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ABSTRACT
The packet is the fundamental unit of transportation in
modern communication networks such as the Internet. Phys-
ical layer scheduling decisions are made at the level of pack-
ets, and packet-level models with exogenous arrival pro-
cesses have long been employed to study network perfor-
mance, as well as design scheduling policies that more ef-
ficiently utilize network resources. On the other hand, a
user of the network is more concerned with end-to-end band-
width, which is allocated through congestion control policies
such as TCP. Utility-based flow-level models have played an
important role in understanding congestion control proto-
cols. In summary, these two classes of models have provided
separate insights for flow-level and packet-level dynamics of
a network.

In this paper, we wish to study these two dynamics to-
gether. We propose a joint flow-level and packet-level stochas-
tic model for the dynamics of a network, and an associated
policy for congestion control and packet scheduling that is
based on α-weighted policies from the literature. We provide
a fluid analysis for the model that establishes the through-
put optimality of the proposed policy, thus validating prior
insights based on separate packet-level and flow-level mod-
els. By analyzing a critically scaled fluid model under the
proposed policy, we provide constant factor performance
bounds on the delay performance and characterize the in-
variant states of the system.

Categories and Subject Descriptors
G [Mathematics of Computing]: PROBABILITY AND
STATISTICS—Queueing theory, Markov processes, Stochas-
tic processes
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1. INTRODUCTION
The optimal control of a modern, packet-switched data

network can be considered from two distinct vantage points.
From the first point of view, the atomic unit of the net-
work is the packet. In a packet-level model, the limited
resources of a network are allocated via the decisions on the
scheduling of packets. Scheduling policies for packet-based
networks have been studied across a long line of literature
(e.g., [26, 23, 20]). The insights from this literature have
enabled the design of scheduling policies that allow for the
efficient utilization of the resources of a network, in the sense
of maximizing the throughput of packets across the network,
while minimizing the delay incurred by packets, or, equiva-
lently, the size of the buffers needed to queue packets in the
network.

Packet-level models accurately describe the mechanics of
a network at a low level. However, they model the arrival of
new packets to the network exogenously. In reality, the ar-
rival of new packets is also under the control of the network
designer, via rate allocation or congestion control decisions.
Moreover, while efficient utilization of network resources is
a reasonable objective, a network designer may also be con-
cerned with the satisfaction of end users of the network.
Such objectives cannot directly be addressed in a packet-
level model.

Flow-level models (cf. [9, 1]) provide a different point of
view by considering the network at a higher level of abstrac-
tion or, alternatively, over a longer time horizon. In a flow-
level model, the atomic unit of the network is a flow, or user,
who wishes to transmit data from a source to a destination.
Resource allocation decisions are made via the allocation of
a transmission rate to each flow. Each flow generates util-
ity as a function of its rate allocation, and rate allocation
decisions may be made so as to maximize a global utility
function. In this way, a network designer can address end
user concerns such as fairness.

Flow-level models typically make two simplifying assump-
tions. The first assumption is that, as the number of flows
evolves stochastically over time, the rates allocated to flows
are updated instantaneously. The rate allocation decision for
a particular flow is made in a manner that requires immedi-
ate knowledge of the demands of other flows for the limited
transmission resources along the flow’s entire path. This
assumption, referred to as time-scale separation, is based
on the idea that flows arrive and depart according to much
slower processes than the mechanisms of the rate control
algorithm. The second assumption is that, once the rate
allocation decision is made, each flow can transmit data in-
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stantaneously across the network at its given rate. In reality,
each flow generates discrete packets, and these packets must
travel through queues to traverse the network. Moreover,
the packet scheduling decisions within the network must be
made in a manner that is consistent with and can sustain the
transmission rates allocated to each flow, and the induced
packet arrival process must not result in the inefficient allo-
cation of low level network resources.

In this paper, our goal is to develop a stochastic model
that jointly captures the packet-level and flow-level dynam-
ics of a network, without any assumption of time-scale sep-
aration. The contributions of this paper are as follows:

1. We present a joint model where the dynamic evolution
of flows and packets is simultaneous. In our model, it
is possible to simultaneously seek efficient allocation of
low level network resources (buffers) while maximizing
the high-level metric of end-user utility.

2. For our network model, we propose packet scheduling
and rate allocation policies where decisions are made
via myopic algorithms that combine the distinct in-
sights of prior packet- and flow-level models. Packets
are scheduled according to a maximum weight policy.
The rate allocation decisions are completely local and
distributed. Further, in long term (i.e., under fluid
scaling), the rate control policy exhibits the behavior
of a primal algorithm for an appropriate utility maxi-
mization problem.

3. We provide a fluid analysis of the joint packet- and
flow-level model. This analysis allows us to establish
stability of the joint model and the throughput opti-
mality of our proposed control policy.

4. We establish, using a fluid model under critical load-
ing, a performance bound on our control policy under
the metric of minimizing the outstanding number of
packets and flows in the network (or, in other words,
minimizing delay). We demonstrate that, for a class
of balanced networks, our control policy performs to
within a constant factor of any other control policy.

5. Under critical loading, we characterize the invariant
manifold of the fluid model of our control policy, as well
as establishing convergence to this manifold starting
from any initial state. These results, along with the
method of Bramson [2], lead to the characterization of
multiplicative state space collapse under heavy traffic
scaling. Further, we establish that the invariant states
of the fluid model are asymptotically optimal under a
limiting control policy.

In summary, our work provides a joint dynamic flow- and
packet-level model that captures the microscopic (packet)
and macroscopic (fluid, flow) behavior of large packet-based
communications network faithfully. The performance anal-
ysis of our rate control and scheduling algorithm suggests
that the separate insights obtained for dynamic flow-level
models [9, 1] and for packet-level models [26, 23, 20] indeed
continue to hold in the combined model.

The balance of the paper is organized as follows. In Sec-
tion 1.1, we survey the related literature on flow- and packet-
level models. In Section 2, we introduce our network model.
Our network control policy, which combines features of max-
imum weight scheduling and utility-based rate allocation is

described in Section 3. A fluid model is derived in Section 4.
Stability (or, throughput optimality) of the network control
policy is established in Section 5. The critically scaled fluid
model is described in Section 6. In Section 7, we provide
performance guarantees for balanced networks. The invari-
ant states of the critically scaled fluid model are described
in Section 8. Finally, in Section 9, we conclude.

1.1 Literature Review
The literature on scheduling in packet-level networks be-

gins with Tassiulas and Ephremides [26], who proposed a
class of ‘maximum weight’ (MW) or ‘back-pressure’ poli-
cies. Such policies assign a weight to every schedule, which
is computed by summing the number of packets queued at
links that the schedule will serve. At each instant of time,
the schedule with the maximum weight will be selected. Tas-
siulas and Ephremides [26] establish that, in the context
of multi-hop wireless networks, MW is throughput optimal.
That is, the stability region of MW contains the stability
region of any other scheduling algorithm. This work was
subsequently extended to a much broader class of queueing
networks by others (e.g., [14, 3, 25, 4]).

By allowing for a broader class of weight functions, the
MW algorithm can be generalized to the family of so-called
MW-α scheduling algorithms. These algorithms are param-
eterized by a scalar α ∈ (0,∞). MW-α can be shown to
inherit the throughput optimality of MW [11, 18] for all
values of α ∈ (0,∞). However, it has been observed exper-
imentally that the average queue length (or, ‘delay’) under
MW-α decreases as α→ 0+ [11]. Certain delay properties of
this class of algorithms have been subsequently established
under a heavy traffic scaling [23, 4, 20].

Flow-level models have received significant recent atten-
tion in the literature, beginning with the work of Kelly,
Maulloo, and Tan [9]. This work developed rate-control al-
gorithms as decentralized solutions to a deterministic utility
maximization problem. This optimization problem seeks to
maximize the utility generated by a rate allocation, subject
to capacity constraints that define a set of feasible rates.
This work was subsequently generalized to settings where
flows stochastically depart and arrive [13, 6, 1], addressing
the question of the stability of the resulting control policies.
Fluid and diffusion approximations of the resulting systems
have been subsequently developed [10, 8, 28]. Under these
stochastic models, flows are assumed to be allocated rate as
per the optimal solution of the utility maximization prob-
lem instantaneously. Essentially, this time-scale separation
assumption captures the intuition that the dynamics of the
arrivals and departures of flows happens on a much slower
time-scale than the dynamics of rate control algorithm.

In reality, flow arrivals/departures and rate control hap-
pen on the same time-scale. Various authors have consid-
ered this issue, in the context of understanding the stability
of the stochastic flow level models without the time-scale
separation assumption [12, 7, 24, 17, 22]. Lin, Schroff, and
Srikant [12] assume a stochastic model of flow arrivals and
departures as well as the operation of a primal-dual algo-
rithm for rate allocation. However, there are no packet dy-
namics present. Other work [7, 24, 17] has assumed that rate
control for each type of flow is a function of a local Lagrange
multiplier; and a separate Lagrange multiplier is associated
with each link in the network. These multipliers are updated
using a maximum weight-type policy. In this line of work,
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Lagrange multipliers are interpreted as queue lengths, but
there are no actual packet-level dynamics present. Further,
these models lack flow-level dynamics as well. Thus, while
overall this collection of work is closest to the results of this
paper, it stops short of offering a complete characterization
of a joint flow- and packet-level dynamic model.

Finally, we take note of recent work by Walton [27], which
presents a simple but insightful model for joint flow- and
packet-level dynamics. In this model, each source gener-
ates packets by reacting to the acknowledgements from its
destination, and at each time instant, each source has at
most one packet in flight. Under a many-source scaling for
a specific network topology, it is shown that the network
operates with rate allocation as per the proportional fair
criteria. This work provides important intuition about the
relationship between utility maximization and the rate al-
location resulting from the packet-level dynamics in a large
network. However, it is far from providing a comprehen-
sive joint flow- and packet-level dynamic model as well as
efficient control policy.

2. NETWORK MODEL
In this section, we introduce our network model. This

model captures both the flow-level and the packet-level as-
pects of a network, and will allow us to study the interplay
between the dynamics at these two levels. In a nutshell,
flows of various types arrive according to an exogenous pro-
cess and seek to transmit some amount of data through the
network. As in the standard congestion control algorithm,
TCP, the flows generate packets at their ingress to the net-
work. The packets travel to their respective destinations
along links in the network, queueing in buffers at intermedi-
ate locations. As a packet travels along its route, it is subject
to physical layer constraints, like medium access constraints,
switching constraints, or constraints due to limited link ca-
pacity. A flow departs once all of its packets have been sent.

In this section, we describe the mechanics of the network
that are independent of the network control policy. In Sec-
tion 3, we will propose a specific network control policy to
be applied in this context.

2.1 Network Structure
Consider a network consisting of a set V of destination

nodes, a set L of links, and a set F the set of flow types.
Each flow type identified by a fixed given route starting at
the source link s(f) ∈ L and ending at the destination node
d(f) ∈ V. At a given time, multiple flows of a given type
exist in the network, each flow injects packets into the net-
work.

The network maintains buffers for packets that are in tran-
sit across the network. At each link, there is a separate
queue for the packets corresponding to each possible desti-
nation. Let E = L × V denote the set of all such queues,
with each e = (`, v) being the queue at link ` for final des-
tination v. Traffic in each queue is transmitted to the next
hop along the route to the destination, and leaves the net-
work when it reaches the destination. We define the routing
matrix R ∈ {0, 1}E×E by setting Ree′ , 1 if the next hop

for queue e is queue e′, and Ree′ , 0 otherwise. Note that
traffic for a flow of type f enters the network in the queue
ι(f) ,

(
s(f), d(f)

)
∈ E . Define the matrix Γ ∈ {0, 1}E×F

by setting Γef , 1 if ι(f) = e, and Γef , 0 otherwise. We

will assume that the routes are acyclic. In this case, we can
define the matrix

Ξ ,
(
I −R>

)−1

= I +R> + (R>)2 + · · · . (1)

Under the acyclic routing assumption, Ξe′e = 1 if and only if
a packet arriving at queue e subsequently eventually passes
through queue e′.

2.2 Dynamics: Flow-Level
In this section, we will describe in detail the stochastic

model for dynamics of flows in the network. The system
evolves in continuous time, with t ∈ [0,∞) denoting time,
starting at t = 0. For each flow type f ∈ F , Let Nf (t)
denote the number of flows of type f active at time t. Flows
of type f arrive according to an independent Poisson process
of rate νf . Flows of type f receive an aggregate rate of
service Xf (t) ∈ [0, C] at time t. Here, C > 0 is the maximal
the rate of service that can be provided to any flow type.
This service is divided equally amongst the Nf (t) flows. As
flows are serviced, packets are generated. The evolution of
packets and flows proceeds according to:

• Packets are generated by all the flows of type f , in
aggregate, as a time varying Poisson process of rate
Xf (t) at time t. If Nf (t) = 0, then Xf (t) = 0.

• When a packet is generated by a flow of type f , it joins
the ingress queue ι(f) ∈ E .

• When a packet is generated by a flow of type f , the
flow departs from the network with a probability of
0 < µf < 1, independent of everything else.

Thus, each flow of type f requires an amount of service
according to an independent exponential random variable
with mean1 1/µf , and the flow departure process for flows of
type f is a Poisson process of rate µfXf (t) at time t. We can
summarize the flow count process Nf (·) by the transitions

Nf (t)→

{
Nf (t) + 1 at rate νf ,

Nf (t)− 1 at rate µfXf (t).

Define the offered load vector ρ ∈ RF+ by ρf , νf/µf , for
each flow type f . Without loss of generality, we will make
the following assumptions:2

• ρ > 0, i.e., we restrict attention to flows with a non-
trivial loading.

• ρ < C1, i.e., we assume that the maximal service rate
C is sufficient for the load generated by any single flow
type.

• ΞΓρ > 0, i.e., we restrict attention to queues with a
non-trivial loadings.

Denote by Af (t) the cumulative number of flows of type
f that have arrived in the time interval [0, t]. By definition,

1The assumption that µf < 1 is without loss of generality.
This is because, by thinning the flow arrival process, we
can restrict attention to flow types f that are expected to
generate at least 1, in other words, flow types with mean
service time satisfying 1/µf > 1.
2In what follows, inequalities between vectors are to be in-
terpreted component-wise. The vector 0 (resp., 1) is the
vector where every component is 0 (resp., 1), and whose
dimension can be inferred from the context.
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Af (·) is a Poisson process of rate νf . Denote the cumulative
number of packets generated by flow type f in the time in-
terval [0, t] by Af (t). By definition Af (·) is a Poisson process
with a time-varying rate given by Xf (·). We suggest that
the reader take note of difference between Af (·) and Af (·).
Let Df (t) denote the cumulative number of flows of type f
that have departed in the time interval [0, t]. Df (·) is a Pois-
son process with time varying rate µfXf (·). The evolution
of flow count for flow type f over time can be written as

Nf (t) = Nf (0) + Af (t)−Df (t). (2)

2.3 Dynamics: Packet-Level
As we have just described, flows generate packets which

are injected into the network. These packets must traverse
the links of the network from source to destination. In this
section, we describe the dynamics of packets in the network.

We assume that each queue in the network is capable of
transmitting at most 1 data packet per unit time. However,
the collection of queues that can simultaneously transmit is
restricted by a set of scheduling constraints. These schedul-
ing constraints are meant to capture any limitations of the
network due to scarce resources (e.g., limited wireless band-
width, limited link capacity, etc.).

Formally, the scheduling constraints are described by the
set S ⊂ {0, 1}E . Under a permissible schedule π ∈ S, a
packet will be transmitted from a queue e ∈ E if and only
if πe = 1. We assume that 0 ∈ S. Further, we assume
that S is monotone: if σ ∈ S and σ′ ∈ {0, 1}E such that
σ′e ≤ σe for every queue e, then σ′ ∈ S. Finally, denote
by Π ∈ {0, 1}E×S the matrix with columns consisting of the
elements of S.

We assume that the scheduling of packets happens at ev-
ery integer time. At a time τ ∈ Z+, let π(τ) ∈ S denote the
scheduled queues for the time interval [τ, τ + 1). For each
queue e, denote by Qe(τ

−) the length of the queue e imme-
diately prior to the time τ (i.e., before scheduling happens).
The queue length evolves, for times t ∈ [τ, τ + 1) according
to3

Qe(t) , Qe(τ
−)− πe(τ)I{Qe(τ−)>0} +

∑
f∈F

Γef
(
Af (t)

−Af (τ−)
)

+
∑
e′∈E

Re′eπe′(τ)I{Qe′ (τ−)>0}.

Here, for each flow type f , Af (τ−) is the cumulative num-
ber of packets generated by flows of type f in the time in-
terval [0, τ). The term πe(τ)I{Qe(τ)>0} enforces an idling
constraint, i.e., if queue e is scheduled but empty, no packet
departs. Note that, over a time interval [τ, τ+1), we assume
the transmission of packets already present in the network
occurs instantly at time τ , while the arrival of new packets
to the network occurs continuously throughout the entire
time interval.

Finally, let Sπ(τ) denote the cumulative number of time
slots during which the schedule π was employed up to and
including time τ . Let Ze(τ) denote the cumulative idling
time for queue e up to an including time τ . That is,

Ze(τ) ,
τ∑
s=0

∑
π∈S

πe
(
Sπ(s)− Sπ(s− 1)

)
I{Qe(s)=0}.

3I{·} denotes the indicator function.

Then, the overall queue length evolution can be written in
vector form as

Q(τ + 1) = Q(0)−
(
I −R>

)
ΠS(τ)

+
(
I −R>

)
Z(τ) + ΓA(τ + 1),

(3)

where we define the vectors

Q(t) ,
[
Qe(t)

]
e∈E , A(t) ,

[
Af (t)

]
f∈F ,

S(τ) ,
[
Sπ(τ)

]
π∈S , Z(τ) ,

[
Ze(t)

]
e∈E .

3. MWUM CONTROL POLICY
A network control policy is a rule that, at each point in

time, provides two types of decisions: (a) the rate of ser-
vice provided to each flow, and (b) the scheduling of packets
subject to the physical constraints in the network. In Sec-
tion 2, we described the stochastic evolution of flows and
packets in the network, taking as given the network control
policy. In this section, we describe a control policy called the
maximum weight utility maximization-α (MWUM-α) policy.
MWUM-α takes as a parameter a scalar α ∈ (0,∞) \ {1}.

The MWUM-α policy is myopic and based only on local
information. Specifically, a flow generates packets at rate
that is based on the queue length at its ingress, and the
scheduling of packets is decided as a function of the effected
queue lengths.

At the flow-level, rate allocation decisions are made ac-
cording to a per flow utility maximization problem. Each
flow chooses a rate so as to myopically maximize its utility
as a function of rate consumption, subject to a linear penalty
(or ‘price’) for consuming limited network resources. As in
the case of α-fair rate allocation, the utility function is as-
sumed to have a constant relative risk aversion of α. The
price charged is a function of the number of packets queued
at the ingress queue associated with the flow, raised to the
α power.

At the packet-level, packets are scheduled according to
a maximum weight-α scheduling algorithm. In particular,
each queue is assigned a weight equal to the number of
queued packets to the α power, and a schedule is picked
which maximizes the total weight of all scheduled queues.

3.1 Control: Rate Allocation
The first control decision we shall consider is that of rate

allocation, or, the determination of the aggregate rate of
service Xf (t), at time t, for each flow type f . We will as-
sume our network is governed by a variant of an α-fair rate
allocation policy. This is as follows:

Assume that each flow of type f is allocated a rate Yf (t) ≥
0 at time t by maximizing a (per flow) utility function that
depends on the allocated rate, subject to a linear penalty, or
cost, for consuming resources from the limited capacity of
the network. In particular, we will assume a utility function
given a rate allocation of y ≥ 0 to an individual flow of
type f of the form Vf (y) , y1−α/(1 − α), for some α ∈
(0,∞) \ {1}. This utility function is popularly known as
α-fair in the congestion control literature [15], and has a
constant relative risk aversion of α. The individual flow will
then be assigned capacity according to

Yf (t) ∈ argmax
y≥0

Vf (y)−Qαι(f)(t)y.
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Here, Qαi(f)(t) represents a ‘price’ or ‘congestion signal’. In-
tuitively, a flow reacts to the congestion (or lack of it) through
the length of the ingress or ‘first-hop’ queue ι(f). Then, if
Nf (t) > 0, the aggregate rate Xf (t) allocated to all flows of
type f at time t is determined according to

Xf (t) = Nf (t)Yf (t) = argmax
x≥0

x1−αNα
f (t)

1− α −Qαι(f)(t)x.

If Nf (t) = 0, we require that Xf (t) = 0. Further, we
will constrain the overall rate allocated to flows of type f by
the constant C. Thus, rate allocation is determined by the
equation

Xf (t) =

argmax
x∈[0,C]

x1−αNα
f (t)

1− α −Qαι(f)(t)x if Nf (t) > 0,

0 otherwise.

Given the strictly concave nature of the objective in this op-
timization program, it is clear that the maximizer is unique
and Xf (t) is well-defined.

Denote by X̄f (t) the cumulative rate allocation to flows
of type f in the time interval [0, t], i.e.,

X̄f (t) ,
∫ t

0

Xf (s) ds.

X̄f (·) is Lipschitz continuous and differentiable, since Xf (·)
is always bounded by C.

3.2 Control: Scheduling
The second control decision that must be specified is that

of scheduling. We will assume the following variation of the
‘maximum weight’ or ‘back-pressure’ policies introduced by
Tassiulas and Ephremides [26].

At the beginning of each discrete-time slot τ ∈ Z+, a
schedule π(τ) ∈ S is chosen according to the optimization
problem

π(τ) ∈ argmax
π∈S

∑
e∈E

πe

[
Qαe (τ−)−

∑
e′∈E

Ree′Q
α
e′(τ

−)

]
= argmax

π∈S
π>(I −R)Qα(τ−),

(4)

where Qα(τ−) ,
[
Qαe (τ−)

]
e∈E is a vector of component-

wise powers of queue lengths, immediately prior to time τ .
In other words, the schedule π(τ) is such that it maximizes
the summation of weights of queues served, where weight of
queue e ∈ E is given by

[
(I − R)Qα(τ−)

]
e
. Given that S

is monotone, there exists π ∈ S that maximizes this weight
and is such that πe = 0 if Qe(τ

−) = 0. We will restrict
our attention to such schedules only. From this, it follows
that the objective value of the optimization program in (4)
is always non-negative.

By the discussion above, it is clear that the following in-
variants are satisfied:

1. For any schedule π and time τ , Sπ(τ) = Sπ(τ − 1)
if π>(I − R)Qα(τ−) < σ>(I − R)Qα(τ−), for some
σ ∈ S.

2. For any queue e and time τ , Ze(τ) = 0. In other words,
there is no idling.

4. FLUID MODEL
We introduce the fluid model of the above described sys-

tem. As we shall see, the evolution of rate allocation to flows
in the fluid model resembles rate allocation of a ‘flow-level’
model that has been popular in the literature [13, 1]. In
that sense, our model on original time-scale operates at the
packet-level granularity and on the fluid or long time scale
operates at the flow-level granularity.

4.1 Fluid Scaling and Fluid Model Equations
In order to introduce the fluid model of our network, we

will consider the scaled version of the system. To this end,
denote the overall system state at a time t ≥ 0 by

Z(t) ,
(
Q(t), Z(btc), N(t), S(btc), X̄(t),A(t), D(t), A(t)

)
.

Here, the components of the state Z(t) are the primitives in-
troduced in Sections 2.2 and 2.3. That is, at times t ∈ R+,
where we have, Q(t) ,

[
Qe(t)

]
e∈E with Qe(t) being the

length of queue e; N(t) ,
[
Nf (t)

]
f∈F , with Nf (t) being the

number of flows of type f ; X̄(t) ,
[
X̄f (t)

]
f∈F , with X̄f (t)

being the cumulative rate allocated to flow type f ; A(t) ,[
Af (t)

]
f∈F , with Af (t) being the cumulative arrival count

of flow type f ; D(t) ,
[
Df (t)

]
f∈F , with Df (t) being the cu-

mulative departure count of flow type f ; A(t) ,
[
Af (t)

]
f∈F ,

with Af (t) being the cumulative packet arrival count of flow

type f ; and, at times τ ∈ Z+, we have Z(τ) ,
[
Ze(τ)

]
e∈E

with Ze(τ) being the cumulative idleness for queue e; S(τ) ,[
Sπ(τ)

]
π∈S , with Sπ(τ) being the cumulative time schedule

π is employed.
For scaling parameter r ∈ R, r ≥ 1, define the scaled

system state as

Z(r)(t) ,
(
Q(r)(t), Z(r)(t), N (r)(t), S(r)(t),

X̄(r)(t),A(r)(t), D(r)(t), A(r)(t)
)
.

Here, the scaled components are defined as

Q(r)(t) , r−1Q(rt), N (r)(t) , r−1N(rt),

X̄(r)(t) , r−1X̄(rt), A(r)(t) , r−1A(rt),

D(r)(t) , r−1D(rt), A(r)(t) , r−1A(rt),

Z(r)(t) , r−1
[
(rt− brtc)Z(drte) + (drte − rt)Z(brtc)

]
,

S(r)(t) , r−1
[
(rt− brtc)S(drte) + (drte − rt)S(brtc)

]
.

Note that, in above we have ‘linearized’ the components Z(·)
and S(·) merely for technical convenience.

Our interest is in understanding the behavior of Z(r)(·) as
r → ∞. Roughly speaking, in this limiting system the tra-
jectories will satisfy certain deterministic equations, called
fluid model equations. And, solutions to these equations
will be denoted as fluid model solution defined below. The
formal result is stated in Theorem 1.

Definition 1 (Fluid Model Solution). Given fixed
initial conditions q(0) ∈ RE+ and n(0) ∈ RF+, for every time
horizon T > 0, let FMS(T ) denote the set of all trajectories

z(t) ,
(
q(t), z(t), n(t), s(t), x̄(t), a(t), d(t), a(t)

)
∈ X , RE+ × RE+ × RF+ × RS+ × RF+ × RF+ × RF+ × RF+ , (5)
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over the time interval [0, T ] such that:

(F1) All components of z(t) are Lipschitz continuous and
thus differentiable almost everywhere.

(F2) For all t ∈ [0, T ], n(t) = n(0) + a(t)− d(t).

(F3) For all t ∈ [0, T ], a(t) = νt.

(F4) For all t ∈ [0, T ], d(t) = diag(µ)x̄(t).

(F5) For all t ∈ [0, T ],

q(t) = q(0)−
(
I −R>

)
Πs(t)+

(
I −R>

)
z(t)+Γa(t).

(F6) For all t ∈ [0, T ], a(t) = x̄(t).

(F7) For all t ∈ [0, T ], 1>s(t) = t.

(F8) Each component of z(·), s(·) & x̄(·) is non-decreasing.

In addition, define the set FMSα(T ) to be the subset of
trajectories in FMS(T ) that also satisfy:

(F9) If t ∈ [0, T ] is a regular point, then for all f ∈ F ,

xf (t) =

argmax
x∈[0,C]

x1−αnαf (t)

1− α
− qαι(f)(t)x if nf (t) > 0,

νf/µf (= ρf ) otherwise,

where xf (t) , ˙̄xf (t).

(F10) If t ∈ [0, T ] is a regular point, then for all π ∈ S,
ṡπ(t) = 0, if

π>(I −R)qα(t) < max
σ∈S

σ>(I −R)qα(t).

(F11) If t ∈ [0, T ] is a regular point and nf (t) = 0 for some
f ∈ F , then qι(f)(t) = 0.

(F12) For all t ∈ [0, T ], z(t) = 0.

Note that (F1)–(F8) correspond to fluid model equations
that must be satisfied under any scheduling policy, and,
hence, are algorithm independent fluid model equations. On
the other hand, (F9)–(F12) are particular the networks con-
trolled under the MWUM-α policy. (F9) captures the long-
term effect of the rate allocation mechanism through the
α-fair utility maximization based policy. Indeed, in a static
resource allocation model, the (F9) can be thought of as
the primal update in a in an algorithm for solving the max-
imization problem that tries to allocate rates to maximize
the net α-fair utility of flows subject to capacity constraints.
(F10) captures the effect of short-term packet-level behavior
induced by the scheduling algorithm. Specifically, the char-
acteristics of the maximum weight scheduling algorithm are
captured by this equation.

4.2 Formal Statement
We wish to establish fluid model solutions as limit of the

scaled system state process Z(r)(·) as r → ∞. To this end,
fix a time horizon T > 0. Let D[0, T ] denote the space
of all functions from [0, T ] to X , as in (5), that are right
continuous with left limits (RCLL). We will assume that
this space is equipped with the Skorohod metric, which we
denote by d(·, ·). Given a fixed scaling parameter r, consider
the scaled system dynamics over interval [0, T ]. Each sample

path {Z(r)(t), t ∈ [0, T ]} of the system state is RCLL, and
hence is contained in the space D[0, T ].

The following theorem formally establishes the conver-
gence of the scaled system process to a fluid model solution
of the form specified in Definition 1.

Theorem 1. Given a fixed time horizon T > 0, consider
a sequence of scaled system state processes {Z(r)(t), t ∈
[0, T ]} ⊂ D[0, T ], for r ≥ 1 evolving under an arbitrary
control policy. Suppose the initial conditions

lim
r→∞

Q(r)(0) = q(0), lim
r→∞

N (r)(0) = n(0), a.s., (6)

are satisfied. Then, for any ε > 0,

lim inf
r→∞

P
[
Z(r)(·) ∈ FMSε(T )

]
= 1,

where

FMSε(T ) , {x ∈ D[0, T ] : d(x,y) < ε, y ∈ FMS(T )}.

Additionally, under the MWUM-α control policy we have
that

lim inf
r→∞

P
[
Z(r)(·) ∈ FMSαε (T )

]
= 1,

where

FMSαε (T ) , {x ∈ D[0, T ] : d(x,y) < ε, y ∈ FMSα(T )}.
Proof Sketch. The result can be established by follow-

ing a standard sequence of arguments (cf. [2, 21, 10]). First,
the sequence of measures corresponding to the sequence of
random processes {Z(r)(·)} is shown to be tight. This es-
tablishes that limit points must exist. Next, it is established
that each limit point must satisfy the conditions of a fluid
solution with probability 1. Details can be found in the
longer version of this paper [16].

5. SYSTEM STABILITY
In this section, we characterize the stability of a network

under the MWUM-α policy. In particular, we shall see that
the network Markov process is positive recurrent as long as
the system is underloaded, or the system is maximally stable.
In order to construct the stability region under the MWUM-
α policy, first define a set Λ ⊂ RE+ of per queue arrival rates
by

Λ ,
{
λ ∈ RE+ : ∃ s ∈ RS+ with λ ≤ Πs, 1>s ≤ 1

}
. (7)

Imagine that the network has no packet arrivals from flows,
but instead has packets arriving according to exogenous pro-
cesses. Suppose that λ ∈ RE+ is the vector of exogenous ar-
rival rates, so that packets arrived to each queue e at rate
λe. Then, it is not difficult to see that the network would
not be stable under any scheduling policy if λ /∈ Λ. Oth-
erwise, there is at least one queue in the network that is
loaded beyond its capacity. Hence, the set Λ represents the
raw scheduling capacity of the network.

The set Λ can alternatively be described as follows: Given
a vector λ ∈ RE+, consider the linear program

PRIMAL(λ) , minimize
s

1>s

subject to λ ≤ Πs,

s ∈ RS+.

Clearly λ ∈ Λ if and only if PRIMAL(λ) ≤ 1. The quan-
tity PRIMAL(λ) is called the effective load of a system with
exogenous arrivals of rate λ.

Now, in our model, packets arrive to the network not
through an exogenous process, but rather, they are gener-
ated by flows. As discussed in Section 2.2, each flow type
f ∈ F generates packets at according to an offered load of
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ρf . The generated packets subsequently traverse through
the network along pre-determined paths specified by the
routing matrix Γ. Let λ ∈ RE+ be the vector of implied loads
on the scheduling network due to this. It seems reasonable
to relate λ and the vector ρ ∈ RF+ of offered loads according

to λ = Γρ+R>λ. Equivalently, we define λ , ΞΓρ, where Ξ
is from (1). We define the effective load L(ρ) of our network

by L(ρ) , PRIMAL(ΞΓρ).
Given the above discussion, it seems natural to suspect

that the network’s scheduling capacity allows it to operate
effectively as long as L(ρ) ≤ 1. This motivates the following
definition:

Definition 2 (Admissibility). We call a vector ρ ∈
RF+ admissible if L(ρ) ≤ 1. ρ is strictly admissible if L(ρ) <
1. Finally, ρ is critically admissible if L(ρ) = 1.

We establish system stability, or, formally, positive re-
currence, when arrival process is strictly admissible. To
this end, recall that the system is completely described by
the Z(·) process. Under the MWUM-α policy, the evolu-
tion of all the components of Z(t) is entirely determined by(
N(t), Q(t)

)
. Further, the changes in

(
N(t), Q(t)

)
occur at

times specified by the arrivals of a (time-varying) Poisson
process. Therefore, tuple

(
N(·), Q(·)

)
forms a continuous-

time Markov chain. The following is the main result of this
section:

Theorem 2. Consider a network system with strictly ad-
missible ρ operating under the MWUM-α policy. Then, the
Markov chain

(
Q(·), N(·)

)
is positive recurrent.

It is worth noting that if L(ρ) > 1, then at least of the
queues in the network must be, on average, loaded beyond
its capacity. Hence the network Markov process can not be
positive recurrent or stable.

The proof of Theorem 2, which can be found in the longer
version of this paper [16], uses the fluid model based ap-
proach pioneered by Dai [5]. A crucial step in this procedure
is to establish the stability of the fluid model. To this end,
consider the Lyapunov function Lα defined over the vector
of the number of flows, n = [nf ] ∈ RF+ , and the vector of
queue lengths, q = [qe] ∈ RE+, by

Lα(n, q) ,
∑
f∈F

n1+α
f

µfραf
+
∑
e∈E

q1+αe . (8)

The following lemma, whose proof is found in the longer
version [16], demonstrates stability of the fluid model.

Lemma 3. Let
(
n(·), q(·)

)
be, respectively, the flow count

process and the queue length process of a fluid model solution
in the set FMSα(T ). If L(ρ) ≤ 1, then for every regular point
t ∈ [0, T ],

d

dt
Lα
(
n(t), q(t)

)
≤ 0.

Suppose further that L(ρ) < 1, and that the initial conditions(
n(0), q(0)

)
satisfy

Lα
(
n(0), q(0)

)
= 1.

Then, for T sufficiently large, there exist δ > 0 and τ > T
such that, for all t ≥ τ ,

Lα
(
n(t), q(t)

)
≤ 1− δ.

6. CRITICAL LOADING
We have established the throughput optimality of the sys-

tem under the MWUM-α control policy, for any α ∈ (0,∞)\
{1}. Thus, this entire family of policies possesses good first
order characteristics. Further, there may be many other
throughput optimal policies outside the class of MWUM-α
policies. This naturally raises the question of whether there
is a ‘best’ choice of α, and how the resulting MWUM-α pol-
icy might compare to the universe of all other policies.

In order to answer these questions, we desire a more re-
fined analysis of policy performance than throughput opti-
mality. One way to obtain such an analysis is via the study
of a critically loaded system, i.e., a system with critically ad-
missible arrival rates. Under a critical loading, fluid model
solutions take non-trivial values over entire horizon. In con-
trast, for strictly admissible systems under throughput opti-
mal policies, all fluid trajectories go to 0 (cf. Lemma 3). We
will employ the study of the fluid model solutions of criti-
cally loaded systems as a tool for the comparative analysis
of network control policies.

In particular, given a vector of flow counts, n = [nf ] ∈ RF+ ,
and the vector of queue lengths, q = [qe] ∈ RE+, consider the
linear cost function

c(n, q) ,
∑
f∈F

nf
µf

+
∑
e∈E

qe = 1>
[
Γ diag(µ−1)n+ q

]
. (9)

This cost function is analogous to a ‘minimum delay’ objec-
tive in a packet-level queueing network: a cost is incurred
for each queued packet, and a cost is incurred for each out-
standing flow proportional to the number of packets that it
will generate.

In this section, we establish fundamental lower bounds
that apply to the cost incurred in a critically loaded fluid
model under any scheduling policies. In Sections 7 and 8,
we will compare these with the cost incurred by MUWM-
α control policies. We shall find that as α → 0+, the cost
induced by the MUWM-α algorithms improves and becomes
close to the algorithm independent lower bound we establish.

6.1 Virtual Resources and Workload
We start with some definitions. First, consider the dual

of the LP PRIMAL(λ),

DUAL(λ) , maximize
ζ

λ>ζe

subject to Π>ζ ≤ 1,

ζ ∈ RE+.

Since there is no duality gap, the solution of PRIMAL(λ) is
equal to the solution of DUAL(λ).

Definition 3 (Virtual Resource). We will call any
feasible solution ζ ∈ RE+ of dual optimization problem DUAL(λ)
a virtual resource. Suppose the system is critically loaded,
i.e., the offered load vector ρ satisfies

L(ρ) = PRIMAL(ΞΓρ) = DUAL(ΞΓρ) = 1.

Then, we call a virtual resource that is an optimal solution
of DUAL(ΞΓρ) a critical virtual resource.

For a critically loaded system with offered load vector
ρ, let CR(ρ) denote the set of all critical virtual resources.
Note that CR(ρ) is a bounded polytope and hence possesses
finitely many extreme points. Let CR∗(ρ) denote the finite
set of extreme points of CR(ρ).
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The following definition captures the amount of ‘work’ as-
sociated with a critical resource, as a function of the current
state of the system.

Definition 4 (Workload). Consider a critically loaded
system with an offered load vector ρ and a critical virtual re-
source ζ ∈ CR(ρ). If the flow count and queue length vectors
are given by (n, q), the workload associated the resource ζ
is defined to be

wζ(n, q) , ζ>Ξ
[
q + Γ diag(µ)−1n

]
.

6.2 A Lower Bound on Fluid Trajectories
Given the critically loaded system with offered load vector

ρ. We claim the following fundamental lower bound the fluid
trajectory under any algorithm. This bound can be thought
of as minimal work-conservation.

Lemma 4. Consider the fluid model trajectory of system
under any scheduling and rate allocation algorithm, with flow
count and queue length processes given by

(
n(·), q(·)

)
. Then,

for any time t ≥ 0 and any critical virtual resource ζ ∈
CR(ρ),

wζ
(
n(0), q(0)

)
≤ wζ

(
n(t), q(t)

)
. (10)

Proof. Given a time interval [0, T ], for any T > 0, con-
sider the fluid model trajectory z(t) of the form (5). By The-
orem 1, this fluid trajectory must satisfy the algorithm in-
dependent fluid model equations, (F1)–(F8) in Definition 1.
By (F1), the trajectory is Lipschitz continuous and differ-
entiable for almost all t ∈ [0, T ]. For any such regular t, by
(F2)–(F4), we have ṅ(t) = ν − diag(µ) ˙̄x(t). Thus,

Γ diag(µ−1)ṅ(t) = Γρ− Γ ˙̄x(t). (11)

From (F5)–(F6), we obtain

q̇(t) =
(
I −R>

)
ż(t)−

(
I −R>

)
Πṡ(t) + Γ ˙̄x(t) (12)

Adding (11) and (12), we obtain

q̇(t) + Γ diag(µ−1)ṅ(t) = Γρ+
(
I −R>

)
(ż(t)−Πṡ(t)) .

Now, multiplying both sides by Ξ ,
(
I −R>

)−1
, we obtain

Ξ
[
q̇(t) + Γ diag(µ−1)ṅ(t)

]
= ΞΓρ+ ż(t)−Πṡ(t). (13)

Now, consider a critical virtual resource ζ ∈ CR(ρ). Since ζ
is DUAL(ΞΓρ) optimal, ζ>ΞΓρ = 1. Taking an inner product
of (13) with ζ>, we obtain

ζ>Ξ
[
q̇(t) + Γ diag(µ−1)ṅ(t)

]
= 1 + ζ>ż(t)− ζ>Πṡ(t). (14)

Now, by (F8), z(t) is non-decreasing, i.e., ż(t) is non-negative.
Since ζ is also non-negative, ζ>ż(t) ≥ 0. By (F8), ṡ(t) is non-
negative. Since ζ is DUAL(ΞΓρ) feasible and from (F7), it
follows that ζ>Πṡ(t) ≤ 1>ṡ(t) = 1. Applying these observa-
tions to (14), it follows that

d

dt
wζ
(
n(t), q(t)

)
= ζ>Ξ

[
q̇(t) + Γ diag(µ−1)ṅ(t)

]
≥ 0.

Given that
(
n(·), q(·)

)
are Lipschitz continuous, the desired

result follows immediately.

Lemma 4 guarantees the conservation of workload un-
der any policy. This motivates the effective cost of a state

(n, q) ∈ RF+ × RE+, defined by the linear program

c∗(n, q) , minimize
n′,q′

c(n′, q′)

subject to wζ(n
′, q′) ≥ wζ(n, q),

∀ ζ ∈ CR∗(ρ),

n ∈ RF+ , q ∈ RE+.

(15)

The effective cost is the lowest cost of any state with at least
as much workload at (n, q). We have the following lower
bound on the cost achieved under any fluid trajectory:

Theorem 5. Consider fluid model trajectory of system
under any scheduling and rate allocation algorithm, with flow
count and queue length processes given by

(
n(·), q(·)

)
. Then,

for any time t ≥ 0, the instantaneous cost c
(
n(t), q(t)

)
is

bounded below according to

c∗
(
n(0), q(0)

)
≤ c
(
n(t), q(t)

)
. (16)

Proof. By Lemma 4, if the initial condition of a fluid
trajectory satisfies

(
n(0), q(0)

)
= (n, q), then

(
n(t), q(t)

)
is

feasible for (15) for every t ≥ 0. The result immediately
follows.

7. BALANCED SYSTEMS
In this section, we will develop a bound on the cost achieved

in a fluid model solution under the MWUM-α policy. In
particular, we will establish that this cost, at any instant
of time, is within a constant factor of the cost achievable
under any policy. The constant factor is uniform across the
entire fluid trajectory, and relates to a notion of balance on
the critical resources of the network, which we will describe
shortly.

We begin with a preliminary lemma, that provides an up-
per bound on the cost under the MWUM-α policy. This
upper bound is closely related to the Lyapunov function in-
troduced earlier for studying the system stability.

Lemma 6. Consider fluid model trajectory of system un-
der the MWUM-α policy, where α ∈ (0,∞) \ {1}, and de-
note the flow count and queue length processes by

(
n(·), q(·)

)
.

Suppose that the offered load vector ρ satisfies L(ρ) ≤ 1.
Then, at any time t ≥ 0, it must be that

c
(
n(t), q(t)

)
≤
(
1 + β(α)

)
c
(
n(0), q(0)

)
, (17)

where β(α)→ 0 as α→ 0+.

Proof. Recall the Lyapunov function Lα from (8). It
follows from Lemma 3 that, so long as L(ρ) ≤ 1,

Lα
(
n(t), q(t)

)
≤ Lα

(
n(0), q(0)

)
. (18)

Now, the standard norm inequality suggests that for any
v ∈ Rd+ and α > 0,

d−
α

1+α ‖v‖1 ≤ ‖v‖1+α ≤ ‖v‖1. (19)

Combining this with (18), it follows that, if d , |E|+ |F|,

∑
f∈F

nf (t)

µf

(
1

νf

) α
1+α

+
∑
e∈E

qe(t)

≤ d
α

1+α

∑
f∈F

nf (0)

µf

(
1

νf

) α
1+α

+
∑
e∈E

qe(0)

 .
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Now, as α→ 0+, d
α

1+α → 1. Also,(
1

ν∗

) α
1+α

≤
(

1

νf

) α
1+α

≤
(

1

ν∗

) α
1+α

, (20)

where ν∗ , minf νf and ν∗ , maxf νf . Thus, as α → 0+,
1/νf → 1 uniformly over f . The result then follows.

The following definition is central to our performance guar-
antee:

Definition 5 (Balance Factor). Given a system that
is critically loaded with offered load vector ρ, define the bal-
ance factor as the value of the optimization problem

γ(ρ) , minimize
n,q,n′,q′

c(n′, q′)

subject to wζ(n
′, q′) ≥ wζ(n, q), ∀ ζ ∈ CR∗(ρ),

c(n, q) = 1,

n, n′ ∈ RF+ , q, q′ ∈ RE+.

It is clear that γ(ρ) ≥ 0, since n′, q′ ≥ 0. Since there
are feasible solutions with (n, q) = (n′, q′), it is also true
that γ(ρ) ≤ 1. In order to interpret γ(ρ), assume for the
moment that there is only a single critical extreme resource
ζ ∈ CR∗(ρ). If we define v , Ξ>ζ, then the constraint that
wζ(n

′, q′) ≥ wζ(n, q) is equivalent to

v>
[
Γ diag(µ)−1n′ + q′

]
≥ v>

[
Γ diag(µ)−1n+ q

]
.

In this case, it is clear that the solution to the LP defining
γ(ρ) is given by γ(ρ) = (mine ve)/(maxe ve). Hence, γ(ρ) is
the measure of the degree of ‘balance’ of the critical resource
ζ across buffers in the network.

In the more general case (i.e., |CR∗(ρ)| ≥ 1), define the

set V , span{Ξ>ζ, ζ ∈ CR∗(ρ)}. It is not difficult to see
that γ(ρ) > 0 if and only if, for each queue e ∈ V, there
exists v ∈ V with ve > 0. In other words, if every queue is
influenced by some critical resource. We call such networks
balanced. In the extreme, if 1 ∈ V, then γ(ρ) = 1.

The following is the main theorem of this section. It offers
a bound on the cost incurred under the MWUM-α policy, rel-
ative to any other policy, which is a function of the balance
factor.

Theorem 7. Consider fluid model trajectory of a criti-
cally loaded system under the MWUM-α policy, where α ∈
(0,∞)\{1}, and denote the flow count and queue length pro-
cesses by

(
n(·), q(·)

)
. Suppose that γ(ρ) > 0. Let

(
n′(·), q′(·)

)
be the flow count and queue length policies under any other
policy, given the same initial conditions, i.e., n(0) = n′(0)
and q(0) = q′(0). Then, at any time t ≥ 0, it must be that

c
(
n(t), q(t)

)
≤ 1 + β(α)

γ(ρ)
c
(
n′(t), q′(t)

)
, (21)

where β(α)→ 0 as α→ 0+.

Proof. First, note that if
(
n(0), q(0)

)
= 0, i.e., the sys-

tem is empty, then this holds for all t ≥ 0 (cf. Theorem 9).
In this case, (21) is immediate. Otherwise, fix t ≥ 0, set

c̄ , c
(
n(0), q(0)

)
> 0. Define

(n′, q′) ,
(
n′(t), q′(t))/c̄, (n, q) ,

(
n(0), q′(0))/c̄.

Using Lemma 4, it is clear that (n, q, n′, q′) is feasible for
the LP defining γ(ρ). Thus,

c
(
n(0), q(0)

)
≤ 1

γ(ρ)
c
(
n′(t), q′(t)

)
.

The result then follows by applying Lemma 6.

8. INVARIANT MANIFOLD
In Section 7, we proved a constant factor guarantee on

the cost of the MWUM-α policy, relative to the cost achieved
under any other policy. Our bound held point-wise, at every
instant of time. However, the constant factor of the bound
depended on the balance factor, which could be significantly
large or potentially infinite.

In this section, we consider a different type of analysis.
Instead of considering the evolution of the fluid model for
every time t, we instead examine the asymptotically limiting
states of the fluid model as t → ∞. In particular, we char-
acterize these invariant states as fixed points in the solution
space of an optimization problem. We shall also show that
these fixed points are attractive, i.e., starting from any ini-
tial condition, the fluid trajectory reaches an invariant state.
We will quantify time to converge to the invariant manifold
as a function of the initial conditions of the fluid trajectory.

This characterization is of invariant states is key towards
establishing the state space collapse property of the system
under a heavy traffic limit [2]. Moreover, we shall see that
these invariant states are cost optimal as α→ 0+. In other
words, the cost of an invariant state cannot be improved by
any policy.

8.1 Optimization Problems
We start with two useful optimization problems that will

be useful in characterizing invariant states of the fluid tra-
jectory. To this end, consider a critically loaded system, i.e.,
a system where the offered load ρ is such that L(ρ) = 1.

Suppose we are given a state (n, q) ∈ RF+ ×RE+ of, respec-
tively, flow counts and queue lengths. Define the optimiza-
tion problem

ALGP(n, q) , minimize
n′,q′,t,x,σ

Lα(n′, q′)

subject to n′ = n+ t
[
ν − diag(µ)x

]
,

q′ = q + t
[
Γx−

(
I −R>

)
σ
]
,

n′ ∈ RF+ , q′ ∈ RE+, t ∈ R+,

x ∈ [0, C]F , σ ∈ Λ.

Here, recall that Λ is the scheduling capacity region of the
network, defined by (7). Similarly, define the optimization
problem

ALGD(n, q) , minimize
n′,q′

Lα(n′, q′)

subject to wζ(n
′, q′) ≥ wζ(n, q),

∀ ζ ∈ CR∗(ρ),

n′ ∈ RF+ , q′ ∈ RE+.

Intuitively, give a state (n, q), ALGP(n, q) finds a state
(n′, q′) which minimizes the Lyapunov function Lα and can
be reach starting from (n, q), using feasible scheduling and
rate allocation decisions. ALGP(n, q), on the other hand,
finds a state (n′, q′) which minimizes the Lyapunov function
and has at least as much workload as (n, q). The follow-
ing result states that both ALGP(n, q) and ALGD(n, q) are
equivalent optimization problems:

Lemma 8. A state (n′, q′) ∈ RF+ × RE+ is feasible for the
optimization problem ALGP(n, q) if and only if it is feasible
for the optimization problem ALGD(n, q).
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Proof. First, consider any (n′, q′, t, x, σ) that is feasible
for ALGP(n, q). Note that feasibility for ALGP(n, q) implies
that

Γ diag(µ)−1n′ + q′ ≥ Γ diag(µ)−1n+ q+

t
[
Γ diag(µ)−1ν − Γx

]
+ t
[
Γx−

(
I −R>

)
σ
]
.

Therefore, if ζ ∈ CR∗(ρ), we have that

wζ(n
′, q′) = wζ(n, q) + t

[
ζ>ΞΓρ− ζ>σ

]
.

Since σ ∈ Λ and ζ is feasible for DUAL(ΞΓρ), we have ζ>σ ≤
1. Since ζ ∈ CR∗(ρ), we have ζ>ΞΓρ = 1. Therefore, as
t ≥ 0, it follows that

wζ(n
′, q′) ≥ wζ(n, q).

That is, (n′, q′) is ALGD(n, q) feasible.
Next, assume that (n′, q′) is feasible for ALGD(n, q). Given

some t ≥ 0, define

x , diag(µ)−1 [ν − t−1(n′ − n)
]
, σ , Ξ

[
Γx− t−1(q′ − q)

]
.

With these definitions, if we establish existence of t ≥ 0 so
that 0 ≤ x ≤ C1 and σ ∈ Λ, then (n′, q′, t, x, σ) is feasible
for ALGP(n, q) feasible.

Note that as t → ∞, x → ρ. By assumption, ρf > 0 and
ρf < C for all f ∈ F . Therefore, for t sufficiently large,
0 ≤ x ≤ C1.

Next, we wish to show that, for t sufficiently large, σ ∈
Λ. This requirement is equivalent to demonstrating that
PRIMAL(σ) ≤ 1 and that σ ≥ 0. To show that PRIMAL(σ) ≤
1, note that PRIMAL(σ) = DUAL(σ) and suppose that ζ is
feasible for DUAL(σ). Then,

ζ>σ = ζ>
[
ΞΓx− t−1(q′ − q)

]
= ζ>

[
ΞΓρ− t−1ΞΓ diag(µ)−1(n′ − n)− t−1(q′ − q)

]
= ζ>ΞΓρ− t−1 [wζ(n′, q′)− wζ(n, q)] .

If ζ ∈ CR(ρ), then

ζ>ΞΓρ = 1, and wζ(n
′, q′)− wζ(n, q) ≥ 0,

thus ζ>σ ≤ 1. On the other hand, if ζ /∈ CR(ρ), ζ>ΞΓρ < 1.
Therefore, in any event, for t sufficiently large, DUAL(ρ) ≤ 1.

To show that σ ≥ 0, note that

σ = Ξ
[
Γx− t−1(q′ − q)

]
= ΞΓρ− t−1 [ΞΓ diag(µ)−1(n′ − n) + Ξ(q′ − q)

]
.

By assumption, ΞΓρ > 0. Therefore, for t sufficiently large
enough, σ ≥ 0.

8.2 Fixed Points: Characterization
Note that the optimization problem ALGD(n, q) is a con-

vex minimization problem: it has a convex feasible set with
strictly convex and coercive objective. from standard argu-
ments from theory of convex optimization, it follows that an
optimal solution exists and is unique. Hence, we can make
the following definition:

Definition 6 (Lifting Map). Given a critically scaled
system, we define the lifting map ∆: RF+ ×RE+ → RF+ ×RE+
to be the function that maps a state (n, q) to the unique so-
lution of the optimization problem ALGD(n, q).

The main result of this section is to characterize the in-
variant states of fluid model as the fixed points of lifting
map ∆.

Theorem 9. A state (n, q) ∈ RF+ × RE+ is an invariant
state of a fluid model solution under the MWUM-α policy if
and only if it is a fixed point of ∆, i.e.,

(n, q) = ∆(n, q).

Proof. The proof follows by establishing equivalence of
the following statements, for every state (n, q):

(i) (n, q) = ∆(n, q).

(ii) Any fluid model solution satisfying the initial condition(
n(0), q(0)

)
= (n, q) has

(
n(t), q(t)

)
= (n, q) for all

t ≥ 0.

(iii) There exists a fluid model solution with
(
n(t), q(t)

)
=

(n, q) for all t ≥ 0.

(iv) (n, q) satisfy

(Γρ)>qα = max
π∈S

π>(I −R)qα, (22)

nf > 0 ⇒ ρfqι(f) = nf , ∀ f ∈ F , (23)

nf = 0 ⇒ qι(f) = 0, ∀ f ∈ F . (24)

(i) ⇒ (ii): If (n, q) = ∆(n, q), then it solves ALGD(n, q).
Suppose that the fluid model z(t) satisfies with initial state(
n(0), q(0)

)
= (n, q). By Lemma 3, it follows that, for all t ≥

0, Lα
(
n(t), q(t)

)
≤ Lα(n, q). From the fluid model equations

(F1)–(F12),
(
n(t), q(t)

)
is ALGP(n, q) feasible. Therefore, it

follows that
(
n(t), q(t)

)
is an optimal solution of ALGP(n, q),

and, by Lemma 8, of ALGD(n, q). Since ALGD(n, q) has
unique solution, it follows that

(
n(t), q(t)

)
= (n, q) for all

t ≥ 0.

(ii) ⇒ (iii): This follows in a straightforward manner by
considering the arguments in Theorem 1 with initial condi-
tions given by (n, q).

(iii) ⇒ (iv): Suppose that the fluid trajectory z(t) satisfies(
n(t), q(t)

)
= (n, q), for all t ≥ 0. Then, for any regular

point t ≥ 0, we have ṅ(t) = 0 and q̇(t) = 0. Using (F2)–

(F4), it follows that x(t) , d
dt
x̄(t) = ρ. For any f ∈ F , if

nf = nf (t) > 0 and xf (t) = ρf < C, then by (F9) it must be
that xf (t) = nf (t)/qf (t). Therefore, ρfqf = nf . Similarly,
if nf = 0, it must be that qι(f) = 0 by (F11).

Now, define H(t) , 1>q1+α(t). Since q(·) is constant,
applying (F5), (F6), (F12), it must be that

0 = Ḣ(t) = q̇(t)>qα(t) =
[
Γρ−

(
I −R>

)
Πṡ(t)

]>
qα(t).

Applying (F7) and (F10),

0 = (Γρ)>qα −max
π∈S

π>(I −R)qα.

(iv)⇒ (i): Suppose (n, q) satisfy (22)–(23). Define (n′, q′) ,
∆(n, q). Since (n′, q′) solves ALGD(n, q), by Lemma 8, there
exist (t, x, σ) so that (n′, q′, t, x, σ) is an optimal solution for
ALGP(n, q). This solution must satisfy

n′ = n+ t
[
ν − diag(µ)x

]
, q′ = q + t

[
Γx−

(
I −R>

)
σ
]
.
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Now consider the trajectory(
n(τ), q(τ)

)
, (n, q) +

τ

t
(n′ − n, q′ − q), ∀ τ ∈ [0, t].

Define J to be the Lyapunov function Lα evaluated along
this path, i.e., J(τ) , Lα

(
n(τ), q(τ)

)
. Then,

J̇(0)

1 + α
=
∑
f∈F

nαf (νf − µfxf )

µfραf
+ (Γx)>qα − σ>(I −R)qα

=

(∑
f∈F

nαf (νf − µfxf )

µfραf
+ (Γδ)>qα

)
︸ ︷︷ ︸

(X)

+

(
(Γρ)>qα − σ>(I −R)qα

)
︸ ︷︷ ︸

(Y )

,

where δ , x− ρ.
First, consider Y . Since σ ∈ Λ, there exists some s ∈ RS+

with 1>s ≤ 1 and σ ≤ Πs. From the monotonicity of S, we
can pick s so that σ = Πs. Therefore,

σ>(I −R)qα = s>Π>(I −R)qα ≤ max
π∈S

π>(I −R)qα.

Then, by (22), it follows that Y ≥ 0. Now, consider X, and
note that X = 0 by (23)–(24) along with

X =
∑
f∈F

(
nαf (ρf − xf )

ραf
+ δfq

α
ι(f)

)
=
∑
f∈F

δf

(
qαι(f) −

nαf
ραf

)
.

(25)

Thus, we have that J̇(0) ≥ 0. Since J(τ) is a convex
function, this implies that J(0) ≤ J(t), i.e., Lα(n, q) ≤
Lα(n′, q′). Due to uniqueness of the optimal solution to
ALGD(n, q), it follows that (n′, q′) = (n, q).

8.3 Fixed Points: Attractiveness
Now we establish the attractiveness of the space of fixed

points. Specifically, we will show that starting from any ini-
tial state under fluid trajectory, the state reaches (arbitrarily
close to) space of fixed points (in finite time).

Given ε > 0, define

Jε ,
{

(n, q) ∈ RF+ × RE+ : ‖(n, q)−∆(n, q)‖1 < ε
}
.

In other words, Jε is the set of states (n, q) which are ε-
approximate fixed points (in an `1-norm sense) of the lifting
map. Given a fluid trajectory

(
n(·), q(·)

)
, define

hε
(
n(·), q(·)

)
, inf

{
t ≥ 0 :

(
n(s), q(s)

)
∈ Jε, ∀ s ≥ t

}
.

In other words, hε
(
n(·), q(·)

)
is the amount of time required

for the trajectory
(
n(·), q(·)

)
to reach and subsequently re-

main in the set Jε.

Theorem 10. For any ε > 0, there exists Hε > 0 so that
if
(
n(·), q(·)

)
is a fluid trajectory of the MWUM-α policy in

a critically loaded system, with initial condition satisfying
‖(n(0), q(0))‖∞ ≤ 1, then

hε
(
n(·), q(·)

)
≤ Hε.

Proof Sketch. Given δ > 0,

D ,
{

(n, q) ∈ RF+ × RE+ : Lα(n, q) ≤ Lα(1)
}
,

I , {(n, q) ∈ D : (n, q) = ∆(n, q)} ,

Iδ ,
{

(n, q) ∈ D : ‖(n, q)− (n′, q′)‖1 < δ, (n′, q′) ∈ I
}
,

Kδ ,
{

(n, q) ∈ D : K(n, q) < K(n′, q′), ∀ (n′, q′) ∈ D \ Iδ
}
.

where K(n, q) , Lα(n, q)−Lα
(
∆(n, q)

)
. The result can be

established by showing that the following hold:

(i) K
(
n(t), q(t)

)
is non-increasing in t.

(ii) For δ > 0 sufficiently small, I ⊂ Kδ ⊂ Iδ ⊂ Jε.
(iii) Starting from any initial condition in D (this includes

all (n, q) with ‖(n, q)‖∞ ≤ 1), the time to hit Kδ is
bounded uniformly.

In particular, (iii) implies that starting from any state in
D, the fluid trajectory hits the set Kδ in finite time. By
(i), once the trajectory is in set Kδ, it remains in that set
forever. By (ii), Kδ ⊂ Jε, and the result follows. We refer
an interested reader to the longer version [16] for details.

8.4 Fixed Points: Optimality
The following theorem characterizes the cost associated

with an invariant state, relative to the effective cost. The
effective cost represents the lowest cost achievable under any
policy (cf. Theorem 5). Hence, this result implies that the
invariant states of the MWUM-α policy are cost optimal, as
α→ 0+.

Theorem 11. Suppose (n∗, q∗) is an invariant state of a
critically loaded system under the MWUM-α policy. Then,

c(n∗, q∗) ≤
(
1 + φ(α)

)
c∗(n∗, q∗), (26)

where β(α)→ 0 as α→ 0+.

Proof. Suppose (n∗, q∗) is an invariant state. Define
(n′, q′) to be an optimal solution to the effective cost LP
c∗(n∗, q∗), defined by (15). Clearly

Lα(n∗, q∗) ≤ Lα(n, q),

since (n∗, q∗) is optimal for ALGD(n∗, q∗), and (n, q) is fea-
sible for ALGD(n∗, q∗). Then, following the same argument
as in Lemma 6,

c(n∗, q∗) ≤
(
1 + β(α)

)
c(n′, q′) =

(
1 + β(α)

)
c∗(n∗, q∗),

where β(α)→ 0 as α→ 0+.

9. FUTURE DIRECTIONS
There are several interesting directions for future work.

To start with, by characterizing the invariant manifold of
the critically loaded fluid model and establishing its attrac-
tiveness, the work here should lead to the multiplicative
state-space collapse property in a relatively straightforward
manner following the method of Bramson [2]. As the next
step, establishing the strong state-space collapse property
would require bounding the the maximal deviation in the
system state over certain time-horizon. We strongly believe
that under MWUM-α control policy for α ≥ 1, this should
follow from a recently developed Lyapunov function based
maximal inequality by Shah, Tsitsiklis and Zhong [19]. How-
ever, further obtaining a complete characterization of the
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diffusion (heavy traffic) approximation seems to be far more
non-trivial question. Finally, the results about path-wise
constant factor optimality of critically loaded fluid model
seem to suggest the possibility of such constant factor opti-
mality of MWUM-α control policy under diffusion approxi-
mation.
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