfied. Thus, the induction hypothesis is true for the base
case.

Now assume that it is true for some t. We want to prove
that any packet p that satisfies D(p, v, 0) = t+1 also satisfies
A(p, v, 1) ≤ D(p, v, 0).

When v is the source node, we have A(p, v, 1) = A(p, v, 0) ≤
D(p, v, 0) and hence the result is true. Now, suppose that
v is the not the source node of the packet p. Let’s suppose
that the packet is located at node v′ in network N1 at the
beginning of time slot t + 1. If v′ is either v or one of its
later hops then A(p, v, 1) < t + 1 = D(p, v, 0) and hence we
are done. If this is not true, then v′ has to be one of the
previous hops along the path of p. Let v′′ denote the hop of
p just before arriving at node v. Since, D(p, v, 0) = t + 1,
we should have D(p, v′′, 0) < t + 1. Thus, it follows from
induction hypothesis that A(p, v′′, 1) ≤ D(p, v′′, 0) < t + 1.
Thus, if v′ is neither v nor one of its later hops, then it has
to be v′′.

Since A(p, v′′, 1) ≤ D(p, v′′, 0) < t + 1, the packet p will
be located in the relay queue of node v′′ at the beginning of
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time slot t+1. The cushion of packet p is clearly 0. Lemma
9 tells us that the surplus is always non-negative. Thus,
the priority of p should also be 0 i.e., p is at the head of
the relay queue of node v′′. Every packet p′ present in the
Schedule Priority List of p is either already at v or moved
beyond v. To see why, consider a packet p′ in the list. Then,
by definition it should satisfy D(p′, v, 0) < D(p, v, 0) = t+1
and hence already would have been transferred to or beyond
the arrival queue of node v, by induction hypothesis. Thus,
the packet p is at the head of its relay queue and there is no
packet p′ in its Schedule Priority List that can be moved to
v. Therefore, the stable marriage algorithm schedules this
packet p in time slot t+1 and moves it from the relay queue
of v′′ to the arrival queue/departure queue of node v. Thus,
A(p, v, 1) = t + 1 ≤ D(p, v, 0).

The result of the lemma follows by induction.

7.3 Optimality of the scheme
In this section, we will prove the necessity of a speedup

of 4 for the emulation of N0 using N2. Taking into ac-
count the sufficiency of speedup 4 for graphs without odd
cycles, this essentially implies the optimality of our result for
N2. The necessity result will be proved through a carefully
constructed counter-example that requires a speedup of at
least 4 for any emulation scheme. We will first construct a
counter-example for a bipartite graph with d-matching con-
straints, that requires a speedup of 2 for emulation of N0.
This will prove the necessity of speedup 2 for emulation of
N0 using N1. The counter example for the bipartite graph
will then be extended to network N2.

The counter example we are going to construct is a non-
trivial modification and extension of the counter example
given in [2]. The counter example of [2] proves the necessity
of a speedup of 2 for the special case of single-hop bipartite
networks. In the counter-example to be constructed, we will
use fractional speedups. In fact, we are going to prove the
necessity of a speedup of 4− 1

N
for N2. A fractional speedup

of 4 − 1
N

means that there are 4N − 1 scheduling steps for
every N time slots.

We state the result of this section as the following two
lemmas:

Lemma 10. An 8N node network N1 requires a speedup

of at least 2 − 1
4N

for the emulation of a FIFO N0.

Lemma 11. A 12N node network N2 requires a speedup

of at least 4 − 1
N

to exactly emulate a FIFO N0.

Proof of Lemma 10. Consider a 4N ×4N complete bi-
partite graph. As before, call one set of 4N nodes trans-
mitters and the other set of 4N nodes receivers. Ti and Ri,
for i = 1, . . . , 4N , denote transmitter and receiver nodes re-
spectively. Packets arrive to the network only at transmitter
nodes and leave the network only at receiver nodes. This is
a single-hop network. We assume that the network is oper-
ating under d-matching constraints, i.e., in each scheduling
phase, each transmitter can transmit at most one packet
and each receiver can receive at most one packet. Thus, the
set of active edges should form either a partial or complete
matching. In the corresponding “less constrained” network,
N0, of this bipartite graph, each receiver can receive more
than one packet in a scheduling phase. Thus, all the packets
arriving to the network are immediately moved from trans-
mitters and queued at the receivers.
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Figure 3: Arrival traffic pattern for the case N = 2

We will now describe an arrival traffic pattern for the bi-
partite graph which results in a speedup of 2 − 1

4N
. This

non-integral speedup corresponds to having one truncated
time slot out of every 4N time slots. The truncated time
slot contains only one scheduling phase, whereas the 4N −1
non-truncated time slots contain two scheduling phases. We
also assume that the scheduling algorithm does not know in
advance whether a time slot is truncated or not.

The arrival traffic pattern that gives the lower bound is as
follows: The traffic pattern spans 4N time slots, the last of
which is truncated. Each packet is labeled as P(i, j), where
i denotes the receiver node to which it is destined and j
denotes the time of departure from the corresponding “less
constrained” network.

In the ith time slot, where i = 1, 2, . . . , 4N − 3, the trans-
mitter nodes Ti to T(i+3) receive packets, all of them des-
tined to the receiver node Ri. In the corresponding less con-
strained network N0, these packets are immediately moved
and queued at the node Ri. We assume that the packet ar-
riving at Tj in time slot i, j = i, i + 1, i + 2, i + 3 leaves the
network N0 in time slot j. Thus, according to our notation,
this packet will be denoted by P(i, j). Also, in time slot i,
node Ti has the packet of lowest time to leave.

For i = 4N − 2, 4N − 1 and 4N , the transmitter nodes
with the lowest time to leave in each of the previous i − 1
time slots do not receive any more packets. In addition, the
rest of the transmitter nodes receive packets, all destined for
the same receiver node, Ri. The traffic pattern is depicted
in Fig. 3 for the case N = 2.

This traffic pattern can be repeated as many times as
required to create arbitrarily long traffic patterns. We now
look at the scheduling order of the packets for this traffic
pattern.

Let’s first consider the case of N = 1. The N = 1 case is
exactly similar to the 4×4 switch counter example described
in Appendix A of [2]. Thus, as described in that paper, there
is only one possible scheduling order as shown in Fig. 4. The
speedup required in this case is equal to 7

4
which is equal to

2 − 1
4
.

We now consider the N = 2 case. Using arguments similar
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Figure 4: Scheduling order for the given arrival traf-

fic pattern for N = 1
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Figure 5: Scheduling order for the given arrival traf-

fic pattern for N = 2
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Figure 6: A 4 × 4 bipartite graph with transmitter

nodes connected to source nodes

to the N = 1 case, we conclude that there is only one pos-
sible scheduling order as shown in Fig. 5. Thus, a speedup
of 15

8
or 2 − 1

8
is required for exact emulation.

This procedure can be repeated for an arbitrary N to
obtain a minimum speedup of 2 − 1

4N
, thus proving the

lemma.

Proof of Lemma 11. We now extend the previous counter
example to a network with N2 constraints. For that, con-
sider a 12N node network obtained by connecting each of
the transmitter nodes of the 4N × 4N bipartite graph to an
isolated node using a single edge. This is shown in Fig. 6
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2
3
4
5
6
7
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Nodes

R1 R2 R3 R4
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P(3,3)P(2,4)
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P(1,1)P(1,2)
P(1,3)

Figure 7: Scheduling order for the given arrival traf-

fic pattern for a bipartite graph with source nodes

and operating under d-matching constraints

for N = 1. Call the newly added nodes source nodes. We
assume that this is a two-hop network, in which, packets ar-
rive only at source nodes and depart the network only from
receiver nodes. We also assume that the network is operat-
ing under d-matching constraints, i.e., each node can either
transfer or receive or simultaneously transfer and receive at
most one packet during each scheduling phase.

Suppose that the arrival traffic pattern applied to this
network is same as that described above for the bipartite
graph, the only difference being that now the packets arrive
at the source nodes instead of arriving at the corresponding
transmitter nodes. The output traffic pattern for the cor-
responding less constrained network N0, will be identical to
the previous case except for a delay of one time slot.

We claim that a minimum speedup of 2 − 1
4N

is required
for emulation of N0. For that, we assume that the first time
slot is truncated i.e., has only one scheduling phase. The
subsequent distribution of scheduling phases is the same as
before i.e., one truncated time slot for every 4N time slots.
In the first time slot, all the packets at the source nodes
are transferred to their corresponding transmitter nodes. In
fact, in every time slot, the packets arriving at the source
nodes can be transferred to the transmitter nodes, in one
of the scheduling phases, independently of the scheduling
order. Thus the state of the bipartite graph in the network,
from the second time slot onwards, is exactly the same as
that of the bipartite graph described above. Hence, there
can only be one scheduling order as described above, with
everything delayed by one time slot. This is depicted in
Fig. 7. Thus, a minimum speedup of 2 − 1

4N
is required for

precise emulation of N0. We note that, the additional time
slot required in the beginning will lead to arbitrarily small
change in the speedup for arbitrarily long traffic patterns,
and hence we neglect it.

We now carry out another modification to the above 12N
node network to obtain another 12N node network as fol-
lows: The source nodes and the edges going out of them are
kept intact. The 4N × 4N bipartite graph in the network is
replaced by a 4N node complete graph. The edges coming
out of each of the source nodes are connected to each of the
4N nodes of the network. We then add 4N additional nodes
and connect each of them to each of the 4N nodes of the
complete graph. Fig. 8 shows the network for N = 1.
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Figure 8: Topology of the 12N node network to

which arrival traffic pattern is applied

We will consider the scheduling of this network by es-
tablishing a one-one correspondence between this network
and the 12N node network with a bipartite graph we’ve
just described. The source nodes and the edges coming out
of them, of both the networks are mapped to each other.
The 4N transmitter nodes, T1, T2, . . . , T4N , of the bipartite
graph are mapped to the 4N nodes of the complete graph.
The receiver nodes R1, R2, . . . , R4N are also mapped to the
nodes of the complete graph as follows: for i = 1, . . . , 4N−1,
Ri → (i + 1) and R4N → 1. The additional 4N nodes will
be labeled 1′, 2′, . . . , 4N ′, with the node i of complete graph
connected to node i′, for i = 1, 2, . . . , 4N . We shall call
these additional nodes primed nodes. None of the nodes of
the network with bipartite graph will be mapped to these
nodes. Since we have mapped both the transmitter and
receiver nodes to the same set of 4N nodes of the com-
plete graph, translation of an arrival traffic pattern from
the network with bipartite graph to the network with com-
plete graph might result in packets to be transferred from a
node to itself. In such a scenario, we assume that the packet
is transferred from node i to node i′.

We assume that the arrival traffic pattern described for
the bipartite graph is applied to this network. It is easy
to see that, with N0 constraints, this network will have the
same output traffic pattern. Therefore, from the argument
given for the bipartite graph and the one-one correspon-
dence, it follows that a speedup of at least 2− 1

4N
is necessary

for this network operating under d-matching constraints to
emulate its corresponding less constrained network. Since
the transmitter and receiver nodes are mapped to the same
set of nodes of the complete graph, the schedules obtained
may not be directly implementable for this network with N2

constraints. We now argue that this network with N2 con-
straints will require a speedup of at least 4 − 1

N
for exact

emulation of N0.
We prove the claim for the case N = 1. Proof of the

general case is very similar. The scheduling order for this
network with d-matching constraints is shown in Fig. 7.
Fig. 9, Fig. 10 and Fig. 11 depict the active edges during
time slots 2, 3 and 4 respectively. It is easy to see from
the figures that this network with d-matching constraints
will require a speedup of 2 in time slots 2, 3 and 4, whereas
network with N2 constraints requires a speedup of 3 in time
slot 2 and a speedup of 4 in time slots 3 and 4. This makes

4’

T2, R1

T4, R3T3, R2

T1, R4

Source Node Source Node

Source Node Source Node

1’ 2’

3’

Figure 9: Network of active edges during time slot

2

4’

T2, R1

T4, R3T3, R2

T1, R4

Source Node Source Node

Source Node Source Node

1’ 2’

3’

Figure 10: Network of active edges during time slot

3

the net speedup 7
4

or 2 − 1
4

for N1 and 3 or 4 − 1
1

for N2.
Since the scheduling order of Fig. 7 is the only possible
scheduling order implementable in network with d-matching
constraints, it follows that the same scheduling order is the
only possible scheduling order for N2 and hence a speedup
of 3 is necessary.

This argument can be easily extended to a general case
and thus we have proved that a speedup of 4− 1

N
is necessary

for the precise emulation of a FIFO output queued network.

8. IMPLEMENTATION
We now discuss some of the implementation issues of our

scheme. The ensuing discussion will demonstrate the fea-
sibility of implementation. It should be kept in mind that
our result is a proof of concept, and by no means we are
suggesting that it is practically implementable in its current
form.

Recall that there are two main ‘sub-routines’ that are uti-
lized by our algorithm:(a) Simulation of NC to obtain the
arrival times for scheduling N0; (b) Stable marriage algo-
rithm for determining a stable matching. It is easy to ver-
ify that the computation complexity of these dominate the
overall complexity of the algorithm.

We assume that simulation of NC is being carried out by
a control layer in the network. Preemptive last-in-first-out
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Figure 11: Network of active edges during time slot

4

scheme is carried out in this control layer, but without any
exchange of actual packets. This can be implemented in a
distributed fashion. This exchange of control information
would require O(N), where N is the number of nodes in the
network, operations per time slot.

Now, the stable marriage algorithm. As mentioned earlier,
[4] describe a simple, iterative algorithm to determine a sta-
ble matching in O(N) iterations. Each node requires O(1)
operations to determine preferences (from corresponding less
constrained network). Thus, a total of O(N2) operations are
required per scheduling phase.

Putting everything together, our emulation scheme re-
quires O(N) iterations and O(N2) operations per scheduling
phase.

9. POISSONIZATION
Theorem 2 assumed that the arrival process is Poisson.

This is not restrictive because any arrival process can be
converted into a Poisson process through “Poissonization.”
Poissonization can be carried out as follows:

Poissonization. : Consider an arrival process of rate λ to a
node. The arrivals are queued in a separate “preprocessing”
buffer and the departures from the buffer are fed into the
network. The buffer is serviced according to a Poisson pro-
cess of rate µ. A packet is sent out for every service token
generated, when the buffer is non-empty. When the buffer is
empty, a dummy packet is sent out for every service token,
thus ensuring a departure process that is Poisson with rate
µ.

Clearly, preprocessing buffer is a G/M/1 queue and has a
finite expected queue length for µ > λ. Kingman’s bound
implies that the delay of the G/M/1 queue scales like
Θ( 1

ρj(µ)−ρj(λ)
) because the mean and variance of the arrival

process are finite. Due to convexity of the region Λ(S), it
is possible to choose a µ such that µ > λ, 1 − ρj(µ) =
Θ(1 − ρj(λ)) and ρj(µ) − ρj(λ) = Θ(1 − ρj(λ). Therefore,
our delay bound changes by only by an additive term of
O( 1

1−ρj(λ)
).

10. CONCLUSION
In this paper we have provided a simple scheduling scheme,

through the concept of emulation, that guarantees a per-flow

end-to-end packet delay of
5dj

1−ρj(5λ)
at factor 5 throughput

loss, for wireless networks with primary interference con-
straints. Thus, it settles the much debated recent question
of achieving a delay that is of the order of the number of
hops, with maybe some loss of throughput.

Our approach extends to a network operating under ar-
bitrary scheduling constraints. For a general network, our
scheme achieves the same delay bound (up to constant fac-
tors), with a loss of throughput that depends on the schedul-
ing constraints through an intriguing “sub-graph covering”
property. For the primary interference constraints, Vizing’s
theorem allows us to determine this constant as 5 for a gen-
eral graph. However, understanding this for an arbitrary
constraint set is of general interest.

Our result requires a constant factor loss of throughput
to achieve the desired delay bound. Establishing the opti-
mality of our approach for a network with arbitrary set of
constraints is a natural open problem.

11. REFERENCES
[1] M. Andrews, A. Fernandez, M. Harchol-Balter,

T. Leighton, and L. Zhang. General dynamic routing
with per-packet delay guarantees of o(distance +
1/session rate). SIAM Journal on Computing,
30(5):1594–1623, 2000.

[2] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar.
Matching output queueing with a combined
input/output-queued switch. Selected Areas in

Communications, IEEE Journal on, 17(6):1030–1039,
1999.

[3] F.P.Kelly. Reversibility and Stochastic Networks. John
Wiley and Sons Ltd., New York, 1979.

[4] D. Gale and L. Shapley. College Admissions and the
Stability of Marriage. The American Mathematical

Monthly, 69(1):9–15, 1962.

[5] A. E. Gamal, J. Mammen, B. Prabhakar, and
D. Shah. Optimal Throughput-Delay Scaling in
Wireless Networks - Part II: Constant-Size Packets.
IEEE Transactions on Informaition theory,
52(11):5111–5116, 2006.

[6] L. Georgiadis, M. Neely, and L. Tassiulas. Resource
allocation and cross-layer control in wireless networks.
Foundations and Trends in Networking, 1(1):1–144,
2006.

[7] P. Gupta and P. Javidi. Towards delay-optimal
routing in ad-hoc networks. In Proc. Asilomar

Conference on Signals Systems and Computers, Pacific
Grove CA USA, Nov.4–7 2007.

[8] F. Leighton, B. Maggs, and S. Rao. Packet routing
and job-shop scheduling in O(congestion + dilation)
steps. Combinatorica, 14(2):167–186, 1994.

[9] B. Prabhakar and N. McKeown. On the speedup
required for combined input and output-queued
switching. Automatica, 35(12):1909–1920, 1999.

[10] R.W.Wolff. Stochastic Modeling and the Theory of

Queues. Prentice-Hall, 1988.

[11] L. Tassiulas and A. Ephremides. Stability properties
of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio
networks. IEEE Transactions on Automatic Control,
37(12):1936–1949, 1992.

406


