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Abstract— We study distributed algorithms, also known as
gossip algorithms, for information dissemination in an arbitrary
connected network of nodes. Distributed algorithms have appli-
cations to peer-to-peer, sensor, and ad hoc networks, in which
nodes operate under limited computational, communication, and
energy resources. These constraints naturally give rise to “gossip”
algorithms: schemes in which nodes repeatedly communicate with
randomly chosen neighbors, thus distributing the computational
burden across all the nodes in the network and making the
computation robust against node failures.

Information dissemination based on network coding was in-
troduced by Deb and Médard. They showed the virtue of coding
by analyzing a coding algorithm for a complete graph. Although
their scheme generalizes to arbitrary graphs, the analysis does
not. We present analysis of this algorithm for arbitrary graphs.
Specifically, we find that the information dissemination time is
naturally related to the spectral properties of the underlying
network graph. Our results provide insight into how the graph
topology affects the performance of the coding-based information
dissemination algorithm.

I. INTRODUCTION

With the development of peer-to-peer, sensor, and wireless
ad hoc networks, there has been recent interest in distributed
algorithms for information dissemination and fault-tolerant
computation. Motivated by this, we consider randomized gos-
sip algorithms for communication. Gossip algorithms impose
a spatial restriction on the information possessed by a node:
since a node can communicate only with its neighbors in the
network, it has a local view of the state of the system at
any time. To obtain the global state of the network, a node
must repeatedly communicate with its neighbors. Through
communication across links in the network, the global state
diffuses to each individual node in the network.

Network coding has been studied in a number of recent
papers, such as [1], [2], [3], [4]. In the context of multicasting,
network coding has been able to provide significant perfor-
mance improvements. More recently, Deb and Médard [5]
showed that, in a complete graph on � nodes, a coding-based
gossip algorithm for information dissemination transmits �
messages to all the nodes in ���� time with probability
��������. This provides an improvement over the ��� �����
time required for a sequential dissemination of � messages
using the randomized gossip algorithm of [6] in a complete
graph. The algorithm of [5] easily generalizes to arbitrary
graphs. However, the method of analysis does not extend.

In this paper, we study the problem of information dis-
semination (or information spreading) through the use of
network coding in the gossip setting for arbitrary graphs. The
information dissemination time of the coding-based gossip
algorithm depends on the evolution of the “dimension of
the subspace” spanned by the messages at the various nodes
during the course of the algorithm. The lack of symmetry in
the topology of an arbitrary graph, in contrast to the case of
a complete graph, leaves one with the task of studying the
evolution of a rather complicated process whose state evolves
in a very large space (exponential in the number of graph
nodes). This makes such an analysis rather non-trivial.

The gossip algorithm’s dependence on network coding
makes its analysis very different from the analysis of a
sequential information dissemination algorithm that we studied
in our recent work [7]. As such, the method utilized as well as
the precise quantitative results of this paper are very different
from that of [7]. In this paper, our main contribution is an
upper bound on the running time of the coding-based gossip
algorithm in terms of spectral properties (or sparse cuts) of the
graph. Our result provides insight into how the graph topology
affects the performance of the algorithm.

A. Setup and model

Consider an arbitrary connected network, represented by
an undirected graph � � �����, with �� � � � nodes.
We assume that the nodes are numbered arbitrarily so that
� � ��� � � � � ��. Each node � � � has a message 	�. We seek
a communication protocol that can be used to disseminate all
of the messages to each of the � nodes.

In the networks in which we are interested, it is useful
to have distributed protocols, in which nodes must obtain
global information through local communication. This notion
is captured by the communication graph �. Specifically, two
nodes � and 
 in the network can communicate with each other
if and only if ��� 
� � �.

To model some of the resource constraints on the nodes,
we impose a transmitter gossip constraint on node commu-
nication. Each node is allowed to contact at most one other
node at a particular time for communication. However, a node
can be contacted by multiple nodes simultaneously.

A time model determines when nodes in the network
communicate with each other. In this work, we consider both a
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synchronous and an asynchronous time model. These models
are defined as follows.

� Synchronous: Time is measured in time slots or rounds,
which are common to all nodes in the network. In any
time slot, each node contacts one neighbor to initiate
a communication. The choice by a node � of which
node to contact can be made randomly, but any random
choice must be independent of the choices made by all
other nodes � �� �. The gossip constraint governs the
simultaneous communication among the nodes.

� Asynchronous: In this model, time is discretized ac-
cording to the ticks of various clocks. Each node has
an independent clock that ticks according to a Poisson
process of rate �. When a node’s clock ticks, it chooses
one neighbor (possibly at random), and contacts that
neighbor.
Equivalently, there is a global clock that ticks according
to a Poisson process of rate �. Let �� denote the time
corresponding to the �th clock tick. Then, the inter-clock-
tick times ����� � ��� are i.i.d. exponential random
variables of rate �. On each tick of the global clock, a
node �� in the network is chosen uniformly at random,
and we consider the global clock tick to be a tick of the
clock at the node ��.

We measure the running times of algorithms in this paper
in absolute time, which is the number of time slots in the syn-
chronous time model, and is (on average) the number of global
clock ticks divided by � in the asynchronous time model. The
relationship between clock ticks in the asynchronous model
and absolute time is further characterized by the following
lemma and corollary.

Lemma 1: For any � � �, let ��� � � � � �� be i.i.d. expo-
nential random variables with rate 	. Let 
� � �

�

��
�����.

Then, for any � � ��� ����,

��

�����
� �
�

	

���� � �

	

�
� � �	


�
�
���

�

�
� (1)

A direct implication of Lemma 1 is the following corollary.
Corollary 2: For � � �, 
���
 � ���. Further, for any

� � ��� ����,

��

������� �
�

�

���� � ��

�

�
� � �	


�
�
���

�

�
� (2)

To measure the performance of a gossip protocol, we now
define a quantity, the information spreading time, as follows.
For any node � � � , and any time �, let ����� be the set of
messages that node � can decode using the information that it
has at time �. Let � be an information spreading algorithm.

Definition 1: For any Æ � �, the Æ-information-spreading
time of the algorithm �, denoted � spr

� �Æ�, is defined as

�
spr
� �Æ� � ��� �� � �� �������	�����	 � ��� � Æ� � (3)

B. Our contribution

We characterize the performance of the coding-based in-
formation dissemination algorithm in an arbitrary connected
graph in terms of properties of cuts in the graph. Given the

graph � � ���
� with � nodes, an �
� non-negative matrix
� is said to conform to the graph � if, for � �� �, � �� � �
whenever ��� �� �� 
. For such a matrix � , we define the �-
conductance of � as follows.

Definition 2: The �-conductance of � , denoted ��
� , is

defined as

��
� � ���

�����������

�
����� ��� ���

	�	
� (4)

Each stochastic matrix that conforms to � gives rise to a
coding-based information dissemination algorithm, whose Æ-
information-spreading time we denote by � spr

� �Æ�. The algo-
rithm (described in detail in Section II) performs as follows.

Theorem 3: Consider the gossip algorithm based on Ran-
dom Linear Coding (over the finite field �	 � � � �), using
a matrix � that is non-negative, stochastic, symmetric, and
conforms to �. Suppose Æ � � is given and � is large enough.
Let �� �

����
���

�
��
�

� Then, in the asynchronous time model,

� spr
� �Æ� � �

�
��

�

�
� �

��� Æ��

�

��
� (5)

while in the synchronous time model,

� spr
� �Æ� � �

�
��

�
��� Æ��

�
� (6)

Note. Theorem 3 implies that the Æ-information-spreading
time when Æ � ��� for complete graphs, constant-degree
expanders, and ring graphs scales as ��� �����, ��� �����,
and �����, respectively1. The bound for the complete graph
is weaker than that of [5] due to the generality of the result.
Specifically, a potential topic for future research is to improve
the lower bound of Lemma 5, which would lead to tighter
time bounds.

C. Organization

The rest of the paper is organized as follows. In Section
II, we describe the network-coding-based information dissem-
ination algorithm. We prove Theorem 3 in Section III, which
consists of analysis of the information dissemination algorithm
in the synchronous and asynchronous models. Finally, we
present our conclusions in Section IV.

II. CODING-BASED GOSSIP ALGORITHM

The coding-based gossip algorithm for information dissem-
ination consists of two components: the gossip mechanism,
which determines how a node chooses a neighbor to contact
when it initiates a communication; and the gossip protocol,
which specifies the message transmitted by a node to its
communication partner during a communication. Recall that
each node starts the communication protocol with its unique
message, and the goal is to spread all of the messages to all
of the nodes. We now describe the gossip mechanism and the
random coding-based gossip protocol.

1These bounds are for the asynchronous time model. Our bounds for the
synchronous time model have an additional ��� � factor, though we suspect
that they can be improved to match the asynchronous bounds.
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Gossip Mechanism. We study a simple gossip mechanism.
When node � initiates a communication, it contacts node �
with probability ��� , independently of all other communication
events. As such, the matrix � containing the entries � �� is
a stochastic matrix. The restriction that communication can
occur only across edges in the graph � corresponds to the
requirement that � conform to the graph �. We will restrict
our attention to symmetric matrices � , i.e., ��� � ���.

In this paper, we assume that nodes transmit data according
to the pull mechanism. That is, when node � contacts node �,
it receives data from node � but does not send data to node �.
Another popular gossip mechanism is the push mechanism, in
which node � sends data to node � when node � contacts node
�. We shall restrict our attention to the pull mechanism here.
However, it will be clear from the result of the paper that a
similar analysis applies to the push mechanism.

The data transmitted from one node to another during a
communication are determined by the random linear coding
(RLC) protocol explained below. When a node has received
“enough” coded messages, it can decode them (see below) to
obtain all � original messages.
Random Linear Coding (RLC) Protocol. This is exactly the
same setup as in [5]. Each message is a vector over a finite field
�� of size � � �. Let each message be a vector of size � � �.
In particular, let the initial message at node � be � � � �

�
� , for

� � � � �, and let � � ���	 
 
 
 	��� denote the set of the
� message vectors. We assume that all the � messages in �
are linearly independent. During the execution of the gossip
algorithm, each node collects linear combinations of message
vectors in � . When each node has � linearly independent such
vectors, it can recover all the messages in � successfully.

Now, consider a certain instant �, during the execution of the
gossip algorithm, when node � becomes active and contacts �.
Let ����� � �
�	 
 
 
 	 
�������� and ����� � ���	 
 
 
 	 ���������
be the sets of all the coded messages at nodes � and �,
respectively, at time �. By definition, for �� � �����	 � �
� � �������, �� � ��

� and �� �
��

��� �����	 ��� � �� 
 The
protocol ensures that node � knows the coefficients � �� (see
[5] for details). An analogous situation holds for � ����.

When a node � contacts node �, it receives a message from
node �. This message is a random coded message with payload
��� � �

�
�, where

��� �
�

��������

����� �� � ��� ����� � �� �
�

�
� �� � ���

The message ��� can be re-written as follows.

��� �
�

��������

���� �
�

��������

��

��
���

�����

�

��
���

�
�

��������
���

�����

�
��� �

��
���

����� (7)

where �� �
��������

��� ����� � ��. For the purpose of decoding,
along with ���, node � transmits the coefficients ���	 
 
 
 	 ���
to node �. We now recall the following key result.

Lemma 4 (Lemma 2.1, [5]): Let �����
� and �����

� denote
the subspaces spanned by the code vectors in � ���� and �����,
respectively. Let �����

� be the subspace spanned by the code
vectors in ����� � �����. Then,

��
�
dim������

�� � dim������
�� � �����

� �� �����
�
�
� �	

�

�



III. ANALYSIS OF GOSSIP ALGORITHM

The performance of the gossip algorithm presented in the
previous section is described by Theorem 3, which we prove
here. We first prove the upper bound involving the asyn-
chronous time model, and then the upper bound regarding the
synchronous time model. Before proceeding towards separate
treatments based on the time model, we first present some
definitions and notation that are common to both time models.
To this end, let � denote a certain instant of time when some
nodes are communicating (� � �� for the asynchronous
model and � � �� for the synchronous model).
Message space. The subspaces spanned by the coded mes-
sages at node � before and after the communication at time �,
respectively, are denoted by �����

� and �����
�. We refer to

the dimension of the subspace �����
� as the dimension of the

node �. In the synchronous model, � ����
� � ����� ���.

Type. Two nodes � and � are said to be of the same type
at time � if �����

� � �����
�, i.e., the subspaces spanned by

the messages at nodes � and � are identical. For example, if
both nodes have enough messages to decode all � original
messages, then the subspaces spanned by both of them will
be the same, so they are of the same type.
Maximum type-size. Under the definition of type, all of the
nodes are partitioned into different equivalence classes, which
we refer to as type classes. At time �, let ���� be the size
of the largest type class (the type class containing the most
nodes), also referred to as the maximum type-size.
Dimension increase. When a node � transmits a random linear
code to a node � such that �����

� �� �����
�, from Lemma

4, dim������
�� � dim������

�� � � with probability at least
�	 ���. Now, suppose that, at time �, two nodes � and � are
not of the same type. Then it must be that either (a) � ����

� ��
�����

� or (b) �����
� �� �����

�. Thus, if the nodes � and �
are of different types, then the dimension of at least one of
the two nodes will increase with probability at least �	 ���
when it pulls a coded message from the other node.
Stopping condition. Since a node can decode all of the
messages when the dimension of its subspace is �, the
information will be disseminated to all of the nodes at the time
��	�� 
 dim������

�� � �	 
� � � �. Initially, at � � � we
have dim������

�� � � for all �. Thus, the information spreads
to all the nodes when the overall dimension increase among all
the nodes is ���	 ��. Let ���� �

��

��� dim������
��	 � be

the total dimension increase at time �. By definition, ���� � �
and the information has spread to all of the nodes when
���� � ��� 	 ��. Now, define �	 � ��	�� 
 ���� � �� and
�	 � ���	�. In words, �	 is the first time when any type class
has at least � nodes, and �	 is the total dimension increase
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at time ��. By definition, �� � �� � �. The following result
provides a lower bound on ��.

Lemma 5: For any � � � � �, �� � ��� � ��.
We note that �� � ����� � ��� � ��, and �� is the

time when all nodes have received enough coded messages
to decode the original messages.

A. Asynchronous model

Preliminaries. Consider a sequence of independent geomet-
ric random variables ��� � � � � �� with parameters ��� � � � � ��,
where � 	 �� 	 � for 
 � �� � � � � �. Now consider independent
exponential random variables ��� � � � � ��, where �� is of rate
�� � ���� � ���

��. It is straightforward to see that �� � �
stochastically dominates ��, and �� stochastically dominates
�� � �. Define 
� � �

�

��
����� and 	
� � � � �

�

��
�����.

Then, 	
� stochastically dominates 
�. Thus, to obtain bounds
on 
��
� � ��, it suffices to obtain bounds on 
�� 	
� � ��.

The following result can be proven using properties of
independent exponential random variables and inequalities
based on Taylor series expansions. Let �� � �
����� ��.

Lemma 6: For 	
� as defined above, let 	�� � �� 	
��. By
definition, 	�� � � � �

�

��
���

�
��
� Then, for any � � �,

��� ��� � �� � ������ � ��	

�
�
�������

�

�
�

We now present a straightforward corollary of Lemma 6.
Corollary 7: For 
� as defined above, let �� � ��
��.

Then, for any � � �,

����� � �� � ����� � 
�� � ��	

�
�
������

�

�
�

Probability of dimension increase. Consider a time � when
the global clock ticks (according to a Poisson process of rate
�). At this instant, only one node receives a coded message
from another node, so the total dimension increase is at
most �. We want to obtain a lower bound on the probability
of increase. To this end, suppose there are � � � types,
��� � � � � ��. Let �� denote the type class of a node 
.

For a pair of nodes 
� �, let ��� be an indicator random
variable that is � if node 
 contacts node � at time � and the
dimension of 
 increases as a result of the communication, and
is � otherwise. The node 
 becomes active with probability
��� and contacts � with probability ��� . Similarly, � contacts

 with net probability ����� � �����. If � � � �� , then there
will be no increase in total dimension if 
 and � communicate.
As noted before, however, if 
 and � belong to different type
classes, then the dimension of at least one of the two nodes will
increase with probability at least ����� if it contacts the other
node. This implies that whenever� � �� �� , ����� �������� �
������������. Using this inequality, we obtain a lower bound
on the probability of dimension increase, denoted 	�.

�� �
�
���

�
� ��������

���	�� 
 ���	��
�

�
�
���

�
� ��������

�
��

�




�
���

�

�
�

��

�
��

�




��
���

�
� ����

��� � (8)

Here, we have used the fact that � is symmetric. Now, we
rewrite the sum in (8) in terms of the type classes.

	� �
�

��

�
��

�

�

� ��
���

�
������ 	���

���

�
�

��

�
��

�

�

� ��
���

����

�
������ 	���

���

����
� (9)

Suppose that � � ���� �����. Then, by definition, ���� � � for
all � � � � �. Using the definition of ��


 and (9), we obtain

	� �
�

��

�
��

�

�

� ��
���

�����
�

 �

��



�

�
��

�

�

�
� (10)

Thus, in the time interval ���� �����, the number of clock ticks
required for a unit dimension increase can be stochastically
bounded from above by a geometric random variable with

parameter ��
�
�
�
�� �

�

�
��

�

� .
When the total dimension increase is ��� � ��, each node

has received enough coded messages to obtain the original
messages. As such, the number of global clock ticks �
required for all nodes to decode all the original messages
can be stochastically upper bounded as � �

�������
��� ��,

where the �� are independent geometric random variables
with parameter �� when � � ���� �����. By definition, �� is
monotonically non-increasing in �. Hence, the smaller the � �
values are, the worse this stochastic upper bound on � is.
From Lemma 5, the worst stochastic upper bound on � is

� �
����
���

���

��

��


�
� 	�� (11)

where the ��

 are independent geometric random variables

with parameter ��. From (11), it is straightforward that for
� � � � �,

��� � � �� 	� � �
�

�� �
�

����
���

�

��



� ��	��� (12)

To obtain the bound with probability � � Æ��, we use
Corollary 7. Let �� � �
������� ���� � ���

�� � �
������� �� �

�
�������

�
�� �

�

�
��

�

� . By definition, ��

 is monotonically non-

increasing in �. Hence, by the definition of 	�,

�� �

�
��

�

�

�
����



�
� �

�
�

	�

�
� (13)

Now, from Corollary 7, for � � �,


�
�
	� � �� � ����� 	� � � ����� ���

�

� ���

�
�
����� 	� �

�

�
� (14)

Let � � �� � ����� 	� � � ���� � ��� when � � � ����	Æ�

���	 
� �
.

Since �� 	� � � �����, we have

� � �
�
�� � ���� 	� �

�
� �

�
	�

�
� �

��� Æ��

�

��
�
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Substituting for � in the inequality in (14), we obtain ��� �� �
�� � Æ��. This provides an upper bound on the number of
clock ticks required for every node to obtain every message.

To extend the bound to absolute time, we apply Corollary 2,
which implies that the probability that � � ���	
 Æ��� clock
ticks do not occur by absolute time ������ is at most Æ��.
We conclude from the union bound, (12), and (13) that

� spr
� �Æ� � �

�
��

�

�
� �

�	
 Æ��

�

��
	

B. Synchronous model

We begin as in the analysis of the asynchronous model.
Suppose that at time 
 � 

�� 
���� there are � type classes,

�� 	 	 	 � 
�. As before, ��� is an indicator random variable
specifying whether node � contacts node � and the dimension
of � increases in round 
. Let ��
� � ��
������
� denote
the total dimension increase of all nodes in this round, so that

��
� �
�
���

�
���

��� 	 (15)

Repeating the argument for the asynchronous model, we
consider two nodes � and � of different classes 
 � �� 
� . In the
synchronous model, we have �
��� ���
���� � ����������
(the factor of ��� in the asynchronous case is not present
because all nodes are simultaneously active in the synchronous
model). We use (15) and this lower bound to obtain a lower
bound on �
��
��.

�
��
�� �
�
���

�
� ��������

��
��� � ��
�����

�
�

�

�
��

�

�

� ��
	��

�
	�

�
������ ����

���

�
	�

�
���

�

�

�
��

�

�

�
�
� ���	 (16)

This provides a lower bound on the expected total dimension
increase during any round in the period 

�� 
����. Note that
this lower bound holds for any 
 � 

�� 
���� uniformly. Define

���
� �


���
��
�

������ ��������
����� (17)

where ���
�� � �. For 
 � 
�, ���
� is a submartingale, i.e.,

�
���
� �� � ���
�� � ���
�	 (18)

The quantity 
��� is a stopping time with respect to the
history of the algorithm. It is easy to show that �

���� ��
via a stochastic upper bound using a certain geometric random
variable with positive probability. Moreover, the submartingale
���
� has bounded increments. A stopped submartingale is a
submartingale, and hence we obtain

�
���
����� � �
���
��� � �	 (19)

Now, from the definitions of 
�� 
���� ��� ����, and (19), we
obtain

�
���� � ��� � ����

��� � 
��	 (20)

Recall that 

 is the time when all nodes can decode all the
messages. Summing the inequality in (20) for all � � � � ���
yields

�


� �

���
���

�
���� � ���

���
	 (21)

From Lemma 5 and the fact that �� is monotonically non-
increasing in �, the quantity in the right-hand side of the
inequality in (21) is maximized when �� � ��� � ��. Hence,

�


� �


���
���

��

���
�

���

�
	 (22)

By Markov’s inequality, the inequality in (22) implies that
���

 � ������ � ���.

Now, for the purpose of analysis, consider dividing time
into epochs of length �����, and executing the information
dissemination algorithm from the initial state in each epoch,
independently of the other epochs. The probability that, after
�	
 Æ�� epochs, some execution of the algorithm has run to
completion in its epoch is greater than ��Æ. Using the running
time of this virtual process as a stochastic upper bound on the
running time of the actual algorithm, we can conclude that
� spr
� �Æ� � �������� �	
 Æ���.

IV. CONCLUSION

In this paper, we considered the question of information
dissemination via gossip algorithms. Specifically, we studied
the information dissemination time for a gossip algorithm
based on network coding. The use of coding was shown to
be beneficial by Deb and Médard for information dissemina-
tion in the context of a complete graph. The main question
that remained open was whether this coding-based gossip
algorithm can help improve the performance of information
dissemination in an arbitrary graph.

Motivated by this question, we analyzed the performance
of an information dissemination algorithm based on coding
for arbitrary graphs. We found that the performance of the
algorithm is closely related to spectral properties of the graph.
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