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METHOD AND APPARATUS PROVIDING
NETWORK CODING BASED FLOW
CONTROL

GOVERNMENT RIGHTS

This work is supported by subcontract number 18870740-
37362-C issued by Stanford University and supported by
DARPA, NSF Grant No. CNS-0627021 and subcontract
number 060786 issued by BAE Systems and supported by
DARPA and SPAWARSYSCEN under Contract number
N66001-06-C-2020, and S0176938 issued by UC Santa Cruz
supported by the United States Army under Award No.
WO911NF-05-1-0246, DARPA Grant No. HR0011-08-1-0008
and subcontract number 069145 issued by BAE Systems and
supported by the DARPA and SPAWARSYSCEN under Con-
tract No. N66001-08-C-2013. The government has certain
rights in the invention.

This invention was made with government support under
Grant No. W911NF-07-1-0029 awarded by the Army
Research Office, Grant Number N66001-06-C-2020 awarded
by the Defense Advanced Research Projects Agency, and
Grant Numbers CNS0627021, CNS0721491, and
CCF0634923 awarded by the National Science Foundation.
The government has certain rights in this invention.

BACKGROUND

Network coding has emerged as an important potential
approach to the operation of communication networks, espe-
cially wireless networks. The major benefit of network cod-
ing stems from its ability to mix data, across time and across
flows. This makes data transmission over lossy wireless net-
works robust and effective.

Linear network coding was originally introduced for the
case of error-free networks with specified link capacities, and
was extended to the case of erasure networks. The linear
network coding solution does not require decoding at inter-
mediate nodes and can be applied in any network. Each node
transmits a linear combination of all coded packets it has
received so far. This solution ensures that with high probabil-
ity, the transmitted packet will have what is called the inno-
vation guarantee property, i.e., it will be innovative to every
receiver that receives it successfully, except if the receiver
already knows as much as the sender. An innovative packet is
alinear combination of packets which is linearly independent
of previously received linear combinations, and thus conveys
new information. Thus, every successful reception will bring
a unit of new information. This scheme is shown to achieve
capacity for the case of a multicast session.

The Transmission Control Protocol (TCP) was originally
developed for wired networks. Since wired networks have
very little packet loss on the links and the predominant source
of'loss is buffer overflow due to congestion, TCP’s approach
of inferring congestion from losses works well. In contrast,
wireless networks are characterized by packet loss on the link
and intermittent connectivity due to fading.

SUMMARY

Conventional mechanisms such as those explained above
suffer from a variety of deficiencies. In considering the poten-
tial benefits of the TCP-compatible network coding solution,
the area of wireless links is of particular interest. It is well
known that TCP is not well suited for lossy links, which are
generally more prevalent in wireless systems. TCP performs
poorly on lossy links primarily because it is designed to
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interpret each loss as a congestion signal. Adapting TCP for
wireless scenarios is a very well-studied problem. The gen-
eral approach has been to mask losses from TCP using link
layer retransmission. However, it has been noted that the
interaction between link layer retransmission and TCP’s
retransmission can be complicated and that performance may
suffer due to independent retransmission protocols at differ-
ent layers. More importantly, the benefits of approaches such
as multipath opportunistic routing which exploit the broad-
cast nature of the wireless medium, link layer retransmission
may not be the best approach. TCP wrongly assumes the
cause of link losses to be congestion, and reduces its trans-
mission rate unnecessarily, leading to low throughput. These
problems of TCP in wireless networks are very well studied,
and several solutions have been proposed.

Embodiments of the invention significantly overcome such
deficiencies and provide mechanisms and techniques that
provide a new approach to congestion control on lossy links
based on the idea of random linear network coding. Also
introduced is a new acknowledgment mechanism that plays a
key role in incorporating coding into the congestion control
algorithm. From an implementation perspective, a new net-
work coding layer between the transport and network layers
on both the source and receiver sides. Thus, requisite changes
can be easily deployed in an existing system.

A technique is described that incorporates network coding
into TCP with only minor changes to the protocol stack,
thereby allowing incremental deployment. In the present
invention, the source transmits random linear combinations
of'packets currently in the congestion window. At the heart of
the techniques is a new interpretation of ACKs wherein the
sink acknowledges every degree of freedom (i.e., a linear
combination that reveals one unit of new information) even if
it does not reveal an original packet immediately. Such ACKs
enable a TCP-compatible sliding-window approach to net-
work coding. By way of the current technique packet losses
are essentially masked from the congestion control algo-
rithm. The algorithm therefore reacts to packet drops in a
smooth manner, resulting in a novel and effective approach
for congestion control over networks involving links such as
wireless links. The technique also allows intermediate nodes
to perform re-encoding of the data packets. Simulations show
that the algorithm, with or without re-encoding inside the
network, achieves much higher throughput compared to TCP
over lossy wireless links. Also described is the soundness and
fairness of the algorithm, as well as a queuing analysis for the
case of intermediate node re-encoding.

In a particular embodiment of a method in which a trans-
mitting node performs operations for providing network cod-
ing based flow control, the method begins by determining a
linear combination of packets to transmit from a transmit
queue. The method also includes transmitting the linear com-
bination of packets across a network using a sliding window
protocol. The method further includes receiving an acknowl-
edgement (ACK), wherein a packet is acknowledged when a
receiving node receives the linear combination of packets and
determines which packet of the linear combination of packets
has been newly seen.

In a particular embodiment of a method in which a receiv-
ing node performs operations for providing network coding
based flow control, the method begins by receiving a linear
combination of packets across a network using a sliding win-
dow protocol. The method further includes determining
whether a packet is newly seen. The concept of a newly seen
packet is defined later. Additionally, the method includes
transmitting an acknowledgement (ACK), wherein a packet is
acknowledged when the receiving node receives the linear
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combination of packets and determines which packet of the
linear combination of packets has been newly seen.

In a particular embodiment of a method in which an inter-
mediate node performs operations for providing network
coding based flow control, the method begins by receiving a
linear combination of packets. The method also includes
determining a linear combination of packets to transmit from
a transmit queue. The method further includes transmitting
the linear combination of packets across a network using a
sliding window protocol.

Other embodiments include a computer readable medium
having computer readable code thereon for providing a net-
work coding based flow control at a transmitting node. The
computer readable medium includes instructions for deter-
mining a linear combination of packets to transmit from a
transmit queue. The computer readable medium also includes
instructions for transmitting the linear combination of pack-
ets across a network using a sliding window protocol. The
computer readable medium further includes instructions for
receiving an acknowledgement (ACK), wherein a packet is
acknowledged when a receiving node receives the linear com-
bination of packets and determines which packet of the linear
combination of packets has been newly seen.

Still other embodiments include a computer readable
medium having computer readable code thereon for provid-
ing a network coding based flow control at a receiving node.
The computer readable medium includes instructions for
receiving a linear combination of packets across a network
using a sliding window protocol. The computer readable
medium further includes instructions for determining
whether a packet is newly seen. Additionally, the computer
readable medium includes instructions for transmitting an
acknowledgement (ACK), wherein a packet is acknowledged
when the receiving node receives the linear combination of
packets and determines which packet of the linear combina-
tion of packets has been newly seen.

Yet another embodiment includes a computer readable
medium having computer readable code thereon for provid-
ing a network coding based flow control at an intermediate
node. The computer readable medium includes instructions
for receiving a linear combination of packets. The computer
readable medium also includes instructions for determining a
linear combination of packets to transmit from a transmit
queue. The computer readable medium further includes
instructions for transmitting the linear combination of pack-
ets across a network using a sliding window protocol.

Still other embodiments include a computerized device,
configured to process all the method operations disclosed
herein as embodiments of the invention. In such embodi-
ments, the computerized device includes a memory system, a
processor, communications interface in an interconnection
mechanism connecting these components. The memory sys-
tem is encoded with a process that provides network coding
based flow control as explained herein that when performed
(e.g. when executing) on the processor, operates as explained
herein within the computerized device to perform all of the
method embodiments and operations explained herein as
embodiments of the invention. Thus any computerized device
that performs or is programmed to perform up processing
explained herein is an embodiment of the invention.

Other arrangements of embodiments of the invention that
are disclosed herein include software programs to perform
the method embodiment steps and operations summarized
above and disclosed in detail below. More particularly, a
computer program product is one embodiment that has a
computer-readable medium including computer program
logic encoded thereon that when performed in a computer-
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ized device provides associated operations providing network
coding based flow control as explained herein. The computer
program logic, when executed on at least one processor with
a computing system, causes the processor to perform the
operations (e.g., the methods) indicated herein as embodi-
ments of the invention. Such arrangements of the invention
are typically provided as software, code and/or other data
structures arranged or encoded on a computer readable
medium such as an optical medium (e.g., CD-ROM), floppy
or hard disk or other amedium such as firmware or microcode
in one or more ROM or RAM or PROM chips or as an
Application Specific Integrated Circuit (ASIC) or as down-
loadable software images in one or more modules, shared
libraries, etc. The software or firmware or other such configu-
rations can be installed onto a computerized device to cause
one or more processors in the computerized device to perform
the techniques explained herein as embodiments of the inven-
tion. Software processes that operate in a collection of com-
puterized devices, such as in a group of data communications
devices or other entities can also provide the system of the
invention. The system of the invention can be distributed
between many software processes on several data communi-
cations devices, or all processes could run on a small set of
dedicated computers, or on one computer alone.

Itis to be understood that the embodiments of the invention
can be embodied strictly as a software program, as software
and hardware, or as hardware and/or circuitry alone, such as
within a data communications device.

Note that each of the different features, techniques, con-
figurations, etc. discussed in this disclosure can be executed
independently or in combination. Accordingly, the present
invention can be embodied and viewed in many different
ways. Also, note that this summary section herein does not
specify every embodiment and/or incrementally novel aspect
of the present disclosure or claimed invention. Instead, this
summary only provides a preliminary discussion of different
embodiments and corresponding points of novelty over con-
ventional techniques. For additional details, elements, and/or
possible perspectives (permutations) of the invention, the
reader is directed to the Detailed Description section and
corresponding figures of the present disclosure as further
discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of preferred embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
of the invention.

FIG. 1 comprises a diagram showing seen packets and
witnesses in terms of a basis matrix;

FIG. 2 depicts an example of coding and ACKs;

FIG. 3 depicts a protocol stack showing a new network
coding layer;

FIG. 4 comprises a diagram of a simulation topology;

FIG. 5 comprises a diagram showing fairness and compat-
ibility for one TCP/NC flow and one TCP flow;

FIG. 6 comprises a diagram showing throughput versus
redundancy for TCP/NC flows;

FIG. 7 comprises a diagram showing throughput versus
loss rate for TCP and TCP/NC flows;

FIG. 8 comprises a diagram showing throughput with and
without intermediate node re-coding;
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FIG. 9 illustrates a particular embodiment a method for a
transmitting node to perform network coding based flow con-
trol in accordance with embodiments of the invention;

FIG. 10 illustrates a particular embodiment a method for a
receiving node to perform network coding based flow control
in accordance with embodiments of the invention;

FIG. 11 illustrates a particular embodiment a method for an
intermediate node to perform network coding based flow
control in accordance with embodiments of the invention;

FIG. 12 illustrates a high level block diagram of a coding
buffer in accordance with embodiments of the invention;

FIG. 13 is a diagram of a network coding header in accor-
dance with embodiments of the invention;

FIG. 14 is a diagram showing receiver side window man-
agement in accordance with embodiments of the invention;

FIG. 15 is a graph showing goodput versus redundancy
factor in accordance with embodiments of the invention;

FIG. 16 is a graph showing goodput versus coding window
size in accordance with embodiments of the invention; and

FIG. 17 is a graph showing goodput versus packet loss rate
in accordance with embodiments of the invention.

DETAILED DESCRIPTION

In order to bring the ideas of network coding into practice,
a protocol is required that brings out the benefits of network
coding while requiring very little change in the protocol
stack. Flow control and congestion control in today’s Internet
are predominantly based on the Transmission Control Proto-
col (TCP), which works using the idea of a sliding transmis-
sion window of packets, whose size is controlled based on
feed-back. The TCP paradigm has clearly proven successful.
It would therefore be desirable to provide a sliding-window
approach as similar as possible to TCP for network coding
that makes use of acknowledgments for flow and congestion
control.

Such an approach would necessarily differ from the gen-
eration-based approach more commonly considered for net-
work coding. Described below is how to incorporate network
coding into TCP, allowing its use with minimal changes to the
protocol stack, and in such a way that incremental deploy-
ment is possible.

The main idea behind TCP is to use acknowledgments of
newly received packets as they arrive in correct sequence
order in order to guarantee reliable transport and also to
provide a feedback signal for the congestion control loop.
This mechanism requires some modification for systems
using network coding. The key difference to be dealt with is
that under network coding the receiver does not obtain origi-
nal packets of the message, but linear combinations of the
packets that are then decoded to obtain the original message
once enough such combinations have arrived. Hence, the
notion of an ordered sequence of packets as used by TCP is
missing, and further, a linear combination may bring in new
information to a receiver even though it may not reveal an
original packet immediately. The current ACK mechanism
does not allow the receiver to acknowledge a packet before it
has been decoded. For network coding, a modification of the
standard TCP mechanism is required that acknowledges
every unit of information received.

A new unit of information corresponds mathematically to a
degree of freedom; essentially, once n degrees of freedom
have been obtained, a message that would have required n
unencoded packets can be decoded. Described herein is a
mechanism that performs the functions of TCP, namely reli-
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6

able transport and congestion control, based on acknowledg-
ing every degree of freedom received, whether or not it
reveals a new packet.

A new network coding layer is introduced between the
transport layer and the network layer of the protocol stack.
Thus, the congestion control principle of TCP is recycled,
namely that the number of packets involved in transmissions
cannot exceed the number of acknowledgments received by
more than the congestion window size. However, two main
changes are introduced. First, whenever the source is allowed
to transmit, it sends a random linear combination of all pack-
ets in the congestion window. Second, the receiver acknowl-
edges degrees of freedom and not original packets. An appro-
priate interpretation of the degree of freedom allows one to
order the receiver degrees of freedom in a manner consistent
with the packet order of the source. This allows the standard
TCP protocol to be utilized with the minimal change. In
particular, a TCP-Vegas protocol is used, as this protocol is
more compatible with the required modifications.

The present technique does not rely on the link layer for
recovering losses. Instead, an erasure correction scheme
based on random linear codes across packets is used. Coding
across packets is a natural way to handle losses. A coding
based approach is better suited for broadcast-mode opportu-
nistic routing scenarios, as randomly chosen linear combina-
tions of packets are more likely to convey new information,
compared to retransmissions. The MORE scheme explains
the benefits of network coding in the context of opportunistic
routing. However, the problem with MORE is the batch pro-
cessing that makes it less compatible to a sliding window
protocol such as TCP. By providing an interface between TCP
and a network coded system, a new approach is presented to
implementing TCP over wireless networks, and it is here
where the benefits of the presently disclosed method and
apparatus for providing network coding based flow control
are most dramatic.

It is important to note that the present scheme respects the
end-to-end philosophy of TCP—it would work even if coding
operations were performed only at the end hosts. Further, if
some nodes inside the network also perform network coding,
the present technique naturally generalizes to such scenarios
as well.

Definitions are now introduced. Packets are treated as vec-
tors over a finite field F,, of size g. All the discussion here is
with respect to a single source that generates a stream of
packets. The k” packet that the source generates is said to
have an index k and is denoted as p,.

Definition 1 (Seeing a packet): A node is said to have seen
a packet p,, if it has enough information to compute a linear
combination of the form (p,+q), where q=2,. .a.,p;, with €

o for all I>k. Thus, q is a linear combination involving pack-
&s with indices larger than k.

The notion of “seeing” a packet is a natural extension of the
notion of “decoding” a packet, or more specifically, receiving
a packet in the context of classical TCP. For example, if a
packetis decoded then it is indeed also seen, with q=0. A node
can compute any linear combination whose coefficient vector
is in the span of the coefficient vectors of previously received
linear combinations. This leads to the following definition.

Definition 2 (Knowledge of a node): The knowledge of a
node is the set of all linear combinations of original packets
that it can compute, based on the information it has received
so far. The coefficient vectors of these linear combinations
form a vector space called the knowledge space of the node.

Proposition 1: If a node has seen packet p, then it knows
exactly one linear combination of the form p,+q such that q is
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itself a linear combination involving only unseen packets.
The above proposition inspires the following definition.

Definition 3 (Witness): The unique linear combination
guaranteed by Proposition 1 is called the witness for seeing
Pr

A compact representation of the knowledge space is the
basis matrix. This is a matrix in row-reduced echelon form
(RREF) such that its rows form a basis of the knowledge
space. FIG. 1 explains the notion of a seen packet in terms of
the basis matrix. Essentially, the seen packets are the ones that
correspond to the pivot columns of the basis matrix. Given a
seen packet, the corresponding pivot row gives the coefficient
vector for the witness linear combination. An important
observation is that the number of seen packets is always equal
to the dimension of the knowledge space, or the number of
degrees of freedom that have been received so far. A newly
received linear combination that increases the dimension is
said to be innovative. It is assumed that the field size is very
large. As a consequence, each reception will be innovative
with high probability, and will cause the next unseen packet to
be seen.

Example: Suppose a node knows the following linear com-
binations: x=(p, +p,) and y=(p,+p;). Since these are linearly
independent, the knowledge space has a dimension of 2.
Hence, the number of seen packets must be 2. It is clear that
packet p, has been seen, since X satisfies the requirement of
Definition 1. Now, the node can compute ZAX—y=(p,—p;)-
Thus, it has also seen p,. That means p, is unseen. Hence, y is
the witness for p;, and z is the witness for p,.

In this section, the logical description of the new protocol
is presented, followed by a way to implement these ideas with
as little disturbance as possible to the existing protocol stack.

One aim of the present algorithm is to mask losses from
TCP using random linear coding. Some important modifica-
tions are made in order to incorporate coding. First, instead of
the original packets, random linear combinations of packets
in the congestion window are transmitted. While such coding
helps with erasure correction, it also leads to a problem in
acknowledging data. TCP operates with units of packets,
which have a well-defined ordering. Thus, the packet
sequence number can be used for acknowledging the received
data. The unit in the present protocol is a degree of freedom.
However, when packets are coded together, there is no clear
ordering of the degrees of freedom that can be used for ACKs.
The notion of seen packets defines an ordering of the degrees
of freedom that is consistent with the packet sequence num-
bers, and can therefore be used to acknowledge degrees of
freedom.

Upon receiving a linear combination, the sink finds out
which packet, if any, has been newly seen because of the new
arrival and acknowledges that packet. The sink thus pretends
to have received the packet even if it cannot be decoded yet. It
will be shown below that at the end this is not a problem
because if all the packets in a file have been seen, then they
can all be decoded as well.

The idea of transmitting random linear combinations and
acknowledging seen packets achieves the goal of masking
losses from TCP as follows. With a large field size, every
random linear combination is very likely to cause the next
unseen packet to be seen. So, even if a transmitted linear
combination is lost, the next successful reception will cause
the next unseen packet to be seen. From TCP’s perspective,
this appears as though the degree of freedom waits in a ficti-
tious queue until the channel stops erasing packets and allows
it through. Thus, there will never be any duplicate ACKs.
Every ACK will cause the congestion window to advance. In
short, the lossiness of the link is presented to TCP as an
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additional queuing delay that leads to a larger effective round-
trip time. The term round-trip time thus has a new interpre-
tation. It is the effective time the network takes to reliably
deliver a degree of freedom (including the delay for the coded
redundancy, if necessary), followed by the return of the ACK.
This is larger than the true network delay it takes for a trans-
mission and the return of the ACK. The more lossy the link is,
the larger will be the effective RTT. Presenting TCP with a
larger value for RTT may seem counterintuitive as TCP’s rate
is inversely related to RTT. However, if done correctly, it
improves the rate by preventing loss-induced window clos-
ing, as it gives the network more time to deliver the data in
spite of losses, before TCP times out. Therefore, losses are
effectively masked.

Now discussed will be how the effectively masked losses
affect congestion control. Since losses are masked from the
congestion control algorithm, the TCP-Reno style approach
to congestion control using packet loss as a congestion indi-
cator is not well suited to this situation. However, it is useful
to note that the congestion related losses are made to appear as
a longer RTT. Therefore, an approach is needed that infers
congestion from an increase in RTT. The natural choice is
TCP-Vegas.

TCP-Vegas uses a proactive approach to congestion con-
trol by inferring the size of the network buffers even before
they start dropping packets. The crux of the algorithm is to
estimate the round-trip time (RTT) and use this information to
find the discrepancy between the expected and actual trans-
mission rate. As congestion arises, buffers start to fill up and
the RTT starts to rise, and this is used as the congestion signal.
This signal is used to adjust the congestion window and hence
the rate.

In order to use TCP-Vegas correctly in this setting, the
effective RTT ofa degree of freedom needs to be used, includ-
ing the fictitious queuing delay. In other words, the RTT
should be measured from the point when a packet is first sent
out from TCP, to the point when the ACK returns saying that
this packet has been seen. This is indeed the case for the
default RTT measurement mechanism of TCP-Vegas. The
TCP sender notes down the transmission time of every
packet. When an ACK arrives, it is matched to the correspond-
ing transmit timestamp in order to compute the RTT. Thus, no
modification is required.

Consider the example shown in FIG. 2. Suppose the con-
gestion window’s length is four. Assume TCP sends 4 packets
to the network coding layer at t=0. All four transmissions are
linear combinations of these four packets. The 1% transmis-
sion causes the 1% packet to be seen. The 2" and 3" trans-
missions are lost, and the 4” transmission causes the 2%
packetto be seen (the discrepancy is because of losses). As far
as the RTT estimation is concerned, transmissions 2, 3 and 4
are treated as attempts to convey the 2"¢ degree of freedom.
The RTT for the 2"? packet must include the final attempt that
successfully delivers the 2”4 degree of freedom, namely the
47 transmission. In other words, the RTT is the time from t=0
until the reception of ACK=3.

The implementation of all these ideas in the existing pro-
tocol stack needs to be done in as non-intrusive a manner as
possible. A solution is presented which embeds the network
coding operations in a separate layer below TCP and above IP
on the source and receiver side, as shown in FIG. 3. The exact
operation of these modules will now be described.

The sender module accepts packets from the TCP source
and buffers them into an encoding buffer which represents the
coding window, until they are ACKed by the receiver. The
sender then generates and sends random linear combinations
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of'the packets in the coding window. The coefficients used in
the linear combination are also conveyed in the header.

For every packet that arrives from TCP, R linear combina-
tions are sent to the IP layer on average, where R is the
redundancy parameter. The average rate at which linear com-
binations are sent into the network is thus a constant factor
more than the rate at which TCP’s congestion window
progresses. This is necessary in order to compensate for the
loss rate of the channel and to match TCP’s sending rate to the
rate at which data is actually sent to the receiver. If there is too
little redundancy, then the data rate reaching the receiver will
not match the sending rate because of the losses. This leads to
a situation where the losses are not effectively masked from
the TCP layer. Hence, there are frequent losses leading to a
low throughput. On the other extreme, too much redundancy
is also bad, since then the transmission rate becomes limited
by the rate of the code itself. Besides, sending too many linear
combinations can congest the network. The ideal level of
redundancy is to keep R equal to the reciprocal of the prob-
ability of successful reception. Thus, in practice the value of
R should be dynamically adjusted by estimating the loss rate,
possibly using the RTT estimates.

Upon receiving a linear combination, the receiver module
first retrieves the coding coefficients from the header and
appends it to the basis matrix ofits knowledge space. Then, it
performs a Gaussian elimination to find out which packet is
newly seen so that this packet can be ACKed. The receive
module also maintains a buffer of linear combinations of
packets that have not been decoded yet. Upon decoding the
packets, the receiver delivers them to the TCP sink.

The algorithm is specified below using pseudo-code. This
specification assumes a one-way TCP flow.

1) Source side: The source side algorithm has to respond to
two types of events—the arrival of a packet from the source
TCP, and the arrival of an ACK from the receiver via IP.

1. Set NUM to 0.

2. Wait state: If any of the following events occurs, respond
as follows; else, wait.

3. Packet arrives from TCP sender:

a) If the packet is a control packet used for connection
management, deliver it to the IP layer and return to wait
state.

b) If packet is not already in the coding window, add it to
the coding window.

¢) Set NUM=NUM+R. (R=redundancy factor)

d) Repeat the following [ NUM | times:

1) Generate a random linear combination of the packets
in the coding window.

i1) Add the network coding header specifying the set of
packets in the coding window and the coefficients
used for the random linear combination.

iii) Deliver the packet to the IP layer.

e) Set NUM:=fractional part of NUM.

) Return to the wait state.

4. ACK arrives from receiver: Remove the ACKed packet
from the coding buffer and hand over the ACK to the TCP
sender.

2) Receiver side: On the receiver side, the algorithm again
has to respond to two types of events: the arrival of a packet
from the source, and the arrival of ACKs from the TCP sink.

1. Wait state: If any of the following events occurs, respond
as follows; else, wait.

2. ACK arrives from TCP sink: If the ACK is a control
packet for connection management, deliver it to the IP layer
and return to the wait state; else, ignore the ACK.

3. Packet arrives from source side:
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a) Remove the network coding header and retrieve the
coding vector.

b) Add the coding vector as a new row to the existing
coding coefficient matrix, and perform Gaussian elimi-
nation to update the set of seen packets.

¢) Add the payload to the decoding buffer. Perform the
operations corresponding to the Gaussian elimination
on the buffer contents. If any packet gets decoded in the
process, deliver itto the TCP sink and remove it from the
buffer.

d) Generate a new TCP ACK with sequence number equal
to that of the oldest unseen packet.

The present protocol guarantees reliable transfer of infor-
mation. In other words, every packet in the packet stream
generated by the application at the source will be delivered
eventually to the application at the sink. The acknowledgment
mechanism ensures that the coding module at the sender does
not remove a packet from the coding window unless it has
been ACKed, i.e., unless it has been seen by the sink. Thus, if
all packets in a file have been seen, then the file can be
decoded at the sink.

Theorem 1: From a file of n packets, if every packet has
been seen, then every packet can also be decoded.

Proof: If the sender knows a file of n packets, then the
sender’s knowledge space is of dimension n. Every seen
packet corresponds to a new dimension. Hence, if all n pack-
ets have been seen, then the receiver’s knowledge space is
also of dimension n, in which case it must be the same as the
sender’s and all packets can be decoded.

In other words, seeing n different packets corresponds to
having n linearly independent equations in n unknowns.
Hence, the unknowns can be found by solving the system of
equations. At this point, the file can be delivered to the TCP
sink. In practice, one does not have to necessarily wait until
the end of the file to decode all packets. Some of the
unknowns can be found even along the way. In particular,
whenever the number of equations received catches up with
the number of unknowns involved, the unknowns can be
found. Now, for every new equation received, the receiver
sends an ACK. The congestion control algorithm uses the
ACKs to control the injection of new unknowns into the
coding window. Thus, the discrepancy between the number of
equations and number of unknowns does not tend to grow
with time, and therefore will hit zero often based on the
channel conditions. As a consequence, the decoding buffer
will tend to be stable.

An interesting observation is that the arguments used to
show the soundness of our approach are quite general and can
be extended to more general scenarios such as random linear
coding based multicast over arbitrary topologies.

The protocol described above is simulated using the Net-
work Simulator (ns-2). The topology for the simulations is a
tandem network consisting of 4 hops (hence 5 nodes), shown
in FIG. 4. The source and sink nodes are at opposite ends of
the chain. Two FTP applications want to communicate from
the source to the sink. There is no limit on the file size. They
emit packets continuously till the end of the simulation. They
either use TCP without coding or TCP with network coding
(denoted TCP/NC). In this simulation, intermediate nodes do
not re-encode packets. All the links have a bandwidth of 1
Mbps, and a propagation delay of 100 ms. The buffer size on
the links is set at 200. The TCP receive window size is set at
100 packets, and the packet size is 1,000 bytes. The Vegas
parameters are chosen to be a=28, =30, y=2.

By fairness, if two similar flows compete for the same link,
they must receive an approximately equal share of the link
bandwidth. In addition, this must not depend on the order in
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which the flows join the network. The fairness of TCP-Vegas
is a well-studied problem. It is known that, depending on the
values chosen for the o and [} parameters, TCP-Vegas could
be unfair to an existing connection when a new connection
enters the bottleneck link. In the present simulations, values
of a and p are chosen that allow fair sharing of bandwidth
when two TCP flows without our modification compete with
each other, in order to evaluate the effect of the modification
on fairness. With the same o and f§ two cases are considered:

Case 1: The situation where a network coded TCP flow
competes with another flow running TCP without coding.

Case 2: The situation where two coded TCP flows compete
with each other.

In both cases, the loss rate is set to 0% and the redundancy
parameter is set to 1 for a fair comparison. In the first case, the
TCP flow starts firstat t=0.5 s and the flow starts at 1000s. The
system is simulated for 2000 s. The current throughput is
calculated at intervals of 2.5 s. The evolution of the through-
put over time is shown in FIG. 5. FIGS. 5-8 are based on
Simulations. FIG. 5 shows that the effect of introducing the
coding layer does not affect fairness. After the second flow
starts, the bandwidth gets redistributed fairly.

For case 2, the experiment is repeated with the same start-
ing times, but this time both flows are TCP/NC flows. The plot
for this case is essentially identical to FIG. 5 (and hence is not
shown here) because in the absence of losses, TCP/NC
behaves identically to TCP if the effects of field size are
ignored. Thus, coding can coexist with TCP in the absence of
losses, without affecting fairness. The new protocol indeed
achieves a high throughput, especially in the presence of
losses.

A. Throughput of the New Protocol Simulation Results

The simulation setup is identical to that used in the fairness
simulations. The effect of the redundancy parameter on the
throughput of TCP/NC for a fixed loss rate of 5% is shown.
The loss rate, refers to the probability of a packet getting lost
on each link. Both packets in the forward direction as well as
ACKs in the reverse direction are subject to these losses. No
re-encoding is allowed at the intermediate nodes. Hence, the
overall probability of packet loss across 4 hops is given by
1-(1-0.05)* which is roughly 19%. Hence the capacity is
roughly 0.81 Mbps, which when split fairly gives 0.405 Mbps
per flow. The simulation time is 10000 s.

Two TCP/NC flows are allowed to compete on this net-
work, both starting at 0.5 s. Their redundancy parameter is
varied between 1 and 1.5. The theoretically optimum value is
approximately 1/(1-0.19)=1.23. FIG. 6 shows the plot of the
throughput for the two flows, as a function of the redundancy
parameter R. It is clear from the plot that R plays an important
role in TCP/NC. The throughput peaks around R=1.25. The
peak throughput achieved is 0.397 Mbps, which is indeed
close to the capacity calculated above. In the same situation,
when two TCP flows compete for the network, the two flows
see a throughput of 0.0062 and 0.0072 Mbps respectively.
Thus, with the correct choice of R, the throughput for the
flows in the case is very high compared to the TCP case. In
fact, even with R=1, TCP/NC achieves about 0.011 Mbps for
each flow improving on TCP by almost a factor of 2.

Next, the variation of throughput with loss rate for both
TCP and TCP/NC will be discussed. The simulation param-
eters are all the same as above. The loss rate of all links is kept
at the same value, and this is varied from 0 to 20%. We
compare two scenarios-two TCP flows competing with each
other, and two TCP/NC flows competing with each other. For
the TCP/NC case, the redundancy parameter is set at the
optimum value corresponding to each loss rate. FIG. 7 shows
that throughput falls rapidly as losses increase. However,
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TCP/NC is very robust to losses and reaches a throughput that
is close to capacity. (If p is the loss rate on each link, then
capacity is (1-p)*, which must then be split equally.)

FIG. 8 shows the instantaneous throughput in a 642 second
long simulation of a tandem network with 3 hops (i.e., 4
nodes), where erasure probabilities vary with time in some
specified manner. The third hop is on average, the most era-
sure-prone link. The plots are shown for traditional TCP,
TCP/NC with coding only at the source, and TCP/NC with
re-encoding at node 3 (just before the worst link). The opera-
tion of the re-encoding node is very similar to that of the
source—it collects incoming linear combinations in a buffer,
and transmits, on average, R,,, random linear combinations of
the buffer contents for every incoming packet. The R of the
sender is set at 1.8, and the R,,,, of node 3 is set at 1.5 for the
case when it re-encodes. The average throughput is shown in
the table. A considerable improvement is seen due to the
coding, that is further enhanced by allowing intermediate
node re-encoding. This plot thus shows that the present
scheme is also suited to systems with coding inside the net-
work.

These simulations are meant to be a preliminary study of
the present algorithm’s performance. Specifically, the follow-
ing points must be noted:

Link layer retransmission is not considered for either TCP
or TCP/NC. If allowed, this could improve the performance
of TCP. However, as mentioned earlier, the retransmission
approach does not extend to more general multipath routing
solutions, whereas coding is better suited to such scenarios.

The throughput values do not account for the overhead
associated with the network coding headers. The main over-
head is in conveying the coding coefficients and the contents
of the coding window. If the source and sink share a pseudo-
random number generator, then the coding coefficients can be
conveyed succinctly by sending the current state of the gen-
erator. Similarly, the coding window contents can be con-
veyed in an incremental manner to reduce the overhead.

The loss in throughput due to the finiteness of the field has
not been modeled in the simulations. A small field might
cause received linear combinations to be non-innovative, or
might cause packets to be seen out of order, resulting in
duplicate ACKs. However, the probability that such problems
persist for a long time falls rapidly with the field size. For
practical choices of field size, these issues will only cause
transient effects that will not have a significant impact on
performance.

In this section, an idealized scenario is discussed in order to
provide a first order analysis of the new protocol. The key
ideas of the present protocol are explained with emphasis on
the interaction between the coding operation and the feed-
back. The model used in this section will also serve as a
platform to incorporate more practical situations. The con-
gestion control aspect of the problem is abstracted out by
assuming that the capacity of the system is fixed in time and
known at the source, and hence the arrival rate is always
maintained below the capacity. It is also assumed that nodes
have infinite capacity buffers to store packets. A topology that
consists of a chain of erasure-prone links in tandem is dis-
cussed, with perfect end-to-end feedback from the sink
directly to the source. In such a system, the behavior of the
queue sizes at various nodes is discussed.

System model: The network studied in this section is a
daisy chain of N nodes, each node being connected to the next
one by a packet erasure channel. A slotted time system is
assumed. The source generates packets according to a Ber-
noulli process of rate A packets per slot. The point of trans-
mission is at the very beginning of a slot. Just after this point,
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every node transmits one random linear combination of the
packets in its queue. Propagation delay is ignored. Thus, the
transmission, if not erased by the channel, reaches the next
node in the chain almost immediately. However, the node
may use the newly received packet only in the next slot’s
transmission. Perfect, delay-free feedback from the sink to
the source is assumed. In every slot, the sink generates the
feedback signal after the instant of reception of the previous
node’s transmission. The erasure event happens with a prob-
ability (1-,) on the channel connecting node i and (i+1), and
is assumed to be independent across different channels and
over time. Thus, the system has a capacity min |, packets per
slot. A further assumption is made that A<min,1,, and the load
factor is defined as p,=A\/p,. The relation between the trans-
mitted linear combination and the original packet stream is
conveyed in the packet header. This overhead is ignored for
the analysis in this section.

This model and the following analysis also works for the
case when not all intermediate nodes are involved in the
network coding. If some node simply forwards the incoming
packets, then this can be incorporated in the following way.
An erasure event on either the link entering this node or the
link leaving this node will cause a packet erasure. Hence,
these two links can be replaced by a single link whose prob-
ability of being ON is simply the product of the ON prob-
abilities of the two links being replaced. Thus, all non-coding
nodes can be removed from the model, which brings one back
to the same situation as in the above model.

Queue update mechanism: Each node transmits a random
linear combination of the current contents of its queue and
hence, the question of how to update the queue contents
becomes important. In every slot, the sink sends an ACK
directly to the source, containing the index of the oldest
packet not yet seen by the sink. Upon receiving the ACK, the
source drops all packets from its queue with an index lower
than the sink’s request. The intermediate nodes do not have
direct feedback from the sink. Hence, the source has to inform
them about the sink’s ACK. This information is sent on the
same erasure channel used for the regular transmission. This
feed-forward of the sink’s status is modeled as follows.
Whenever the channel entering an intermediate node is in the
ON state (i.e., no erasure), the node’s version of the sink’s
status is updated to that of the previous node. In practice, the
source need not transmit the sink’s status explicitly. The
intermediate nodes can infer it from the set of packets that
have been involved in the linear combination—if a packet is
no longer involved, that means the source must have dropped
it, implying that the sink must have ACKed it already. When-
ever an intermediate node receives an innovative packet, this
causes the node to see a previously unseen packet. The node
performs a Gaussian elimination to compute the witness of
the newly seen packet, and adds this to the queue. Thus,
intermediate nodes store the witnesses of the packets that they
have seen. The queue update rule is similar to that of the
source. An intermediate node drops the witness of all packets
up to but excluding the one requested by the sink. This is
based on the most updated version of the sink’s status known
at the intermediate node.

Queuing analysis: The following theorem shows that if we
allow coding at intermediate nodes, then it is possible to
achieve the capacity of the network, namely min,ui,. Note that
this theorem also implies that if forwarding is only allowed at
some of the intermediate nodes, then the capacity of a new
network can still be derived by collapsing the links across the
non-coding nodes.
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Theorem 2: As long as A<, for all 0=k<N, the queues at
all the nodes will be stable. The expected queue size in steady
state at node k (0=k<N) is given by:

An implication: Consider a case where all the p;s are equal
to some p. Then, the above relation implies that in the limit of
heavy traffic, p—1, the queues are expected to be longer at
nodes near the source than near the sink.

A useful lemma: The following lemma shows that the
random linear coding scheme has the property that every time
there is a successful reception at a node, the node sees the next
unseen packet with high probability, provided the field is
large enough. This fact will prove useful while analyzing the
evolution of the queues.

Lemma 1: Let S, and Sy be the set of packets seen by two
nodes A and B respectively. Assume S \S; is non-empty.
Suppose A sends a random linear combination of its wit-
nesses of packets in S, and B receives it successfully. The
probability that this transmission causes B to see the oldest
packetin S \Sy is

where q is the field size.

Proof: Let M, be the RREF basis matrix for A. Then, the
coefficient vector of the linear combination sent by A is
t=uM, where u is a vector of length IS ;| whose entries are
independent and uniformly distributed over the finite field
FF,. Let d* denote the index of the oldest packet in S \S.

Let My be the RREF basis matrix for B before the new
reception. Suppose t is successtully received by B. Then, B
will append t as a new row to My and perform Gaussian
elimination. The first step involves subtracting from t, suit-
ably scaled versions of the pivot rows such that all entries of
t corresponding to pivot columns of Mz become 0. We need to
find the probability that after this step, the leading non-zero
entry occurs in column d*, which corresponds to the event
that B sees packet d*. Subsequent steps in the Gaussian
elimination will not affect this event. Hence, we focus on the
first step.

Let Pz denote the set of indices of pivot columns of M. In
the first step, the entry in column d* of t becomes

r(d) =1d) - Z () Mp(rg(D), d*)

iePg,i<d*

where r5(1) is the index of the pivot row corresponding to
pivot column 1 in Mz. Now, due to the way RREF is defined,

Hd*)=u(r4(d*)),
where r (i) denotes the index of the pivot row correspond-
ing to pivot column i in M. Thus, t(d*) is uniformly distrib-
uted. Also, for i<d*, t(1) is a function of only those u(j)’s such
that j<r,(d*). Hence, t(d*) is independent of t(d*) for i<d*.
From these observations and the above expression for t'(d*),
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it follows that for any given M, and Mg, t'(d*) has a uniform
distribution over F,, and the probability that it is not zero is
therefore

For the queuing analysis, it is assumed that a successful
reception always causes the receiver to see its next unseen
packet, provided the transmitter has already seen it. A conse-
quence of this assumption is that the set of packets seen by a
node is always a contiguous set, with no gaps in between. In
particular, there is no repeated ACK due to packets being seen
out of order. The above lemma argues that these assumptions
become more and more valid as the field size increases. In
reality, some packets may be seen out of order resulting in
larger queue sizes. However, this effect is minor and can be
neglected for a first order analysis.

The expected queue size: arrival and departure are defined
as follows. A packet is said to arrive at a node when the node
sees the packet for the first time. A packet is said to depart
from the node when the node drops the witness of that packet
from its queue. For each intermediate node, we now study the
expected time between the arrival and departure of an arbi-
trary packet at that node as this is related to the expected
queue size at the node, by Little’s law.

Proof Theorem 2: Consider the k” node, for 1=k<N. The
time a packet spends in this node’s queue has two parts:

1) Time until the packet is seen by the sink:

The difference between the number of packets seen by a
node and the number of packets seen by the next node down-
stream essentially behaves like a Geom/Geom/1 queue. The
Markov chain governing this evolution is identical to that of
the virtual queues. Given that a node has seen the packet, the
time it takes for the next node to see that packet corresponds
to the waiting time in a virtual queue. For aload factor of p and
a channel ON probability of p the expected waiting time was
derived to be

(1—p)
ul-p)

Now, the expected time until the sees the packet is the sum of
(N=k) such terms, which gives

)

Ne
; w(l—pp)

2) Time until sink’s ACK reaches intermediate node:

The ACK informs the source that the sink has seen the
packet. This information needs to reach node k by the forward
mechanism. The expected time for this information to move
from nodeitonodei+1 is the expected time until the next slot
when the channel is ON, which is just

Hi

(since the i channel is ON with probability p,). Thus, the
time it takes for the sink’s ACK to reach node k is given by
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The total expected time T, a packet spends in the queue at
the k” node (1=k<N) can thus be computed by adding the
above two terms. Now, assuming the system is stable (i.e.,
A<miny), Little’s law can be used to derive the expected
queue size at the k™ node, by multiplying T, by A:

A salient feature of the present technique is that it is simul-
taneously compatible with the case where only end hosts
perform coding (thereby preserving the end-to-end philoso-
phy of TCP), as well as the case where intermediate nodes
perform network coding. Theory suggests that a lot can be
gained by allowing intermediate nodes to code as well. Simu-
lations show that the proposed changes lead to large through-
put gains over TCP in lossy links, even with coding only at the
source. For instance, in a tandem network with a 5% loss rate
on each link, the throughput goes up from about 0.007 Mbps
to about 0.39 Mbps for the correct redundancy factor. Inter-
mediate node coding further increases the gains.

Flow diagrams of particular embodiments of the presently
disclosed methods are depicted in FIGS. 9-11. The rectangu-
lar elements are herein denoted “processing blocks™ and rep-
resent computer software instructions or groups of instruc-
tions. Alternatively, the processing blocks represent steps
performed by functionally equivalent circuits such as a digital
signal processor circuit or an application specific integrated
circuit (ASIC). The flow diagrams do not depict the syntax of
any particular programming language. Rather, the flow dia-
grams illustrate the functional information one of ordinary
skill in the art requires to fabricate circuits or to generate
computer software to perform the processing required in
accordance with the present invention. It should be noted that
many routine program elements, such as initialization of
loops and variables and the use of temporary variables are not
shown. It will be appreciated by those of ordinary skill in the
art that unless otherwise indicated herein, the particular
sequence of steps described is illustrative only and can be
varied without departing from the spirit of the invention.
Thus, unless otherwise stated the steps described below are
unordered meaning that, when possible, the steps can be
performed in any convenient or desirable order.

Referring now to FIG. 9, a particular embodiment of a
method 100 of providing network coding based flow control
by way of a transmitting node is shown. Method 100 begins
with processing block 102 which discloses determining a
linear combination of packets to transmit from a transmit
queue. As shown in processing block 104, the linear combi-
nation of packets is linearly independent of previously trans-
mitted linear combinations of packets and therefore conveys
new information.

Processing block 106 states transmitting the linear combi-
nation of packets across a network using a sliding window
protocol. As further recited in processing block 108, the trans-
mitting the linear combination of packets across a network
using a sliding window protocol further comprises including
coding coefficients in a header of the linear combination of
packets. These coding coefficients are used in decoding the
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packet by the receiving node. Processing block 110 recites
wherein the network comprises a network operating in accor-
dance with a Transmission Control Protocol (TCP).

Processing block 112 discloses receiving an acknowledge-
ment (ACK), wherein a packet is acknowledged when a
receiving node receives the linear combination of packets and
determines which packet of the linear combination of packets
has been newly seen. As shown in processing block 114, and
described in detail below, in a particular embodiment the
receiving an ACK comprises receiving a request of a byte
sequence number of a first byte of a first unseen packet.
Processing block 116 states removing a packet from the trans-
mit queue which has been acknowledged.

Referring now to FIG. 10, a particular embodiment of a
method 150 of providing network coding based flow control
by way of a receiving node is shown. Method 150 begins with
processing block 152 which discloses receiving a linear com-
bination of packets across a network using a sliding window
protocol. As shown in processing block 154, the network
comprises a network operating in accordance with a Trans-
mission Control Protocol (TCP).

Processing block 156 states determining whether a packet
is newly seen. As further recited in processing block 158,
determining whether a packet is newly seen includes retriev-
ing coding coefficients from a header of the linear combina-
tion of packets, appending the coding coefficients to a basis
matrix, and performing a Gaussian elimination to determine
which packet is newly seen so that the newly seen packet can
be acknowledged.

Processing continues with processing block 160 which
states transmitting an acknowledgement (ACK), wherein a
packet is acknowledged when the receiving node receives the
linear combination of packets and determines which packet
of' the linear combination of packets has been newly seen. As
shown in processing block 162, and described in detail below,
in a particular embodiment the receiving an ACK comprises
receiving a request of a byte sequence number of a first byte
of a first unseen packet.

Processing block 164 recites maintaining a buffer of linear
combinations of packets that have not been decoded yet.
Processing block 166 discloses delivering decoded packets to
a node.

Referring now to FIG. 11, a particular embodiment of a
method 200 of providing network coding based flow control
by way of an intermediate node is shown. Method 200 begins
with processing block 202 which discloses receiving a linear
combination of packets. Processing block 204 states deter-
mining a linear combination of packets to transmit from a
transmit queue.

Processing continues with processing block 206 which
recites transmitting the linear combination of packets across
a network using a sliding window protocol. As shown in
processing block 208, the network comprises a network oper-
ating in accordance with a Transmission Control Protocol
(TCP).

Processing block 210 discloses determining if a packet is
no longer involved in received linear combinations of pack-
ets, and removing the packet from the transmit queue. Pro-
cessing block 212 states when the intermediate node receives
an innovative packet, determining from the innovative packet
a newly seen packet and adding the newly seen packet to the
transmit queue.

Described above is a new protocol called TCP/NC that
incorporates network coding inside the TCP/IP protocol stack
with the aim of improving TCP throughput in wireless net-
works. The interface of TCP with network coding can be
viewed as a generalization of previous work combining TCP
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with Forward FErasure Correction (FEC) schemes. As
opposed to coding only at the source, the protocol also allows
intermediate nodes in the network to perform re-encoding of
data. It is thus more general than end-to-end erasure correc-
tion over a single path, and can therefore, in principle, be used
in multipath and multicast scenarios to obtain throughput
benefits.

A real-life network coding implementation is now
described, based on the mechanism proposed earlier. In par-
ticular, explained are:

1) How to address the practical problems that arise in
making the network coding and decoding operations compat-
ible with TCP’s window management system, such as vari-
able packet length, buffer management, and network coding
overhead.

2) The compatibility of the present protocol with the
widely used TCP Reno; the earlier methodology considered
only TCP Vegas.

3) Experimental results on the throughput benefits of the
new protocol for a TCP connection over a single-hop wireless
link.

Before beginning, the implications of this new protocol for
improving throughput in wireless networks are described.
There has been a growing interest in approaches that make
active use of the intrinsic broadcast nature of the wireless
medium. In the technique known as opportunistic routing, a
node broadcasts its packet, and ifone of'its neighbors receives
the packet, that node will forward the packet downstream,
thereby obtaining a diversity benefit. If more than one of the
neighbors receives the packet, they will have to coordinate
and decide who will forward the packet.

The MORE protocol proposed the use of intra-flow net-
work coding in combination with opportunistic routing. The
random linear mixing (coding) of incoming packets at a node
before forwarding them downstream was shown to reduce the
coordination overhead associated with opportunistic routing.
Another advantage is that the coding operation can be easily
tuned to add redundancy to the packet stream to combat
erasures. Such schemes can potentially achieve capacity for a
multicast connection.

Typical implementations use batches of packets instead of
sliding windows, and are generally therefore not compatible
with TCP. EXOR uses batching to reduce the coordination
overhead, but this interacts badly with TCP’s window mecha-
nism. MORE uses batching to perform the coding operation.
In this case, the receiver cannot acknowledge the packets until
an entire batch has arrived and has been successfully decoded.
Since TCP performance heavily relies on the timely return of
ACKs, such a delay in the ACKs would affect the round-trip
time calculation and thereby reduce the throughput.

Opportunistic routing also leads to reordering of packets,
which is known to interact badly with TCP, as reordering can
cause duplicate ACKs, and TCP interprets duplicate ACKs as
a sign of congestion. The earlier described technique pro-
poses a TCP-compatible sliding window coding scheme in
combination with a new acknowledgment mechanism for
running TCP over a network coded system. The sender would
transmit a random linear combination of packets in the TCP
congestion window. The new type of ACK allows the receiver
to acknowledge every linear combination (degree of free-
dom) that is linearly independent from the previously
received linear combinations. The receiver does not have to
wait to decode a packet, but can send a TCP ACK for every
degree of freedom received, thus eliminating the problems of
using batchwise ACKs.

It was shown that if the linear combination happens over a
large enough finite field, then every incoming random linear
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combination will, with high probability, generate a TCP ACK
for the very next unacknowledged packet in order. This is
because the random combinations do not have any inherent
ordering. The argument holds true even when multiple paths
deliver the random linear combinations. Hence the use of
random linear coding with the acknowledgment of degrees of
freedom can potentially address the TCP reordering problem
for multipath opportunistic routing schemes. By presenting
an implementation of the TCP/NC protocol, this work pro-
vides a way of combining TCP with network-coding-based
multipath opportunistic routing protocols such as MORE.

The above description of the protocol assumes a fixed
packet length, which allows all coding and decoding opera-
tions to be performed symbol-wise on the whole packet. That
is, an entire packet serves as the basic unit of data (i.e., as a
single unknown), with the implicit understanding that the
exact same operation is being performed on every symbol
within the packet. The main advantage of this view is that the
decoding matrix operations (i.e., Gaussian elimination) can
be performed at the granularity of packets instead of indi-
vidual symbols. Also, the ACKs are then able to be repre-
sented in terms of packet numbers. Finally, the coding vectors
then have one coefficient for every packet, not every symbol.
Note that the same protocol and analysis holds even if the
basic unit of data is fixed as a symbol instead of a packet. The
problem is that the complexity will be very high as the size of
the coding matrix will be related to the number of symbols in
the coding buffer, which is much more than the number of
packets (typically, a symbol is one byte long).

In actual practice, TCP is a byte-stream oriented protocol
in which ACKs are in terms of byte sequence numbers. If all
packets are of fixed length, one can still apply the packet-level
approach, since there is a clear and consistent map between
packet sequence numbers and byte sequence numbers. In
reality, however, TCP might generate segments of different
sizes. The choice of how many bytes to group into a segment
is usually made based on the Maximum Transmission Unit
(MTU) of the network, which could vary with time. A more
common occurrence is that applications may use the PUSH
flag option asking TCP to packetize the currently outstanding
bytes into a segment, even if it does not form a segment of the
maximum allowed size. In short, it is important to ensure that
the protocol works correctly in spite of variable packet sizes.

A closely related problem is that of repacketization, which
refers to the situation where a set of bytes that were assigned
to two different segments earlier by TCP may later be reas-
signed to the same segment during retransmission. As a result,
the grouping of bytes into packets under TCP may not be fixed
over time.

Both variable packet lengths and repacketization need to be
addressed when implementing the coding protocol. To solve
the first problem, if there are packets of different lengths, one
could elongate the shorter packets by appending sufficiently
many dummy zero symbols until all packets have the same
length. This will work correctly as long as the receiver is
somehow informed how many zeros were appended to each
packet. While transmitting these extra dummy symbols will
decrease the throughput, generally this loss will not be sig-
nificant, as packet lengths are usually consistent.

However, if there is repacketization, then there is another
problem, namely it is no longer possible to view a packet as a
single unknown. This is because one would not have a one-
to-one mapping between packets sequence numbers and byte
sequence numbers; the same bytes may now occur in more
than one packet. Repacketization appears to destroy the con-
venience of performing coding and decoding at the packet
level.
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To counter these problems, the following solution is pro-
posed. The coding operation involves the sender storing the
packets generated by the TCP source in a coding buffer. Any
incoming TCP segment is pre-processed before adding it to
the coding buffer as follows:

1) First, any part of the incoming segment that is already in
the buffer is removed from the segment.

2) Next, a separate TCP packet is created out of each
remaining contiguous part of the segment.

3) The source and destination port information is removed.
It will be added later in the network coding header.

4) The packets are appended with sufficiently many
dummy zero bytes, to make them as long as the longest packet
currently in the buffer. Every resulting packet is then added to
the buffer. This processing ensures that the packets in the
buffer will correspond to disjoint and contiguous sets of bytes
from the byte stream, thereby restoring the one-to-one corre-
spondence between the packet numbers and the byte
sequence numbers. The reason the port information is
excluded from the coding is because port information is nec-
essary for the receiver to identify which TCP connection a
coded packet corresponds to. Hence, the port information
should not be involved in the coding. The remaining parts of
the header are referred to as the TCP subheader.

Upon decoding the packet, the receiver can find out how
many bytes are real and how many are dummy using the Start,
and End, header fields in the network coding header (de-
scribed below). With these fixes in place, the packet-level
algorithm is ready to be used. All operations are performed on
the packets in the coding buffer. FIG. 12 shows a typical state
of the buffer after this pre-processing. The gaps at the end of
the packets correspond to the appended zeros. It is important
to note that the TCP control packets such as SYN packet and
reset packet are allowed to bypass the coding buffer and are
directly delivered to the receiver without any coding.

A coded packet is created by forming a random linear
combination of a subset of the packets in the coding buffer.
The coding operations are done over a field of size 256 in this
implementation. In this case, a field symbol corresponds to
one byte. The header of a coded packet should contain infor-
mation that the receiver can use to identify what is the linear
combination corresponding to the packet. The header struc-
ture will now be discussed in more detail.

The network coding header has the structure shown in FI1G.
13. The typical sizes (in bytes) of the various fields are written
above them. The meaning of the various fields are described
next:

Source and destination port: The port information is
needed for the receiver to identify the coded packet’s session.
It must not be included in the coding operation. It is taken out
of'the TCP header and included in the network coding header.

Base: The TCP byte sequence number of the first byte that
has not been ACKed. The field is used by intermediate nodes
or the decoder to decide which packets can be safely dropped
from their buffers without affecting reliability.

n: The number of packets involved in the linear combina-
tion.

Start;: The starting byte of the ith packet involved in the
linear combination.

End,: The last byte of the ith packet involved in the linear
combination.

ai: The coefficient used for the ith packet involved in the
linear combination.

The Start, (except Start, ) and End, are expressed relative to
the previous packet’s End and Start respectively, to save
header space. As shown in FIG. 12, this header format will
add 5n+7 bytes of overhead for the network coding header in
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addition to the TCP header, where n is the number of packets
involved in a linear combination. (Note that the port informa-
tion is not counted in this overhead, since it has been removed
from the TCP header.) It may be possible to reduce this
overhead by further optimizing the header structure.

In the theoretical version of the algorithm, the sender trans-
mits a random linear combination of all packets in the coding
buffer. However, as noted above, the size of the header scales
with the number of packets involved in the linear combina-
tion. Therefore, mixing all packets currently in the buffer will
lead to a very large coding header.

To solve this problem, only a constant-sized subset of the
packets chosen from within the coding buffer are mixed. We
call this subset the coding window. The coding window
evolves as follows. The algorithm uses a fixed parameter for
the maximum coding window size W. The coding window
contains the packet that arrived most recently from TCP
(which could be a retransmission), and the (W-1) packets
before it in sequence number, if possible. However, if some of
the (W-1) preceding packets have already been dropped, then
the window is allowed to extend beyond the most recently
arrived packet until it includes W packets.

Note that this limit on the coding window implies that the
code is now restricted in its power to correct erasures and to
combat reordering-related issues. The choice of W will thus
play an important role in the performance of the scheme. The
correct value for W will depend on the length of burst errors
that the channel is expected to produce. Other factors to be
considered while choosing W are discussed below.

A packet is removed from the coding buffer ifa TCP ACK
has arrived requesting a byte beyond the last byte of that
packet. If a new TCP segment arrives when the coding buffer
is full, then the segment with the newest set of bytes must be
dropped. This may not always be the newly arrived segment,
for instance, in the case of a TCP retransmission of a previ-
ously dropped segment.

The decoder module’s operations are outlined below. The
main data structure involved is the decoding matrix, which
stores the coefficient vectors corresponding to the linear com-
binations currently in the decoding buffer.

The receiver side module stores the incoming linear com-
bination in the decoding buffer. Then it unwraps the coding
header and appends the new coefficient vector to the decoding
matrix. Gaussian elimination is performed and the packet is
dropped if it is not innovative (i.e. if it is not linearly inde-
pendent of previously received linear combinations). After
Gaussian elimination, the oldest unseen packet is identified.
Instead of acknowledging the packet number a, the decoder
acknowledges the last seen packet by requesting the byte
sequence number of the first byte of the first unseen packet,
using a regular TCP ACK. Note that this could happen before
the packet is decoded and delivered to the receiver TCP. The
port and IP address information for sending this ACK may be
obtained from the SYN packet at the beginning of the con-
nection. Any ACKs generated by the receiver TCP are not sent
to the sender. They are instead used to update the receive
window field that is used in the TCP ACKs generated by the
decoder (see subsection below). They are also used to keep
track of which bytes have been delivered, for buffer manage-
ment.

The Gaussian elimination operations are performed not
only on the decoding coefficient matrix, but correspondingly
also on the coded packets themselves. When a new packet is
decoded, any dummy zero symbols that were added by the
encoder are pruned using the coding header information. A
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new TCP packet is created with the newly decoded data and
the appropriate TCP header fields and this is then delivered to
the receiver TCP.

The decoding buffer needs to store packets thathave not yet
been decoded and delivered to the TCP receiver. Delivery can
be confirmed using the receiver TCP’s ACKs. In addition, the
buffer also needs to store those packets that have been deliv-
ered but have not yet been dropped by the encoder from the
coding buffer. This is because, such packets may still be
involved in incoming linear combinations. The Base field in
the coding header addresses this issue. Base is the oldest byte
in the coding buffer. Therefore, the decoder can drop a packet
if its last byte is smaller than Base, and in addition, has been
delivered to and ACKed by the receiver TCP. Whenever a new
linear combination arrives, the value of Base is updated from
the header, and any packets that can be dropped are dropped.

The buffer management can be understood using FIG. 14.
It shows the receiver side windows in a typical situation. In
this case, Base is less than the last delivered byte. Hence,
some delivered packets have not yet been dropped. There
could also be a case where Base is beyond the last delivered
byte, possibly because nothing has been decoded in a while.

The TCP receive window header field is used by the
receiver to inform the sender how many bytes it can accept.
Since the receiver TCP’s ACKs are suppressed, the decoder
must copy this information in the ACKs that it sends to the
sender. However, to ensure correctness, the value of the TCP
receive window is modified based on the decoding buffer size.
The last acceptable byte should thus be the minimum of the
receiver TCP’s last acceptable byte and the last byte that the
decoding buffer can accommodate. Note that while calculat-
ing the space left in the decoding buffer, the space occupied
by data that has already been delivered to the receiver is
included because such data will get dropped when Base is
updated. If window scaling option is used by TCP, this needs
to be noted from the SYN packet, so that the modified value
of the receive window can be correctly reported. Ideally, a
large enough decoding buffer size is chosen so that the decod-
ing buffer would not be the bottleneck and this modification
would never be needed.

The choice of redundancy factor is based on the effective
loss probability on the links. For a loss rate of p,, with an
infinite window W and using TCP Vegas, the theoretically
optimal value of R is 1/(1-p,). The basic idea is that of the
coded packets that are sent into the network, only a fraction
(1-p,) of them are delivered on average. Hence, the value of
R must be chosen so that in spite of these losses, the receiver
is able to collect linear equations at the same rate as the rate at
which the unknown packets are mixed in them by the encoder.
As discussed below, in practice, the value of R may depend on
the coding window size W. As W decreases, the erasure cor-
rection capability of the code goes down. Hence, we may
need a larger R to compensate and ensure that the losses are
still masked from TCP. Another factor that affects the choice
of R is the use of TCP Reno. The TCP Reno mechanism
causes the transmission rate to fluctuate around the link
capacity, and this leads to some additional losses over and
above the link losses. Therefore, the optimal choice of R may
be higher than 1/(1-p,).

There are several considerations to keep in mind while
choosing W, the coding window size. The main idea behind
coding is to mask the losses on the channel from TCP. In other
words, it is desirable to correct losses without relying on the
ACKs. Consider a case where W is just 1. Then, this is a
simple repetition code. Every packet is repeated R times on
average. Now, such a repetition would be useful only for
recovering one packet, if it was lost. Instead, if W was say 3,
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then every linear combination would be useful to recover any
of'the three packets involved. Ideally, the linear combinations
generated should be able to correct the loss of any of the
packets that have not yet been ACKed. For this, W needs to be
large. This may be difficult, since a large W would lead to a
large coding header. Another penalty of choosing a large
value of W is related to the interaction with TCP Reno. This
is discussed below.

The penalty of keeping W small on the other hand, is that it
reduces the error correction capability of the code. For a loss
probability of 10%, the theoretical value of R is around 1.1.
However, this assumes that all linear combinations are useful
to correct any packet’s loss. The restriction on W means that
a coded packet can be used only for recovering those W
packets that have been mixed to form that coded packet. In
particular, if there is a contiguous burst of losses that result in
a situation where the receiver has received no linear combi-
nation involving a particular original packet, then that packet
will show up as a loss to TCP. This could happen even if the
value of R is chosen according to the theoretical value. To
compensate, a larger R is chosen.

The connection between W, R and the losses that are visible
to TCP can be visualized as follows. Imagine a process in
which whenever the receiver receives an innovative linear
combination, one imaginary token is generated, and when-
ever the sender slides the coding window forward by one
packet, one token is used up. If the sender slides the coding
window forward when there are no tokens left, then this leads
to a packet loss that will be visible to TCP. The reason is, when
this happens, the decoder will not be able to see the very next
unseen packet in order. Instead, it will skip one packet in the
sequence. This will make the decoder generate duplicate
ACKs requesting that lost (i.e., unseen) packet, thereby caus-
ing the sender to notice the loss.

In this process, W corresponds to the initial number of
tokens available at the sender. Thus, when the difference
between the number of redundant packets (linear equations)
received and the number of original packets (unknowns)
involved in the coding up to that point is less than W, the losses
will be masked from TCP. However, if this difference exceeds
W, the losses will no longer be masked. A theoretically opti-
mal value of W is not known. However, it is expected that the
value should be a function of the loss probability of the link.
For the experiment, values of W were chosen based on trial
and error.

By adding enough redundancy, the coding operation essen-
tially converts the lossiness of the channel into an extension of
the round-trip time (RTT). This is why the earlier described
technique proposed the use of the idea with TCP Vegas, since
TCP Vegas controls the congestion window in a smoother
manner using RTT, compared to the more abrupt loss-based
variations of TCP Reno. However, the coding mechanism is
also compatible with TCP Reno. The choice of W plays an
important role in ensuring this compatibility. The choice of W
controls the power of the underlying code, and hence deter-
mines when losses are visible to TCP. Losses will be masked
from TCP as long as the number of received equations is no
more than W short of the number of unknowns involved in
them. For compatibility with Reno, one needs to make sure
that whenever the sending rate exceeds the link capacity, the
resulting queue drops are visible to TCP as losses. A very
large value of W is likely to mask even these congestion
losses, thereby temporarily giving TCP a false estimate of
capacity. This will eventually lead to a timeout, and will affect
throughput. The value of W should therefore be large enough
to mask the link losses and small enough to allow TCP to see
the queue drops due to congestion.
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It is important to implement the encoding and decoding
operations efficiently, since any time spent in these operations
will affect the round-trip time perceived by TCP. The finite
field operations over GF(256) have been optimized through
the use of logarithms to multiply elements. Over GF(256),
each symbol is one byte long. Addition in GF(256) can be
implemented easily as a bitwise XOR of the two bytes.

The main computational overhead on the encoder side is
the formation of the random linear combinations of the buff-
ered packets. The management of the buffer also requires
some computation, but this is small compared to the random
linear coding, since the coding has to be done on every byte of
the packets. Typically, packets have a length I of around 1500
bytes. For every linear combination that is created, the coding
operation involves LW multiplications and L(W-1) additions
over GF(256), where W is the coding window size. Note that
this has to be done R times on average for every packet
generated by TCP. Since the coded packets are newly created,
allocating memory for them could also take time.

On the decoder side, the main operation is the Gaussian
elimination. Note that, to identify whether an incoming linear
combination is innovative or not, we need to perform Gaus-
sian elimination only on the decoding matrix, and not on the
coded packet. If it is innovative, then we perform the row
transformation operations of Gaussian elimination on the
coded packet as well. This requires O(LW) multiplications
and additions to zero out the pivot columns in the newly added
row. The complexity of the next step of zeroing out the newly
formed pivot column in the existing rows of the decoding
matrix vary depending on the current size and structure of the
matrix. Upon decoding a new packet, it needs to be packaged
as a TCP packet and delivered to the receiver. Since this
requires allocating space for a new packet, this could also be
expensive in terms of time.

As we will see in the next section, the benefits brought by
the erasure correction begin to outweigh the overhead of the
computation and coding header for loss rates of about three
percent. This could be improved further by more efficient
implementation of the encoding and decoding operations.

The TCP/NC protocol requires no modification in the basic
features of the TCP protocol on either the sender side or the
receiver side. However, other special features of TCP that
make use of the ACKs in ways other than to report the next
required byte sequence number, will need to be handled care-
fully. For instance, implementing the timestamp option in the
presence of network coding across packets may require some
thought. With TCP/NC, the receiver may send an ACK for a
packet even before it is decoded. Thus, the receiver may not
have access to the timestamp of the packet when it sends the
ACK. Similarly, the TCP checksum field has to be dealt with
carefully. Since a TCP packet is ACKed even before it is
decoded, its checksum cannot be tested before ACKing. One
solution is to implement a separate checksum at the network
coding layer to detect errors. In the same way, the various
other TCP options that are available have to be implemented
with care to ensure that they are not affected by the premature
ACKs.

The protocol was tested on a TCP flow running over a
single-hop wireless link. The transmitter and receiver are
Linux machines equipped with a wireless antenna. The
experiment is performed over 802.11a with a bit-rate of 6
Mbps and a maximum of 5 link layer retransmission attempts.
RTS-CTS is disabled. The present implementation uses the
Click modular router. In order to control the parameters of the
setup, the predefined elements of Click are used. Since the
two machines are physically close to each other, there are very
few losses on the wireless link. Instead, packet losses were
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artificially induced using the RandomSample element. Note
that these packet losses are introduced before the wireless
link. Hence, they will not be recovered by the link layer
retransmissions, and have to be corrected by the layer above
IP. The round-trip delay is empirically observed to be in the
range of a few tens of milliseconds. The encoder and decoder
queue sizes are set to 100 packets, and the size of the bottle-
neck queue just in front of the wireless link is set to 5 packets.
In the setup, the loss inducing element is placed before the
bottleneck queue. The quantity measured during the experi-
ment is the goodput over a 20 second long TCP session. The
goodput is measured using iper f. Each point in the plots
shown is averaged over 4 or more iterations of such sessions,
depending on the variability. Occasionally, when the iteration
does not terminate and the connection times out, the corre-
sponding iteration is neglected in the average, for both TCP
and TCP/NC. This happens around 2% of the time, and is
observed to be because of an unusually long burst of losses in
the forward or return path. In the comparison, neither TCP nor
TCP/NC uses selective ACKs. TCP uses delayed ACKs.
However, we have not implemented delayed ACKs in TCP/
NC at this point. FIGS. 15-17 are base don real experiments.
FIG. 15 shows the variation of the goodput with the redun-
dancy factor R for a loss rate of 10%, with a fixed coding
window size of W=3. The theoretically optimal value of R for
this loss rate is 1.11 (=1/0.9). However, from the experiment,
the best goodput is achieved for an R of around 1.25. The
discrepancy is possibly because of the type of coding scheme
employed. The coding scheme transmits a linear combination
of only the W most recent arrivals, in order to save packet
header space. This restriction reduces the strength of the code
for the same value of R. In general, the value of R and W must
be carefully chosen to get the best benefit of the coding
operation. As mentioned earlier, another reason for the dis-
crepancy could be the use of TCP Reno.

FIG. 16 plots the variation of goodput with the size of the
coding window size W. The loss rate for this plot is 5%, with
the redundancy factor fixed at 1.06. We see that the best
coding window size is 2. Note that a coding window size of
W=1 corresponds to a repetition code that simply transmits
every packet 1.06 times on average. In comparison, a simple
sliding window code with W=2 brings a big gain in through-
put by making the added redundancy more useful. However,
going beyond 2 reduces the goodput because a large value of
W can mislead TCP into believing that the capacity is larger
than it really is, which leads to timeouts. The best value of W
for this setup is usually 2 for a loss rate up to around 5%, and
is 3 for higher loss rates up to 25%. Besides the loss rate, the
value of W could also depend on other factors such as the
round-trip time of the path.

FIG. 17 shows the goodput as a function of the packet loss
rate. For each loss rate, the values of R and W have been
chosen by trial and error, to be the one that maximizes the
goodput. We see that in the lossless case, TCP performs better
than TCP/NC. This could be because of the computational
overhead that is introduced by the coding and decoding
operations, and also the coding header overhead. However, as
the loss rate increases, the benefits of coding begin to out-
weigh the overhead. The goodput of TCP/NC is therefore
higher than TCP. Coding allows losses to be masked from
TCP, and hence the fall in goodput is more gradual with
coding than without. The performance can be improved fur-
ther by improving the efficiency of the computation.

The device(s) or computer systems that integrate with the
processor(s) may include, for example, a personal computer
(s), workstation(s) (e.g., Sun, HP), personal digital assistant
(s) (PDA(s)), handheld device(s) such as cellular telephone
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(s), laptop(s), handheld computer(s), or another device(s)
capable of being integrated with a processor(s) that may
operate as provided herein. Accordingly, the devices provided
herein are not exhaustive and are provided for illustration and
not limitation.

References to “a microprocessor” and “a processor”, or
“the microprocessor’” and “the processor,” may be understood
to include one or more microprocessors that may communi-
cate in a stand-alone and/or a distributed environment(s), and
may thus be configured to communicate via wired or wireless
communications with other processors, where such one or
more processor may be configured to operate on one or more
processor-controlled devices that may be similar or different
devices. Use of such “microprocessor” or “processor’ termi-
nology may thus also be understood to include a central
processing unit, an arithmetic logic unit, an application-spe-
cific integrated circuit (IC), and/or a task engine, with such
examples provided for illustration and not limitation.

Furthermore, references to memory, unless otherwise
specified, may include one or more processor-readable and
accessible memory elements and/or components that may be
internal to the processor-controlled device, external to the
processor-controlled device, and/or may be accessed via a
wired or wireless network using a variety of communications
protocols, and unless otherwise specified, may be arranged to
include a combination of external and internal memory
devices, where such memory may be contiguous and/or par-
titioned based on the application. Accordingly, references to
a database may be understood to include one or more memory
associations, where such references may include commer-
cially available database products (e.g., SQL, Informix,
Oracle) and also proprietary databases, and may also include
other structures for associating memory such as links, queues,
graphs, trees, with such structures provided for illustration
and not limitation.

References to a network, unless provided otherwise, may
include one or more intranets and/or the internet, as well as a
virtual network. References herein to microprocessor instruc-
tions or microprocessor-executable instructions, in accor-
dance with the above, may be understood to include program-
mable hardware.

Unless otherwise stated, use of the word “substantially”
may be construed to include a precise relationship, condition,
arrangement, orientation, and/or other characteristic, and
deviations thereof as understood by one of ordinary skill in
the art, to the extent that such deviations do not materially
affect the disclosed methods and systems.

Throughout the entirety of the present disclosure, use of the
articles “a” or “an” to modify a noun may be understood to be
used for convenience and to include one, or more than one of
the modified noun, unless otherwise specifically stated.

Elements, components, modules, and/or parts thereof that
are described and/or otherwise portrayed through the figures
to communicate with, be associated with, and/or be based on,
something else, may be understood to so communicate, be
associated with, and or be based on in a direct and/or indirect
manner, unless otherwise stipulated herein.

Although the methods and systems have been described
relative to a specific embodiment thereof, they are not so
limited. Obviously many modifications and variations may
become apparent in light of the above teachings. Many addi-
tional changes in the details, materials, and arrangement of
parts, herein described and illustrated, may be made by those
skilled in the art.

Having described preferred embodiments of the invention
it will now become apparent to those of ordinary skill in the
art that other embodiments incorporating these concepts may
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be used. Additionally, the software included as part of the
invention may be embodied in a computer program product
that includes a computer useable medium. For example, such
a computer usable medium can include a readable memory
device, such as a hard drive device, a CD-ROM, a DVD-
ROM, or a computer diskette, having computer readable pro-
gram code segments stored thereon. The computer readable
medium can also include a communications link, either opti-
cal, wired, or wireless, having program code segments carried
thereon as digital or analog signals. Accordingly, it is submit-
ted that that the invention should not be limited to the
described embodiments but rather should be limited only by
the spirit and scope of the appended claims.

What is claimed is:

1. A computer-implemented method in which a transmit-
ting node performs operations comprising:

determining a linear combination of packets to transmit

from a transmit queue;
transmitting said linear combination of packets across a
network using a sliding window protocol; and

receiving an acknowledgement (ACK), wherein a packet is
acknowledged when a receiving node receives the linear
combination of packets and determines which packet of
said linear combination of packets has been newly seen,
wherein said determining whether a packet is newly seen
includes retrieving coding coefficients from a header of
said linear combination of packets, appending said cod-
ing coeflicients to a basis matrix, and performing a
Gaussian elimination to determine which packet is
newly seen so that the newly seen packet can be
acknowledged.

2. The method of claim 1 further comprising removing a
packet from said transmit queue which has been acknowl-
edged.

3. The method of claim 1 wherein said network comprises
a network operating in accordance with a Transmission Con-
trol Protocol (TCP).

4. The method of claim 1 wherein said transmitting said
linear combination of packets across a network using a sliding
window protocol further comprises including coding coeffi-
cients in a header of said linear combination of packets.

5. The method of claim 1 wherein said linear combination
of packets is linearly independent of previously transmitted
linear combinations of packets and therefore conveys new
information.

6. The method of claim 1 wherein said ACK comprises
receiving a request of a byte sequence number of a first byte
of a first unseen packet.

7. A computer-implemented method in which a receiving
node performs operations comprising:

receiving a linear combination of packets across a network

using a sliding window protocol;

determining whether a packet is newly seen, wherein said

determining whether a packet is newly seen includes
retrieving coding coefficients from a header of said lin-
ear combination of packets, appending said coding coef-
ficients to a basis matrix, and performing a Gaussian
elimination to determine which packet is newly seen so
that the newly seen packet can be acknowledged; and

transmitting an acknowledgement (ACK), wherein a

packet is acknowledged when the receiving node
receives the linear combination of packets and deter-
mines which packet of said linear combination of pack-
ets has been newly seen.

8. The method of claim 7 wherein said network comprises
a network operating in accordance with a Transmission Con-
trol Protocol (TCP).
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9. The method of claim 7 further comprising maintaining a
buffer of linear combinations of packets that have not been
decoded yet.

10. The method of claim 7 further comprising delivering
decoded packets to a node.

11. The method of claim 7 wherein said ACK comprises
receiving a request of a byte sequence number of a first byte
of a first unseen packet.

12. A computer-implemented method in which an interme-
diate node performs operations comprising:

receiving a linear combination of packets;

determining a linear combination of packets to transmit

from a transmit queue;

transmitting said linear combination of packets across a

network using a sliding window protocol; and

when said intermediate node receives an innovative packet,

determining from said innovative packet a newly seen
packet and adding the witness of the newly seen packet
to said transmit queue, wherein said determining
whether a packet is newly seen includes retrieving cod-
ing coefficients from a header of said linear combination
of packets, appending said coding coefficients to a basis
matrix, and performing a Gaussian elimination to deter-
mine which packet is newly seen so that the newly seen
packet can be acknowledged.

13. The method of claim 12 further comprising determin-
ing if a packet is no longer involved in received linear com-
binations of packets, and removing said packet from said
transmit queue.

14. The method of claim 12 wherein said network com-
prises anetwork operating in accordance with a Transmission
Control Protocol (TCP).

15. A non-transitory computer readable storage medium
having computer readable code thereon for providing net-
work coding based flow control, the medium including
instructions in which a transmitting node performs operations
comprising:

determining a linear combination of packets to transmit

from a transmit queue;
transmitting said linear combination of packets across a
network using a sliding window protocol; and

receiving an acknowledgement (ACK), wherein a packet is
acknowledged when a receiving node receives the linear
combination of packets and determines which packet of
said linear combination of packets has been newly seen,
wherein said determining whether a packet is newly seen
includes retrieving coding coefficients from a header of
said linear combination of packets, appending said cod-
ing coefficients to a basis matrix, and performing a
Gaussian elimination to determine which packet is
newly seen so that the newly seen packet can be
acknowledged.

16. The computer readable storage medium of claim 15
further comprising removing a packet from said transmit
queue which has been acknowledged.

17. The computer readable storage medium of claim 15
wherein said network comprises a network operating in
accordance with a Transmission Control Protocol (TCP).

18. The computer readable storage medium of claim 15
wherein said transmitting said linear combination of packets
across a network using a sliding window protocol further
comprises including coding coefficients in a header of said
linear combination of packets.

19. The computer readable storage medium of claim 14
wherein said linear combination of packets is linearly inde-
pendent of previously transmitted linear combinations of
packets and therefore conveys new information.
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20. The computer readable storage medium of claim 14
wherein said ACK comprises receiving a request of a byte
sequence number of a first byte of a first unseen packet.

21. A non-transitory computer readable storage medium
having computer readable code thereon for providing net-
work coding based flow control, the medium including
instructions in which a receiving node performs operations
comprising:

receiving a linear combination of packets across a network

using a sliding window protocol;

determining whether a packet is newly seen, wherein said

determining whether a packet is newly seen includes
retrieving coding coefficients from a header of said lin-
ear combination of packets, appending said coding coef-
ficients to a basis matrix, and performing a Gaussian
elimination to determine which packet is newly seen so
that the newly seen packet can be acknowledged; and

transmitting an acknowledgement (ACK), wherein a

packet is acknowledged when the receiving node
receives the linear combination of packets and deter-
mines which packet of said linear combination of pack-
ets has been newly seen.

22. The computer readable storage medium of claim 21
wherein said network comprises a network operating in
accordance with a Transmission Control Protocol (TCP).

23. The computer readable storage medium of claim 21
further comprising maintaining a buffer of linear combina-
tions of packets that have not been decoded yet.

24. The computer readable storage medium of claim 21
further comprising delivering decoded packets to a node.

25. The computer readable storage medium of claim 21
wherein said ACK comprises receiving a request of a byte
sequence number of a first byte of a first unseen packet.

26. A non-transitory computer readable storage medium
having computer readable code thereon for providing net-
work coding based flow control, the medium including
instructions in which an intermediate node performs opera-
tions comprising:

receiving a linear combination of packets;

determining a linear combination of packets to transmit

from a transmit queue;

transmitting said linear combination of packets across a

network using a sliding window protocol; and

when said intermediate node receives an innovative packet,

determining from said innovative packet a newly seen
packet and adding the witness of the newly seen packet
to said transmit queue, wherein said determining
whether a packet is newly seen includes retrieving cod-
ing coefficients from a header of said linear combination
of packets, appending said coding coefficients to a basis
matrix, and performing a Gaussian elimination to deter-
mine which packet is newly seen so that the newly seen
packet can be acknowledged.

27. The method of claim 26 further comprising determin-
ing if a packet is no longer involved in received linear com-
binations of packets, and removing said packet from said
transmit queue.

28. The computer readable storage medium of claim 26
wherein said network comprises a network operating in
accordance with a Transmission Control Protocol (TCP).

29. A transmitting node comprising:

amemory;

a processor;

a communications interface;

an interconnection mechanism coupling the memory, the

processor and the communications interface; and
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wherein the memory is encoded with an application pro-
viding network coding based flow control, that when
performed on the processor, provides a process for pro-
cessing information, the process causing the transmit-
ting node to perform the operations of:

determining a linear combination of packets to transmit

from a transmit queue;
transmitting said linear combination of packets across a
network using a sliding window protocol; and

receiving an acknowledgement (ACK), wherein a packet is
acknowledged when a receiving node receives the linear
combination of packets and determines which packet of
said linear combination of packets has been newly seen,
wherein said determining whether a packet is newly seen
includes retrieving coding coefficients from a header of
said linear combination of packets, appending said cod-
ing coefficients to a basis matrix, and performing a
Gaussian elimination to determine which packet is
newly seen so that the newly seen packet can be
acknowledged.
30. The transmitting node of claim 29 further comprising
removing a packet from said transmit queue which has been
acknowledged.
31. The transmitting node of claim 29 wherein said net-
work comprises a network operating in accordance with a
Transmission Control Protocol (TCP).
32. The transmitting node of claim 29 wherein said trans-
mitting said linear combination of packets across a network
using a sliding window protocol further comprises including
coding coefficients in a header of said linear combination of
packets.
33. The transmitting node of claim 29 wherein said linear
combination of packets is linearly independent of previously
transmitted linear combinations of packets and therefore con-
veys new information.
34. The transmitting node of claim 29 wherein said ACK
comprises receiving a request of a byte sequence number of a
first byte of a first unseen packet.
35. A receiving node comprising:
a memory;
a processor;
a communications interface;
an interconnection mechanism coupling the memory, the
processor and the communications interface; and

wherein the memory is encoded with an application pro-
viding network coding based flow control, that when
performed on the processor, provides a process for pro-
cessing information, the process causing the receiving
node to perform the operations of:

receiving a linear combination of packets across a network

using a sliding window protocol;

determining whether a packet is newly seen, wherein said

determining whether a packet is newly seen includes
retrieving coding coefficients from a header of said lin-
ear combination of packets, appending said coding coef-
ficients to a basis matrix, and performing a Gaussian
elimination to determine which packet is newly seen so
that the newly seen packet can be acknowledged; and

transmitting an acknowledgement (ACK), wherein a

packet is acknowledged when the receiving node
receives the linear combination of packets and deter-
mines which packet of said linear combination of pack-
ets has been newly seen.

36. The receiving node of claim 35 wherein said network
comprises a network operating in accordance with a Trans-
mission Control Protocol (TCP).
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37. The receiving node of claim 35 further comprising
maintaining a buffer of linear combinations of packets that
have not been decoded yet.
38. The receiving node of claim 35 further comprising
delivering decoded packets to a node.
39. The receiving node of claim 35 wherein said ACK
comprises receiving a request of a byte sequence number of a
first byte of a first unseen packet.
40. An intermediate node comprising:
amemory;
a processor;
a communications interface;
an interconnection mechanism coupling the memory, the
processor and the communications interface; and

wherein the memory is encoded with an application pro-
viding network coding based flow control, that when
performed on the processor, provides a process for pro-
cessing information, the process causing the intermedi-
ate node to perform the operations of:

receiving a linear combination of packets;

determining a linear combination of packets to transmit

from a transmit queue;
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transmitting said linear combination of packets across a

network using a sliding window protocol; and

wherein when said intermediate node receives an innova-

tive packet, determining from said innovative packet a
newly seen packet and adding the witness of the newly
seen packet to said transmit queue, wherein said deter-
mining whether a packet is newly seen includes retriev-
ing coding coefficients from a header of said linear com-
bination of packets, appending said coding coefficients
to a basis matrix, and performing a Gaussian elimination
to determine which packet is newly seen so that the
newly seen packet can be acknowledged.

41. The intermediate node of claim 40 further comprising
determining if a packet is no longer involved in received
linear combinations of packets, and removing said packet
from said transmit queue.

42. The intermediate node of claim 40 wherein said net-
work comprises a network operating in accordance with a
Transmission Control Protocol (TCP).



