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Abstract— We are given a Boolean function f : {−1, 1}n 7→
R that can be written as a sparse linear combination of s
polynomials. The Junta problem cf. [1] is an instance of such
a setting. Our goal is to learn the function f by accessing
its values at randomly sampled m elements from {−1, 1}n. In
this paper, we draw connections between the sparse polynomial
learning problem and compressed sensing. As a result we
provide a convex program that learns an s-sparse polynomial
with high probability using m = O(s2n) observations. We
contrast this result with the worst case sample-complexity which
requires O(n2n) random samples to learn the entire function
f . Our results naturally extend to the setting where the data
is noisy or f is well approximated by an s-sparse polynomial.
Our results also show that the solution adapts to the number
of observations and finds a natural approximation given the
available information.

I. INTRODUCTION.

The problem of learning a Boolean function is a simple

learning task that allows us to still model complex inter-

actions between the variables. It is one of the simplest

settings of non-parametric regression and captures instances

of learning problems where the features are categorical, for

example: male or female? In contrast to many models that

assume the linearity of the response on the features, we

would like to understand models where the value of the

Boolean function can depend on intricate Boolean operations

between the input features. Concretely, we assume that our

function f ∈ F : = {f : {−1, 1}n 7→ R} is s-sparse Boolean

function, that is, it admits the decomposition

f(x) =

s∑

i=1

αJi
χJi

(x), (1)

where Ji ⊂ [n] : = {1, 2, . . . , n}, αJi
∈ R, and for any

arbitrary J ⊂ [n] we define χJ ∈ Fbool as

χJ(x) =

{
Πi∈Jxi if J 6= ∅
1 if J = ∅, (2)

where xi denotes the ith component of x. The collection

of functions {χJ(x)} corresponds to the higher-order poly-

nomials and allows us to model more complex interactions

between the input features.

One specific instance of this problem is known as the d-

Junta and was considered earlier by Littlestone [2] as well

as Blum, Hellerstein and Littlestone [3]1. In its current form,

the problem was introduced by Blum and Langley [1]. The

d-Junta problem is to learn an unknown Boolean function

f : {−1, 1}n 7→ R, that depends only on d < n variables

from labeled samples (x, f(x)), where x = (x1, . . . , xn)
are sampled uniformly from {−1, 1}n. Thus, there are d
unknown indices 1 ≤ i1 < · · · < id ≤ n and a hidden

function g : {−1, 1}d 7→ R so that for all x ∈ {−1, 1}n

f(x1, . . . , xn) = g(xi1 , . . . , xid). (3)

If we let S = {i1, i2, . . . , id} then we shall see in the sequel

that f admits the decomposition in equation (1) such that

αJi
= 0 for all Ji that are not subsets of S. Therefore, in

the setting of the d-Junta, the sparsity index s = 2d. In our

setting, we are interested in more general sparse polynomial

decompositions. Our functions may depend on any number

of the input variables, however, we assume that there are few

interactions between these variables.

A. Summary of results.

As alluded to above, the aim of this paper is to develop

a framework linking sparse polynomial Boolean function

learning and compressed sensing. In particular we show that

a natural sensing matrix that arises in the Boolean function

learning setting satisfies an incoherence type condition [4],

[5], [6]. With that, we are then able to leverage some of

the existing results in the compressed sensing literature as

well as develop some new results in order to demonstrate

particular error bounds for recovering the coefficients of the

polynomial decomposition of f . We show that with order

s2n samples we are able to successfully recover an s-sparse

Boolean function f . Our result is robust in the sense that

it naturally extends to the setting where the observations

are noisy. More generally, it extends for noisy instances

of approximate s-sparse polynomial functions; that is our

results are applicable in the setting where the function is not

an exactly s-sparse Boolean function. Our final set of results

demonstrate that the algorithm we will present in the sequel

is adaptive to the number of observations available in that

the method will find a natural s-sparse approximation to the

function given the available data.

1An informative blog-post by Rick Lipton dated June 4, 2009 titled
The Junta Problem is worth a read. Our approach utilizes techniques from
compressive sensing literature and it is note worthy that RL had mentioned
this as a plausible plan of attack in the Junta setting.
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Few words about the proof technique. The results of this

paper, at some level, are simple observations. Specifically, we

show that under the uniform sampling model, the induced

‘Fourier Matrix’ has an appropriate incoherence property.

We are able to establish this fact by noting that under the

uniform sampling model, the columns of such a matrix are

pair-wise independent. Using this property along with the

techniques developed in the compressive sensing literature

for approximate sparse recovery [7], we establish our results.

II. SETUP AND PROBLEM STATEMENT.

This section describes the necessary background, setup

and precise problem statement.

A. Notations.

For a vector x ∈ {−1, 1}n, let xi ∈ {−1, 1} denote its ith

coordinate. Define [n] = {1, 2, . . . , n}, and for any J ⊂ [n],
let |J | denote its cardinality. For x ∈ {−1, 1}n and J ⊂
[n], let xJ = (xj)j∈J ∈ {−1, 1}|J| denote sub-vector with

its co-ordinates coming from J . For a set S, we denote its

cardinality as |S| and let 2S to be the power-set of S,.

For a matrix A = [Aij ] ∈ R
m×N , let Ai⋆ denote its

ith row and A⋆j denote its jth column for 1 ≤ i ≤
m, 1 ≤ j ≤ N . Given a matrix A ∈ R

m×N we let

‖A‖∞ = maxi,j |Ai,j |. Finally, for a vector v ∈ R
n, let

its ℓp norm, p ≥ 1, be ‖v‖p = (
∑

i |vi|p)1/p.

We shall use 0 for the vector of all 0s and 1 for the vector

of all 1s with dimension dependent on the context.

B. Fourier representation.

Let F be the space of all real-valued functions defined on

{−1, 1}n, i.e. F = {f : {−1, 1}n 7→ R}. This space of func-

tions forms a Hilbert space under the following inner prod-

uct: for any f, g ∈ F , 〈f, g〉 = 1
2n

∑
x∈{−1,1}n f(x)g(x).

The induced norm is

‖f‖2 = 〈f, f〉 = 1

2n

∑

x∈{−1,1}n

f2(x).

For the set of all Boolean functions, Fbool = {f :
{−1, 1}n 7→ {−1, 1}}, ‖f‖ = 1 since f2(x) = 1 for all

x ∈ {−1, 1}n.

The above Hilbert space naturally has an orthonormal

basis. As alluded to above in equation (2), a particular choice

of it, utilized popularly in the literature, is as follows. For

each J ⊂ [n], define a basis function χJ ∈ Fbool as

χJ(x) =

{
Πi∈Jxi if J 6= ∅
1 if J = ∅.

Now ‖χJ‖ = 1 for all J ⊂ [n], since χJ ∈ Fbool. It can be

checked easily that for J 6= J ′ and J, J ′ ⊂ [n],

〈χJ , χJ ′〉 = 0.

Finally, the size of collection {χJ : J ⊂ [n]} is 2n, the

dimension of F . Therefore, it is indeed an orthonormal basis

of F . Given this, for any f ∈ F , it can be represented as

f(x) =
∑

J⊂[n]

αJ(f)χJ (x), (4)

where the ‘Fourier’ coefficient αJ(f) is given by

αJ (f) = 〈f, χJ 〉.
When clear from context, we shall drop the reference to f in

the notation αJ (f) and instead simply use αJ . Finally, we

recall the Parseval’s identity

‖f‖22 = 〈f, f〉
=

∑

J,J ′⊂[n]

αJαJ ′〈χJ , χJ ′〉

=
∑

J⊂[n]

α2
J . (5)

C. Sparse polynomials.

A function f ∈ F (not necessarily ±1 valued) can be

decomposed as a sparse polynomial if we assume that the

set {αJ(f) 6= 0} has cardinality s ≪ 2n. The goal of this

paper will be to effectively exploit this sparse structure of the

set of coefficients {αJ (f)}. As an example, we again recall

the d-Junta described above. Let K ⊂ [n] be the subset of

d = |K| variables that determine the function f . For such

a function, it can be verified that for J ⊂ [n] such that

J\K 6= ∅ we have αJ(f) = 〈f, χJ 〉 = 0. Therefore,

f(x) =
∑

J⊂K

αJχJ(x). (6)

Thus, learning f boils down to learning 2d coefficients, αJ =
αJ(f) for J ⊂ K. A number of authors have developed

techniques for solving the Junta-problem, however, those

techniques do not necessarily lend themselves to learning

generic sparse polynomials.

D. Observation model.

We assume that we are given m labeled observations

(xi, f(xi)) to learn a sparse-polynomial function f . The

xi ∈ {−1, 1}n are chosen independently and uniformly

at random. That is, we observe y ∈ R
m, where the ith

component of y,

yi = f(xi)

=
∑

J⊂[n]

αJχJ(x
i). (7)

We shall call learning f with respect to this observation

model, exact recovery of f since we observe the exact value

of f evaluated at the sample xi. In contrast, in a noisy

observation model, observations are captured by y ∈ R
m

with the ith component of y being

yi = f(xi) + εi, (8)

with noise εi being such that for ǫ > 0,

( 1

m

∑

i

ε2i

) 1

2 ≤ ǫ. (9)

We shall call this the ǫ-noisy version. Clearly, for the special

case of ε = 0, the problem is equivalent to the task of exact

recovery.
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We introduce some notations for an alternative represen-

tation for observations y. Consider an ordering of 2n subsets

J ⊂ [n], denoted by π : [2n] → 2[n]. Thus, index j ∈ [2n]
corresponds to the subset J = π(j) ⊂ [n]. With this ordering

in mind, we shall (ab)use notation αj ≡ αj(f) = απ(j)(f)
and χj ≡ χπ(j). Therefore, for any given function f with

Fourier coefficient vector α ∈ R
2n , the observation vector

y ∈ R
m, under the exact and noisy model, can be compactly

represented as

y = Aα+ ε. (10)

In above, ε ∈ R
m is the noise vector, which is the vector

of 0s in the exact model and we have ‖ε‖2 ≤ ǫ for the

ǫ-noisy model. The matrix A ∈ {−1, 1}m×2n is such that

Ai,j = χπ(j)(x
i).

E. Problem statement.

In summary, given observations y ∈ R
m related to the

sparse-polynomial f as per (10), the interest is in recovering

α ∈ R
2n with ‖α‖0 ≤ s from independent samples. The goal

is to do so with high probability for as small m as possible

with error in the produced estimation α̂, ‖α̂− α‖2 = O(ǫ).
We note that this setting is exactly the same as sparse

vector recovery from (noisy) linear measurements considered

in the compressed sensing literature, cf. [8][9]. In a generic

result in compressed sensing literature, the considered mea-

surement matrices (here A) usually have independent and

identically distributed entries (with distributions like Gaus-

sian, Bernoulli or Rademacher, etc.). In our setting, though

matrix A is random (due to randomness of samples, xi),

its entries are strongly correlated and more related to the

problems in compressed sensing involving the Fourier en-

semble [10] or correlated Gaussian design matrices [11].

However, as we shall see, any two distinct columns of A
are independent. This observation turns out to be sufficient

to establish guarantees similar to those obtained in the

compressive sensing literature.

III. RESULTS.

This section describes the recovery algorithm, as well as

its sample complexity.

A. Recovery algorithm.

Given the similarity with stable compressive sensing [9],

we propose to estimate the unknown α by solving the

following convex program:

α̂ ∈ arg min
β∈R2n

‖β‖1 such that
1√
m
‖Aβ − y‖2 ≤ ǫ.

(11)

Here we assume that we know the bound ǫ on the normalized

ℓ2-norm of the error vector. In case of the exact observation

model, ǫ = 0, and hence the above program becomes a linear

program (also known as basis pursuit):

α̂ ∈ argmin ‖β‖1 such that y = Aβ over β ∈ R
2n .
(12)

a) Two remarks:: First, we note that in the setting

where α is not exactly s-sparse, but approximately s-sparse,

we may still use the above algorithm and obtain an estimate

α̂ that approximates the true α. Second, we may incorporate

additional information about any restrictions on the support

of α by changing the condition β ∈ R
2n to the appropriate

sets of indices, for example, enforcing certain coefficients to

be zero.

B. Sample complexity.

In this section we discuss some of the consequences

of this paper. We show that given m observations, we

may recover an estimate α̂ of α that will satisfy certain

desirable properties with high probability, in the noiseless

and noisy settings for both approximately and exactly sparse

polynomials. We establish the following guarantees about the

estimator (11).

Theorem 1: Let constants c = 4096, c1 = 4 and c2 = 8.

Then, for an arbitrary subset S with s = |S| and

m ≥ c s2n (13)

we have that with probability at least 1−O
(

1
4n

)
, the solution

α̂ of (11) is such that

‖α̂− α‖2 ≤ c1ǫ+ c2‖αSc‖1
( n

m

) 1

4

. (14)

The above result holds for any arbitrary set S and any

function f . Since the choice of α̂ is independent of S, the

result holds for S (with |S| ≤ s) that optimizes (14). Specifi-

cally, if f is indeed approximately s-sparse or approximately

observed cf. equation (10), then as per (14), algorithm (11)

recovers a function f̂ with ‖f̂ − f‖2 = O(ǫ) by Parseval’s

identity, where f̂(x) =
∑2n

k=1 α̂kχk(x). Indeed, if f were

exactly s-sparse and ε = 0, our algorithm recovers f exactly

with sample complexity O(s2n) with high probability. The

computational cost of the algorithm (11)–a linear program–

scales polynomially in the optimization problem size, i.e.

O(exp(Θ(n))).
Now let us contrast the above performance with the

naive algorithm: the algorithm that will search through all

possible sets of coefficients and find the set that best fits the

observations. Suppose we know a priori that the underlying

function f is s-sparse, i.e. there exists a set S, |S| ≤ s,

corresponding to the indices of non-zero coefficients in the

polynomial decomposition of f , cf. equation (1). Then the

naive method is one algorithm for finding the maximum

likelihood estimate of f . Note that there are
(
2n

s

)
≈ O(2ns)

such possible sets of indices of size s, which we will

denote as the models. Therefore, by a standard argument,

to confidently learn the function from a model class of size

O(2ns), one needs at least Ω(log 2ns) = Ω(ns) samples.

However, we must enumerate through all possible sets which

is approximately 2ns. Therefore, the computational cost of

the above algorithm scales proportionally to the size of

the model class, i.e. O(2ns). In summary, our algorithm

achieves sample complexity that is nearly optimal (O(s2n)
vs. O(ns)); and has computation cost that scales polynomial
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with ambient dimension O(2n) without any dependence on

s, in contrast to the computational cost of O(2ns) of the naive

algorithm. We may now proceed with the proof of Theorem 1

deferring certain technical details to the appendix.

IV. PROOF OF THEOREM 1.

We now establish the proof of Theorem 1. To that end, let

α̂ be the solution of (11), which is an estimate of α. Define

∆ = α̂−α and recall that ‖αS‖0 ≤ s. Let S with be subset

of indices of α that are non-zero. We state the following

property of ∆, known as the cone condition [7]:

Proposition 1: For ∆ ∈ R
2n ,

‖∆Sc‖1 ≤ ‖∆S‖1 + 2‖αSc‖1. (15)

Note that in the setting that α is exactly supported on S we

have αSc = 0. For completeness, we have included its proof

in the Appendix. An important implication of equation (15)

yields that

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1 ≤ 2‖∆S‖1 + 2‖αSc‖1
≤ 2

√
|S|‖∆S‖2 + 2‖αSc‖1

≤ 2
√

|S|‖∆‖2 + 2‖αSc‖1. (16)

In the above, we have used the fact that for any v ∈ R
N ,

‖v‖1 ≤
√
N‖v‖2. Using the fact that α̂ is a feasible solution

of (11) and ‖A∆‖2 = ‖Aα−Aα̂‖2 we have

‖Aα−Aα̂‖2 ≤ ‖y −Aα̂‖2 + ‖ε‖2
≤ 2

√
mǫ. (17)

Next, with I denoting the identity matrix and Ã = 1√
m
A we

have

1

m
‖A∆‖22 = ∆T ÃT Ã∆ = ∆T

(
ÃT Ã− I

)
∆+∆T∆

≥ ‖∆‖22 − ‖∆‖1
∥∥∥
(
ÃT Ã− I

)
∆
∥∥∥
∞

≥ ‖∆‖22 − ‖∆‖21
∥∥∥
(
ÃT Ã− I

)∥∥∥
∞
. (18)

Finally, substituting equation (16) into equation (18) yields

1

m
‖A∆‖22 ≥ ‖∆‖22 − 8|S|‖∆‖22

∥∥∥
(
ÃT Ã− I

)∥∥∥
∞

− 8‖αSc‖21
∥∥∥
(
ÃT Ã− I

)∥∥∥
∞
. (19)

In above, we have used inequalities: (a) for any two vectors

u, v ∈ R
N , |uT v| ≤ ‖u‖1‖v‖∞, and (b) for any matrix

Q ∈ R
L×N and v ∈ R

N , ‖Qv‖∞ ≤ ‖Q‖∞‖v‖1. We wish

to further lower bound (19) as 1/2‖∆‖22. Such a bound is

known as a restricted eigenvalue condition [12], [7]. To that

end, we state the following lemma, which shows that the

matrix Ã satisfies an incoherence property [4], [5], [6].

Lemma 1: The normalized observation matrix Ã = 1√
m
A

is such that

∥∥∥ÃT Ã− I

∥∥∥
∞

≤ 4

√
n

m
, (20)

with probability at least 1− 2
4n .

We provide the proof of the above lemma in the Appendix.

From Lemma 1, for m ≥ 4096|S|2n, it follows that2

∥∥∥ÃT Ã− I

∥∥∥
∞

≤ 1

16|S| . (21)

Therefore, combining equations (19) and (21) yields

1

m
‖A∆‖22 ≥ 1

2
‖∆‖22 − 32‖αSc‖21

√
n

m
. (22)

From equations (17) and (22); and the fact that |S| ≤ s, it

follows that for m ≥ 4096 s2n, with probability 1−O(1/2n),
‖∆‖22 ≤ 8 ǫ2 + 64‖αSc‖21

√
n
m , which is further upper

bounded as
(
4ǫ + 8‖αSc‖1

(
n
m

) 1

4

)2

. This completes the

proof of Theorem 1.

V. DISCUSSION.

In this paper, we considered learning s-sparse polynomial

functions under a uniform sampling model. Inspired by

results from compressive sensing, we presented a convex

optimization based recovery algorithm. The algorithm re-

quires m = O
(
s2n

)
samples where the produced estimate

is within error O(ǫ) where ǫ is a bound on the rescaled ℓ2-

norm of the per-sample error. Our results naturally extend to

the setting where the function f is well approximated by an

s-sparse polynomial. We further note that the entire space

of 2n possible subsets need not necessarily be considered.

Indeed, if it is known a priori that a smaller set of indices

of α are non-zero, then we may restrict our attention to that

smaller set. Namely, if we know that there are at most N
possible locations where the s non-zero components lie then

we can restrict our attention to those N coefficients. In such

a setting, our results allow us to replace any occurrence of

2n simply with N . Hence, the number of required samples

becomes O
(
s2 logN

)
for learning an s-sparse Boolean poly-

nomial.

APPENDIX

We begin with the Proof of Proposition 1. This proposition

is known in the literature, cf. [9], [7]. We provide its proof

for completeness. Let S be some set of indices–typically we

set S to be the set of indices over which the components of

α are non-zero. Both α and α̂ are feasible solutions of (11)

and α̂ is its solution. Therefore,

‖α̂S‖1 + ‖α̂Sc‖1 = ‖α̂‖1
≤ ‖α‖1 ≤ ‖αS‖1 + ‖αSc‖1. (23)

Whence,

‖α̂Sc‖1 ≤ ‖αS‖1 − ‖α̂S‖1 + ‖αSc‖1
≤ ‖αS − α̂S‖1 + ‖αSc‖1
= ‖∆S‖1 + ‖αSc‖1. (24)

Note that ‖α̂Sc‖1 = ‖∆Sc + αSc‖1 ≥ ‖∆Sc‖1 − ‖αSc‖1.

Rearranging terms completes the proof of Proposition 1.

2These constants can be improved, however, to simplify the exposition
and dependency on the problem parameters we have opted not to optimize
numeric constants.
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We now proceed with the Proof of Lemma 1. The proof

relies on the following simple observation. Since xi are

chosen uniformly at random from {−1, 1}n, all rows of Ã
are independent and identically distributed. The columns of

Ã, however are not mutually independent. But, we show

that they are pair-wise independent and this is sufficient to

establish Lemma 1.

Now Ã has a total of 2n columns. Each such column is a

± 1√
m

valued vector of length m, and hence is normalized,

i.e. the ℓ2 norm is 1. For that reason, the diagonal entries of

ÃT Ã are equal to 1. Therefore, to establish the Lemma 1,

we need to show that the absolute values of the non-diagonal

entries of ÃT Ã are at most 4
√

n
m .

In order to establish this claim, let us inspect the columns

of Ã more carefully. The column of Ã corresponding to the

empty set has all entries 1√
m

; all other columns each have

entries distributed uniformly (not necessarily independently)

over ± 1√
m

. We state the following property about the inner

product of any two distinct columns of Ã that will establish

the desired result:

Lemma 2: Consider two columns of Ã, corresponding to

sets J, J ′ ⊂ [n]. Let a = [ai], b = [bi] ∈ {− 1√
m
, 1√

m
}m

denote these columns of Ã corresponding to J and J ′,
respectively. Let zi = aibi for 1 ≤ i ≤ m. Then z1, . . . , zm
are independent and identically distributed random variables

and each of them is uniformly distributed over {− 1
m , 1

m}.

Proof: Given that J 6= J ′, their symmetric difference

J∆J ′ 6= ∅. Recall that

ai =
1√
m

∏

j∈J

xi
j , bi =

1√
m

∏

j′∈J ′

xi
j′ . (25)

Since xi are chosen independently and uniformly over

{−1, 1}n, the random variables xi
j are independent and

identically distributed with distribution being uniform over

{1,−1} for fixed j and varying i. Therefore,

zi =
1

m

(∏

j∈J

xi
j

)
×

( ∏

j′∈J ′

xi
j′

)

=
1

m

( ∏

j∈J∆J ′

xi
j

)
×
( ∏

j′∈J∩J ′

(xi
j′)

2
)

=
1

m

( ∏

j∈J∆J ′

xi
j

)
. (26)

Since J 6= J ′ and hence J∆J ′ 6= ∅, from above it follows

that zi is distributed uniformly over {− 1
m , 1

m}. Also since

zi depends on xi, they are independent across 1 ≤ i ≤ m.

This completes the proof of Lemma 2.

From Lemma 2, it follows that the inner product of columns

of Ã corresponding to any two different sets J 6= J ′ is the

sum of m independent and identically distributed random

variables, z1, . . . , zm, with each zi distributed uniformly

over
{
− 1

m , 1
m

}
. By standard Azuma-Hoeffding’s bound,

it follows that for any t > 0,

P

(∣∣∣
m∑

i=1

zi

∣∣∣ ≥ t
)
≤ 2 exp

(
− mt2

8

)
. (27)

Therefore, by selecting t = 4
√

n
m , it follows that

P

(∣∣∣
m∑

i=1

zi

∣∣∣ ≥ 4

√
n

m

)
≤ 2

256n
. (28)

Thus, the absolute values of all non-diagonal entries of

ÃT Ã are at most 4
√

n
m with probability at least 1 − 2

256n .

Therefore, by union bound (over at most 4n non-diagonal

possible entries), it follows that the maximum of the absolute

values of all non-diagonal entries of ÃT Ã is at most 4
√

n
m

with probability at least 1− 2
64n . In summary, it follows that

with probability at least 1−O
(
1/4n

)
,

∥∥∥ÃT Ã− I

∥∥∥
∞

≤ 4

√
n

m
. (29)

This completes the proof of Lemma 1.
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