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Abstract— Current approaches to the practical implementation
of network coding are batch-based, and often do not use feedback,
except possibly to signal completion of a file download. In this
paper, the various benefits of using feedback in a network coded
system are studied. It is shown that network coding can be
performed in a completely online manner, without the need for
batches or generations, and that such online operation does not
affect the throughput. Although these ideas are presented in a
single-hop packet erasure broadcast setting, they naturally extend
to more general lossy networks, which employ network coding
in the presence of feedback. The impact of feedback on sender-
side queue size and receiver-side decoding delay is studied in an
asymptotic sense as the traffic load approaches capacity. Different
notions of decoding delay are considered, including an order-
sensitive notion, which assumes that packets are useful only
when delivered in order. Strategies for adaptive coding based
on feedback are presented. Our scheme achieves throughput
optimality and asymptotically optimal sender queue size and is
conjectured to achieve asymptotically optimal in-order delivery
delay for any number of receivers. This paper may be viewed
as a natural extension of Automatic Repeat reQuest to coded
networks.

Index Terms— ARQ, decoding delay, network coding.

I. INTRODUCTION

HIS paper is a step towards low-delay, high-throughput

solutions based on network coding, for real-time data
streaming applications over a packet erasure network. In par-
ticular, it considers the role of feedback for queue management
and delay control in such systems.

A. Background

Reliable communication over a network of packet erasure
channels is a well studied problem, especially when there is
no feedback. We survey some of the approaches from the
literature.

1) Digital Fountain Codes: The digital fountain
codes ([1], [2]) constitute a well-known approach to this
problem. From a block of k transmit packets, the sender
generates random linear combinations in such a way that the
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receiver can, with high probability, decode the block once it
receives any set of slightly more than k linear combinations.
This approach has low complexity and requires no feedback,
except to signal successful decoding of the block. However,
fountain codes are designed for a point-to-point erasure
channel and in their original form, do not extend readily to a
network setting. In a two-link tandem network, an end-to-end
fountain code with simple forwarding at the middle node
will result in throughput loss. If the middle node chooses
to decode and re-encode an entire block, the scheme will
be sub-optimal in terms of delay, as pointed out by [3].
In this sense, the fountain code approach is not composable
across links. For the special case of tree networks, there has
been some recent work on composing fountain codes across
links by enabling the middle node to re-encode even before
decoding the entire block [4].

2) Random Linear Network Coding: Network coding was
originally introduced for error-free networks with specified
link capacities ([5], [6]), and was extended to erasure net-
works [7]. The random linear network coding solution of [8]
does not require decoding at intermediate nodes and can
be applied in any network. Each node transmits a random
linear combination of all coded packets it has received so
far. With high probability, the transmitted packet will have
the innovation guarantee property, i.e., it will be innovative'
to every receiver that receives it successfully, except if the
receiver already knows as much as the sender. In [8], this
scheme is shown to achieve capacity for a multicast session.

Although fountain codes and random linear network coding
are both rateless, the encoding operation is performed on a
block (or generation) of packets. There is no guarantee that the
receiver will be able to extract any of the original packets from
the coded packets until the entire block has been decoded,
resulting in a decoding delay.

This is not a problem if the higher layers will anyway
use a block only as a whole (e.g., file download). This
corresponds to traditional approaches in information theory
where the message is assumed to be useful only as a whole.
No incentive is placed on decoding “a part of the message”
using a part of the codeword. However, many applications
today involve broadcasting a continuous stream of packets in
real-time (e.g., video streaming). Sources generate a stream of
messages which have an intrinsic temporal ordering. Playback
is possible only till the point up to which all packets have been
recovered, which we call the front of contiguous knowledge.
There is incentive to decode the older messages earlier, as this

T An innovative packet is a linear combination of packets which is linearly
independent of previously received linear combinations, and thus conveys new
information.
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will reduce the playback latency. In block-based approaches,
block sizes will have to be large to ensure high throughput but
if playback can begin only after receiving a full block, then
large blocks will imply a large delay.

This raises an interesting question: can we code in such
a way that playback can begin even before the full block is
received? In other words, we are more interested in packet
delay than block delay. These issues have been studied
by [9], [10], and [11] in a point-to-point setting. However, in a
network setting, the problem is not well understood. Moreover,
these works do not consider the queue management aspects of
the problem. In related work, [12], [13] address the question
of how many original packets are revealed before the whole
block is decoded in a fountain code setting. However, playback
performance may depend on not only how much data reaches
the receiver in a given time, but also which part of the data,
i.e., the order in which they are recovered.

3) Priority Encoding Transmission: Priority encoding
transmission (PET) ([14]), addresses this problem with a
code for the erasure channel that ensures that the first
(or highest priority) i messages can be decoded using the first
k; coded packets, where k; increases with decreasing priority.
In [15] and [16], this is extended to systems that perform
network coding. A concatenated network coding scheme is
proposed in [16], with a delay-mitigating pre-coding stage.
This scheme guarantees that the kth innovative reception will
enable the receiver to decode the kth message. In such schemes
however, the ability to decode messages in order requires a
reduction in throughput because of the pre-coding stage.

B. Motivation

The main motivation for our current work is that the
availability of feedback brings the hope of simultaneously
achieving the best possible throughput along with minimal
packet delay and queue size.

Reliable communication over a point-to-point packet erasure
channel with full feedback can be achieved using the Auto-
matic Repeat reQuest (ARQ) scheme — whenever a packet
gets erased, the sender retransmits it. Every successful recep-
tion conveys a new packet, implying throughput optimality.
Moreover, this new packet is always the next unknown packet,
which implies the lowest possible packet delay. Since there is
feedback, the sender never stores anything the receiver already
knows, implying optimal queue size. Thus, this simple scheme
simultaneously achieves the optimal throughput, delay and
queue size. Moreover, the scheme is completely online and
not block-based.

However, ARQ is not sufficient beyond a single point-
to-point link. Coding across packets is necessary to achieve
optimal throughput, even if we allow feedback. For instance,
in the network coding context, link-by-link ARQ cannot
achieve the multicast capacity of the butterfly network from
network coding literature [5]. Similarly, ARQ is sub-optimal
for broadcast-mode links because retransmitting a packet that
some receivers did not get is wasteful for the others that
already have it. In contrast, network coding achieves the
multicast capacity of any network and also readily extends to
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networks with broadcast-mode links. Thus, in such situations,
coding is indispensable from a throughput perspective.

This leads to the question — how to combine the benefits
of ARQ and network coding? The goal is to extend ARQ’s
desirable properties in the point-to-point context to systems
that require coding across packets.

The problem with applying ARQ to a coded system is that a
new reception may not always reveal the next unknown packet
to the receiver, but may bring in a linear equation involving
the packets. In conventional ARQ, upon receiving an ACK, the
sender drops the ACKed packet and transmits the next one.
But in a coded system, upon receiving an ACK for a linear
equation, it is not clear which linear combination the sender
should pick for its next transmission to obtain the best system
performance. This is important because, if the receiver has
to collect many equations before it can decode the unknowns
involved, this could lead to a large decoding delay.

A related question is: upon receiving the ACK for a
linear equation, which packet can be excluded from future
coding, i.e., which packet can be dropped from the sender’s
queue? If packets arrive at the sender according to some
stochastic process, (as in [17] and [18]) and links are lossy
(as in [7] and [8]), then the queue management aspect of the
problem also becomes important.

Dropping packets that all receivers have decoded would
clearly not affect reliability. However, storing all undecoded
packets may be suboptimal. Consider a situation where the
sender has n packets p1,p2...,Pn, and all receivers have
received (n — 1) linear combinations: (p1 +p2), (P2 +p3), - - -,
(Pn—1+Pn)- A drop-when-decoded scheme will not allow the
sender to drop any packet, since no packet can be decoded
by any receiver yet. However, the backlog in the amount of
information, also called the virtual queue ( [17], [18]), has a
size of just 1. We ideally want the physical queue to track the
virtual queue in size. In this example, it would be sufficient if
the sender stores any one pj in order to ensure reliable delivery.

If we have feedback in a system with network coding,
what is the best possible tradeoff between throughput, delay
and queue size? In particular, how close can we get to the
performance of ARQ for the point-to-point case? These are
the questions we address in this paper.

II. OUR CONTRIBUTION

We show that with the proper use of feedback, it is possible
to perform network coding in a completely online manner
similar to ARQ schemes, without the need for a block-
based approach. We study the benefits of feedback in a
coded network in terms of the following two aspects — queue
management and decoding delay.

We consider a system with stochastic packet arrivals and
study the problem using a queuing theory approach. Let A
be the arrival rate, u be the channel quality parameter, and
p £ 2/ be the load factor. We consider asymptotics when
the p approaches 1, while keeping either 4 or u fixed at a
value less than 1. The optimal throughput requirement means
that the queue of undelivered packets is stable for all p < 1.
We treat packets as vectors over a finite field. We restrict
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TABLE I
EXAMPLE OF THE DROP-WHEN-SEEN ALGORITHM

Time | Sender’s queue Transmitted packet Channel state A B
Decoded Seen  but | Decoded Seen but
not decoded not decoded
1 P1 P1 — A, » B P1 - - -
2 P1, P2 P1 @ p2 — A —B P1; P2 - - P1
3 P2, P3 p2 b ps - A — B P1; P2 - - P1, P2
4 P3 P3 - A, = B P1, P2 - P1,P2; P3 -
5 P3, P4 P3 ® pa — A, » B P1,P2 P3 P1,P2,P3 -
6 P4 P4 —A —B P1,P2,P3,P4 | - P1,P2,P3,P4 | -

our attention to linear network coding. Therefore, the state
of knowledge of a node can be viewed as a vector space over
the field (see Section III for further details).

A. Queue Management

We propose a new acknowledgment mechanism that
acknowledges degrees of freedom? instead of original decoded
packets. Based on this new form of ACKs, we propose an
online coding module that naturally generalizes ARQ to coded
systems. The code implies a queue update algorithm that
ensures that the physical queue size at the sender will track
the backlog in degrees of freedom.

The key intuition is that the sender need not use for coding
(and hence need not store) any information that has already
been received by all the receivers. To be specific, we can
ensure reliability even if we restrict the sender’s transmit
packet to be chosen from a subspace that is independent® of
the subspace representing the common knowledge available at
all the receivers. Therefore, the queue simply needs to store
a basis for a coset space with respect to the subspace of
knowledge common to all the receivers. We define a specific
way of computing this basis using the new notion of a node
“seeing” a message packet, which is defined below.

Definition 1 (Index of a Packet): For any positive
integer k, the kth packet that arrives at the sender is
said to have an index k.

Definition 2 (Seeing a Packet): A node is said to have seen
a message packet p if it has received enough information to
compute a linear combination of the form (p + q), where q
is itself a linear combination involving only packets with an
index greater than that of p. (Decoding implies seeing, as we
can pick q =0.)

In conventional ARQ, a receiver ACKs a packet upon
decoding it successfully. However, in our scheme a receiver
ACKs a packet when it sees the packet. Our new scheme is
called the drop-when-seen algorithm because the sender drops
a packet if all receivers have seen (ACKed) it.

Since decoding implies seeing, the sender’s queue is
expected to be shorter under our scheme compared to the drop-
when-decoded scheme. However, we will need to show that in
spite of dropping seen packets even before they are decoded,
we can still ensure reliable delivery. To prove this, we present

2Here, degree of freedom refers to a new dimension in the vector space
representing the sender’s knowledge.

3A subspace Sy is said to be independent of another subspace S if
S1 NSy = {0}. See [19] for more details.

a deterministic coding scheme that uses only unseen packets
and still guarantees that the coded packet will simultaneously
cause each receiver that receives it successfully, to see
its next unseen packet. We will prove later that seeing a
new packet translates to receiving a new degree of freedom.
This means, the innovation guarantee property is satisfied and
therefore, reliability and 100% throughput can be achieved
(see Algorithm 2 (b) and corresponding Theorems 6 and 8 in
Section IV-C).

The intuition is that if all receivers have seen p, then their
uncertainty can be resolved using only packets with index
more than that of p because after decoding these packets, the
receivers can compute ¢ and hence obtain p as well. Therefore,
even if the receivers have not decoded p, no information is lost
by dropping it, provided it has been seen by all receivers.

Next, we present an example that explains our algorithm for
a simple two-receiver case. Section IV-C3 extends this scheme
to more receivers.

Example: Table 1 shows a sample of how the proposed
idea works in a packet erasure broadcast channel with two
receivers A and B. The sender’s queue is shown after the
arrival point and before the transmission point of a slot
(see Section III for details on the setup). In each slot, based
on the ACKs, the sender identifies the next unseen packet for
A and B. If they are the same packet, then that packet is sent.
If not, their XOR is sent. It can be verified that with this rule,
every reception causes each receiver to see its next unseen
packet.

In slot 1, py reaches A but not B. In slot 2, (p1 & p2)
reaches A and B. Since A knows pj, it can also decode pa.
As for B, it has now seen (but not decoded) p;. At this
point, since A and B have seen p1, the sender drops it. This
is fine even though B has not yet decoded pj, because B
will eventually decode pz (in slot 4), at which time it can
obtain pg. Similarly, pz, p3 and p4 will be dropped in slots 3,
5 and 6 respectively. However, the drop-when-decoded policy
will drop p; and p2 in slot 4, and p3 and p4 in slot 6.
Thus, our new strategy clearly keeps the queue shorter. This is
formally proved in Theorem 1 and Theorem 6. The example
also shows that it is fine to drop packets before they are
decoded. Eventually, the future packets will arrive, thereby
allowing the decoding of all the packets.

Implications of Our New Scheme:

o Queue size: The physical queue size is upper-bounded
by the sum of the backlogs in degrees of freedom
between the sender and all the receivers. This fact implies
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that as the traffic load approaches capacity (as load

factor p — 1), the expected size of the physical queue
1

at the sender is O =5
single-receiver ARQ, and hence, is order-optimal.

o Queuing analysis: Our scheme forms a natural bridge
between the virtual and physical queue sizes. It can be
used to extend results on the stability of virtual queues
such as [17], [18], and [20] to physical queues. Moreover,
various results obtained for virtual queues from traditional
queuing theory, such as the transform based analysis
for the queue size of M/G/1 queues, or even a Jackson
network type of result [8], can be extended to the physical
queue size of nodes in a network coded system.

o Simple queue management: Our approach based on
seen packets ensures that the sender does not have to
store linear combinations of the packets in the queue to
represent the basis of the coset space. Instead, it can store
the basis using the original uncoded packets themselves.
Therefore, the queue follows a simple first-in-first-out
service discipline.

« Online encoding: All receivers see packets in the same
order in which they arrived at the sender. This gives a
guarantee that the information deficit at the receiver is
restricted to a set of packets that advances in a streaming
manner and has a stable size (namely, the set of unseen
packets). In this sense, the proposed encoding scheme is
truly online.

« Easy decoding: Every transmitted linear combination is
sparse — at most n packets are coded together for the n
receiver case. This reduces the decoding complexity as
well as the overhead for embedding the coding coeffi-
cients in the packet header.

« Extensions: We present our scheme for a single packet
erasure broadcast channel. However, our algorithm is
composable across links and can be applied to a tandem
network of broadcast links. With suitable modifications,
it can potentially be applied to a more general setup
like the one in [7] provided we have feedback. Such
extensions are discussed further in Section VII.

. This is the same order as for

B. Decoding Delay

The drop-when-seen algorithm and the associated coding
module do not guarantee that the seen packets will be decoded
immediately. In general, there will be a delay in decoding, as
the receiver will have to collect enough linear combinations
involving the unknown packets before being able to decode
the packets.

Online feedback-based adaptation of the code with the goal
of minimizing decoding delay has been studied in the literature
and related earlier work is discussed in II-C.

The expected per-packet delay of a receiver in a sys-
tem with more than one receiver is clearly lower bounded
by the corresponding quantity for a single-receiver system.
We introduce a new requirement that the growth of the average
decoding delay as a function of ﬁ as p — 1 should meet
this lower bound asymptotically, i.e., we aim to guarantee
asymptotically optimal decoding delay as the system load
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approaches capacity. The motivation is that in most practical
systems, delay becomes a critical issue only when the system
starts approaching its full capacity. When the load on the
system is well within its capacity, the delay is usually small
and hence not an issue. We also study a stronger notion of
delay, namely the delivery delay, which measures delay until
the point when the packet can be delivered to the application
above, with an in-order delivery constraint.

We provide a new coding module for any number of
receivers that achieves optimal throughput and asymptoti-
cally optimal queue size at the sender. We conjecture that
it also achieves an asymptotically optimal decoding and
delivery delay as the system approaches capacity, in the
following sense. With a single receiver, the optimal scheme
is ARQ with no coding and we show that this achieves an
expected per-packet delay at the sender of ® (ﬁ) With
more than one receiver, we conjecture that our scheme also
achieves a delay of O (ﬁ) and thus meets the lower bound
in an asymptotic sense.

We have verified these conjectures through simulations
for values of p that are very close to 1. It is useful to
note that asymptotically optimal decoding delay translates
to asymptotically optimal expected queue occupancy at the
sender using the simple queuing rule of dropping packets that
have been decoded by all receivers. Note that the conjectures,
if true, would also imply that the memory requirement on the
receiver side for decoding and resequencing would also grow
as O (ﬁ) by Little’s theorem.

Adaptive coding allows the sender’s code to incorporate
receivers’ states of knowledge and thereby enables the sender
to control the evolution of the front of contiguous knowledge.
Our schemes may thus be viewed as a step towards feedback-
based control of the tradeoff between throughput and decoding
delay, along the lines suggested in [21].

C. Related Earlier Work

n [22], Shrader and Ephremides study the queue stability
and delay of block-based random linear coding versus uncoded
ARQ for stochastic arrivals in a broadcast setting. However,
this work does not consider the combination of coding and
feedback in one scheme. In related work, [23] studies load-
dependent variable sized coding blocks with ACKs at the
end of a block, using a bulk-service queue model. The main
difference in our work is that receivers ACK packets even
before decoding them, and this enables the sender to perform
online coding.

Sagduyu and Ephremides [24] consider online feedback-
based adaptation of the code, and propose a coding scheme
for the case of two receivers. This work focuses on the
maximum possible stable throughput, and does not consider
the use of feedback to minimize queue size or decoding delay.
In [25], the authors study the throughput of a block-based
coding scheme, where receivers acknowledge the successful
decoding of an entire block, allowing the sender to move to
the next block. Next, they consider the option of adapting the
code based on feedback for the multiple receiver case. They
build on the two-receiver case of [24] and propose a greedy
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deterministic coding scheme that may not be throughput
optimal, but picks a linear combination such that the number
of receivers that immediately decode a packet is maximized. In
contrast, in our work we consider throughput-optimal policies
that aim to minimize queue size and delay.

In [26], Lacan and Lochin propose an erasure coding algo-
rithm called Tetrys to ensure reliability in spite of losses on the
acknowledgment path. While this scheme also employs coding
in the presence of feedback, their approach is to make minimal
use of the feedback, in order to be robust to feedback losses.
As opposed to such an approach, we investigate how best
to use the available feedback to improve the coding scheme
and other performance metrics. For instance, in the scheme
in [26], packets are acknowledged (if at all) only when they are
decoded, and these are then dropped from the coding window.
However, we show in this work that by dropping packets
when they are seen, we can maintain a smaller coding window
without compromising on reliability and throughput. A smaller
coding window translates to lower encoding complexity and
smaller queue size at the sender.

The use of ACKs and coded retransmissions in a packet
erasure broadcast channel has been considered for multiple
unicasts [27] and multicast ([28]-[31]). The main goal of
these works however, is to optimize the throughput. Other
metrics such as queue management and decoding delay are
not considered. In our work, we focus on using feedback
to optimize these metrics as well, in addition to achieving
100% throughput in a multicast setting. Our coding module
(in Section IV-C5) is closely related to the one proposed by
Larsson in an independent work [30]. However, our algo-
rithm is specified using the more general framework of seen
packets, which allows us to derive the drop-when-seen queue
management algorithm and bring out the connection between
the physical queue and virtual queue sizes. Reference [30]
does not consider the queue management problem. Moreover,
using the notion of seen packets allows our algorithm to be
compatible even with random coding. This in turn enables
a simple ACK format and makes it suitable for practical
implementation. (See Remark 2 for further discussion.)

Coding for per-packet delay has been studied in earlier
work by Martinian et al. [9]. However, that work considered
a point-to-point setting unlike our broadcast scenario. The
problem of the delay for recovering packets from a file has
been studied in the rateless code framework with or without
feedback, by [12] and [13]. Reference [10] also considered
the problem of coding for delay using feedback. The setting
there is in terms of a fixed delay model for point-to-point
communication, where each packet has a deadline by which
it needs to be delivered. A packet which does not meet its
deadline is considered to be in error, and the corresponding
error exponents are characterized. In contrast, we consider the
expected per-packet delay in a queuing theoretic framework,
with no strict deadlines. Besides, our setting is a point-to-
multipoint (broadcast) packet erasure channel.

For a packet erasure broadcast channel with two receivers,
Durvy et al. [32] have proposed a feedback-based throughput
optimal coding scheme that ensures that every successful
innovative reception at any receiver will cause it to decode an
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original packet. This property is called instantaneous decod-
ability. Keller et al. [33] also studied this problem and pro-
posed and compared several algorithms to reduce the decoding
delay. This work did not consider the in-order delivery prob-
lem. With prior knowledge of the erasure pattern, [33] gave an
offline algorithm that achieves optimal delay and throughput
for the case of three receivers. However, in the online case,
even with only three receivers, [32] shows through an example
(Example V.1) that it is not possible to simultaneously ensure
instantaneous decodability as well as throughput optimality.

Both [32] and [33] consider the transmission of a given
finite set of packets. In contrast, [24] assumes that packets
arrive at the source according to a stochastic process in a
streaming manner and proposes a coding scheme for two
receivers. The focus however, is to ensure stable throughput
and not low delay. In [25], the authors propose a greedy coding
scheme for the case of more than 2 receivers, which aims to
maximize the number of receivers that can decode a packet
instantaneously, at the expense of losing throughput.

Reference [34] considers heterogeneous channels to the
receivers, and proposes a systematic online encoding scheme
that sends uncoded packets to enable frequent decoding at
the receivers. However, no characterization of the asymptotic
behavior of the decoding or delivery delay is provided.

In our current work, we focus on throughput-optimal
schemes in a stochastic arrival setting. In the light of earlier
results that instantaneously decodability and throughput opti-
mality cannot be simultaneously guaranteed with more than
2 receivers, we aim for a relaxed requirement of asymptotically
optimal delay where the asymptotics are in the limit of the load
factor p — 1. However, while the earlier work did not consider
the in-order delivery constraint, we study both decoding and
delivery delay. For the case of two receivers, it can be shown
that the scheme in [32] satisfies this requirement due to the
instantaneous decodability property, i.e., the scheme achieves
the asymptotically optimal average decoding delay, and seems
to achieve it for delivery delay as well based on simulations.
In fact, the algorithm of [32] is a special case of our algorithm.

Our work provides a new coding module that achieves
throughput optimality and is conjectured to achieve asymp-
totically optimal decoding and delivery delay for any number
of receivers.

D. Organization

The rest of the paper is organized as follows. Section III
describes the packet erasure broadcast setting. Section IV is
concerned with adaptive codes that minimize the sender’s
queue size. In Section IV-A, we define and analyze a base-
line algorithm that drops packets only when they have been
decoded by all receivers. Section IV-B presents a generic
form of our newly proposed algorithm, and introduces the
idea of excluding from the sender’s queue, any knowledge
that is common to all receivers. We show that the algorithm
guarantees that the physical queue size tracks the virtual queue
size. Section IV-C presents an easily implementable variant of
the generic algorithm of Section IV-B, called the drop-when-
seen algorithm. The drop-when-seen algorithm consists of a
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queuing module that provides guarantees on the queue size,
and a coding module that provides guarantees on reliability
and throughput, while complying with the queuing module.
In Section VI, we investigate adaptive codes aimed at min-
imizing the receivers’ decoding delay. We propose a new
coding module that is proved to be throughput optimal and
conjectured to be asymptotically optimal in terms of delay.
Section VII presents some ideas on extending the algorithms
to more general topologies and scenarios. Finally, Section VIII
gives the conclusions.

III. THE SETUP

In this paper, we consider a communication problem where
a sender wants to broadcast a stream of data to n receivers.
The data are organized into packets, which are essentially
vectors of fixed size over a finite field IF,. A packet erasure
broadcast channel connects the sender to the receivers. Time
is slotted. The details of the queuing model and its dynamics
are described next.

A. The Queuing Model

The sender is assumed to have an infinite buffer, i.e., a queue
with no preset size constraints. We assume that the sender is
restricted to use linear codes. Thus, every transmission is a
linear combination of packets from the incoming stream that
are currently in the buffer. The vector of coefficients used in
the linear combination summarizes the relation between the
coded packet and the original stream. We assume that this
coefficient vector is embedded in the packet header. A node
can compute any linear combination whose coefficient vector
is in the linear span of the coefficient vectors of previously
received coded packets. In this context, the state of knowledge
of a node can be defined as follows.

Definition 3 (Knowledge of a Node): The knowledge of a
node at some point in time is the set of all linear combinations
of the original packets that the node can compute, based on
the information it has received up to that point. The coefficient
vectors of these linear combinations form a vector space called
the knowledge space of the node.

In the following definitions, V denotes the sender’s knowl-
edge space, and V; denote the knowledge space of receiver j
for j =1,2,...,n.

Definition 4 (Virtual Queue): For j = 1,2, ..., n, the size
of the jth virtual queue corresponding to receiver j is defined
to be the difference between the dimension of the V and that
of V;.

Definition 5 (Degree of Freedom): The term degree of free-
dom refers to one dimension in the knowledge space of a node.
It corresponds to one packet worth of data.

Definition 6 (Innovative Packet): A coded packet with
coefficient vector ¢ is said to be innovative to a receiver j if
¢ ¢ V;. Such a packet, if successfully received, will increase
the dimension of the receiver’s knowledge space by one unit.

Definition 7 (Innovation Guarantee Property): A coding
scheme is said to have the innovation guarantee property if
in every slot, the coefficient vector of the transmitted linear
combination is in V\V; for every j such that V; # V.
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In other words, the transmission is innovative to every
receiver except when the receiver already knows everything
that the sender knows.

We use the notion of a virtual queue to represent the backlog
between the sender and receiver in terms of linear degrees of
freedom. This notion was also used in [17], [18], and [20].
There is one virtual queue for each receiver. We will use the
term physical queue to refer to the sender’s actual buffer, in
order to distinguish it from the virtual queues. Note that the
virtual queues do not correspond to real storage.

B. Arrivals

Packets arrive into the sender’s physical queue according
to a Bernoulli process* of rate A. An arrival at the physical
queue translates to an arrival at each virtual queue since the
new packet is a new degree of freedom that the sender knows,
but none of the receivers knows.

C. Service

The channel accepts one packet per slot. Each receiver either
receives this packet with no errors (with probability u) or
an erasure occurs (with probability (1 — u«)). Erasures occur
independently across receivers and across slots. The receivers
are assumed to be capable of detecting an erasure.

We only consider coding schemes that satisfy the innovation
guarantee property. This property implies that if the virtual
queue of a receiver is not empty, then a successful reception
reveals a previously unknown degree of freedom to the receiver
and the virtual queue size decreases by one unit. We can
thus map a successful reception by some receiver to one unit
of service of the corresponding virtual queue. This means,
in every slot, each virtual queue is served independently of
the others with probability u.

The relation between the service of the virtual queues and
the service of the physical queue depends on the queue update
scheme used, and will be discussed separately under each
update policy.

D. Feedback

We assume perfect delay-free feedback. In Algorithm 1
below, feedback is used to indicate successful decoding. For
all the other algorithms, the feedback is needed in every slot
to indicate the occurrence of an erasure.

E. Timing

Figure 1 shows the relative timing of events within a slot.
All arrivals are assumed to occur just after the beginning
of the slot. The point of transmission is after the arrival
point. For simplicity, we assume very small propagation time.
Specifically, we assume that the transmission, unless erased by
the channel, reaches the receivers before they send feedback
for that slot and feedback from all receivers reaches the
sender before the end of the same slot. Thus, the feedback

4We have assumed Bernoulli arrivals for ease of exposition. However, we
expect the results to hold for more general arrival processes as well.
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arrival transmission feedback departure for
physical queue
Fig. 1. Relative timing of arrival, service and departure points within a slot.

incorporates the current slot’s reception also. Based on this
feedback, packets are dropped from the physical queue just
before the end of the slot, according to the queue update rule.
Queue sizes are measured at the end of the slot.

F. Asymptotic Behavior

The load factor is denoted by p := A/u. In what follows,
we will study the asymptotic behavior of the expected queue
size and decoding delay under various policies, as p — 1
from below. For the asymptotics, we assume that either A or
u is fixed, while the other varies causing p to increase to 1.
We use the commonly-used asymptotic notations of O(.), @ (.)
and Q(.) to denote asymptotic bounds. Specifically, f(x) =
O(g(x)) denotes that g(x) bounds f(x) asymptotically from
above. f(x) = Q(g(x)) denotes that g(x) bounds f(x)
asymptotically from below. f(x) = @ (g(x)) denotes that g(x)
bounds f(x) asymptotically from above and below.

IV. QUEUE SIZE

In this section, we are concerned with minimizing the
sender’s physical queue size. We first present a baseline queue
update algorithm — retain packets in the queue until the
feedback confirms that they have been decoded by all the
receivers. Then, we present a new queue update rule that is
motivated by a novel coding algorithm. The new rule allows
the physical queue size to track the virtual queue sizes.

A. Algorithm 1: Drop When Decoded (Baseline)

The baseline scheme combines a random coding strategy
with a drop-when-decoded rule for queue update. The coding
scheme is an online version of [8] with no preset generation
size — a coded packet is formed by computing a random linear
combination of all packets currently in the queue. With such
a scheme, the innovation guarantee property will hold with
high probability, provided the field size is large enough (We
assume the field size is large enough to ignore the probability
that the coded packet is not innovative. It can be incorporated
into the model by assuming a slightly larger probability of
erasure because a non-innovative packet is equivalent to an
erasure.).

For any receiver, the packets at the sender are unknowns,
and each received linear combination is an equation in these
unknowns. Decoding becomes possible whenever the number
of linearly independent equations catches up with the number
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Fig. 2. Markov chain representing the size of a virtual queue. Here
Ax=(1—-=2)and i := (1 — p).

of unknowns involved. The difference between the number
of unknowns and the number of equations is essentially the
backlog in degrees of freedom, i.e., the virtual queue size.
Thus, a virtual queue becoming empty translates to successful
decoding at the corresponding receiver. Whenever a receiver
is able to decode in this manner, it informs the sender. Based
on this, the sender tracks which receivers have decoded each
packet, and drops a packet if it has been decoded by all
receivers. From a reliability perspective, this is fine because
there is no need to involve decoded packets in the linear
combination.

Remark 1: In general, it may be possible to solve for some
of the unknowns even before the virtual queue becomes empty.
For example, this could happen if a newly received linear com-
bination cancels all but one unknown in a previously known
linear combination. It could also happen if some packets were
involved in a subset of equations that can be solved among
themselves locally. Then, even if the overall system has more
unknowns than equations, the packets involved in the local
system can be decoded. However, these are secondary effects
and we ignore them in this analysis. Equivalently, we assume
that even if a packet is decoded before the virtual queue
becomes empty, the sender waits for the next emptying of
the virtual queue before dropping the packet. We believe this
assumption will not change the asymptotic behavior of the
queue size, since decoding before the virtual queue becoming
empty is a rare event with random linear coding over a large
field.

We will now compare the virtual and physical queue sizes
in steady state. We introduce some notation:

Q(t):= Sender’s physical queue size at the end of slot ¢
Q;(t):= Size of jth virtual queue at the end of slot ¢

1) The Virtual Queue Size in Steady State: Figure 2 shows
the Markov chain for Q; (7). If 4 < u, then the chain {Q; (¢)}
is positive recurrent and has a steady state distribution given
by [35]:

= lim P[Q;() =kl = (1 —aa", k=0 (1)

where a = i((lliﬁ;. Thus, the expected size of any virtual

queue in steady state is given by:

tl_i)rgoE[Qj(l)] :Zjﬂ'j =(1—u)-

Jj=0

_r
(1-p)

2) The Physical Queue Size in Steady State: The following
theorem characterizes the asymptotic behavior of the physical
queue size under Algorithm 1, as the load on the system
approaches capacity (p — 1).

2)
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TABLE 11
THE UNCODED VS. CODED CASE

Uncoded Networks

Coded Networks

Knowledge represented by Set of received packets

Vector space spanned by the coefficient vectors of the
received linear combinations

Amount of knowledge Number of packets received

Number of linearly independent (innovative) linear com-
binations of packets received (i.e., dimension of the
knowledge space)

Queue stores All undelivered packets

Linear combination of packets which form a basis
for the coset space of the common knowledge at all
receivers

Update rule after each trans-

mission all receivers, drop it.

If a packet has been received by

Recompute the common knowledge space Va; Store
a new set of linear combinations so that their span is
independent of Va

Theorem 1: The expected size of the physical queue in
1

steady state for Algorithm 1 is Q )

See Appendix A for the proof.

Comparing with Equation (2), this result makes it clear that
the physical queue size under Algorithm 1 does not track the
virtual queue size.

B. Algorithm 2 (a): Drop Common Knowledge

In this section, we first present a generic algorithm that
operates at the level of knowledge spaces and their bases, in
order to ensure that the physical queue size tracks the virtual
queue size. Later, we shall describe a simple-to-implement
variant of this generic algorithm.

1) An Intuitive Description: The aim of this algorithm is
that the sender should store just enough data in its buffer
so that it can always compute a linear combination which
is simultaneously innovative to all receivers who have an
information deficit, i.e., so that it can ensure reliability and
the innovation guarantee property.

After each slot, every receiver informs the sender whether
an erasure occurred using perfect feedback. The sender then
excludes from the queue, any knowledge that is common to
all the receivers. Specifically, the queue’s contents correspond
to some basis of a vector space that is independent of the
intersection of the knowledge spaces of all the receivers.
We show in Lemma 2 that with this queuing rule, it is
always possible to compute a linear combination of the
current contents of the queue that will guarantee innovation,
as long as the field size is more than n, the number of
receivers.

The fact that the common knowledge is dropped suggests an
incremental approach to the sender’s operations. Although the
knowledge spaces of the receivers grow with time, the sender
only needs to operate with the projection of these spaces on
dimensions currently in the queue, since the coding module
does not care about the remaining part of the knowledge
spaces that is common to all receivers. Thus, the algorithm can
be implemented in an incremental manner. It will be shown
that this incremental approach is equivalent to the cumulative
approach.

Table II shows the main correspondence between the
uncoded case and the coded case. We now present the queue
update algorithm formally. Then we show that under this

algorithm, the physical queue size at the sender tracks the
virtual queue size.

Definition 8 (Local Coefficient Vector): For a linear combi-
nation of packets, the local coefficient vector is a vector of
the coefficients applied to the current contents of the sender’s
queue in order to generate that linear combination. Its length
is equal to the length of the sender’s queue.

Definition 9 (Global Coefficient Vector): For a linear com-
bination of packets, the global coefficient vector is a vector of
the coefficients applied to global stream of packets in order to
generate that linear combination. Its length is the total number
of packets that have arrived in the stream so far.

All operations in the algorithm occur over a finite field
of size ¢ > n. The basis of a node’s knowledge space is
stored as the rows of a basis matrix. The representation and
all operations are in terms of local coefficient vectors and not
global ones.

2) Formal Description of the Algorithm: In the following,
span(M) denotes the row space of matrix M. I, denotes the
identity matrix of size m.

Algorithm 2 (a)

1. Initialize basis matrices B, Bj,..., B, to the empty
matrix. These contain the bases of the incremental
knowledge spaces of the sender and receivers in that
order.

Initialize g to 0. g will hold the coefficient vector of the
transmitted packet in each slot.

In every time slot, do:

3. Incorporate new arrivals:

Let a be the number of new packets that arrive at the
beginning of the slot. Place these packets at the end
of the queue. Suppose B has b rows already. Set B to
1,15 (B will always be an identity matrix). To make the
number of columns of all matrices consistent (i.e., equal
to a + b), append a all-zero columns to each B;.
Transmission:

If B is not empty, update g to be any vector that is in
span(B), but not in U{j:ngB}Spal’l(Bj).

Lemma 2 shows that such a g exists. Let y1,y2,...YQ
represent the current contents of the queue, where the
queue size Q = (a + b). Compute the linear combi-
nation Z,Q: 1 &yi and transmit it on the packet erasure
broadcast channel. If B is empty, set g to 0 and transmit
nothing.
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5. Incorporate feedback:
Once the feedback arrives, for every receiver j = 1
to n, do:

If g # 0 and the transmission was successfully
received by receiver j in this slot, append g as a
new row to Bj.

6. Separate out the knowledge that is common to all
receivers:
Compute the following (the set notation used here con-
siders the matrices as a set of row vectors):
BA:= Any basis of ﬁ’}zlspan(Bj).
B’:= Completion of Bp into a basis of span(B).
B":= B'\B,.
B} := Completion of B, into a basis of span(B;) in
such a way that, B}/ defined as B}\BA satisfies: B}/ C
span(B”). Lemma 1 proves that this is possible.

7. Update the queue contents:
Replace the contents of the queue with packets
Y1 Yo - - .y/Q/ of the form 21Q=1 h;yi for each h € B”.
The new queue size Q’ is thus equal to the number of
rows in B”.

8. Recompute local coefficient vectors with respect to the
new queue contents:
Find a matrix X; such that B} = X; B” (this is possible
because B}’ C span(B")). Call X; the new B;. Update
the value of B to I¢.

9. Go back to step 3 for the next slot.

The above algorithm essentially removes at the end of each
slot, the common knowledge (represented by the basis Ba)
and retains only the remainder B”. The knowledge spaces of
the receivers are also represented in an incremental manner
in the form of B”, excluding the common knowledge. Since
B}/ C span(B"), the B}/ vectors can be completely described
in terms of the vectors in B”. It is as if Ba has been
completely removed, and the sender’s goal is only to convey
span(B”) to the receivers. Hence, it is sufficient to store linear
combinations corresponding to B” in the queue. B” and B}/
get mapped to the new B and Bj, and the process repeats in
the next slot.

Lemma 1: In step 5 of the algorithm above, it is possible
to complete By into a basis B} of each span(Bj) such that
B}’ C span(B").

See Appendix C for the proof.

Lemma 2 [20]: Let V be a vector space with dimension
k over a field of size q, and let V1,V>, ...V, be subspaces
of V, of dimensions ki,ka, ..., k, respectively. Suppose that

k> ki foralli =1,2,...,n. Then, there exists a vector that
is in 'V but is not in any of the V;’s, if ¢ > n.
Proof: See [20] for the proof. ]

This lemma is also closely related to the result in [30],
which derives the smallest field size needed to ensure innova-
tion guarantee.

3) Connecting the Physical and Virtual Queue Sizes: In this
subsection, we will prove the following result that relates the
size of the physical queue at the sender and the virtual queues,
which themselves correspond to the backlog in degrees of
freedom.
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Incorporate channel
state feedback

STEP 3

Incorporate arrivals
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NONING)
Ut 0., (1)

Slot (¢-1) Slot ¢

Fig. 3. The main steps of the algorithm, along with the times at which the
various U (t)’s are defined

Theorem 2: For Algorithm 2 (a), the physical queue size
at the sender is upper bounded by the sum of the backlog
differences between the sender and each receiver in terms of
the number of degrees of freedom.

Let a(t) denote the number of arrivals in slot ¢, and let A(z)
be the total number of arrivals up to and including slot ¢, i.e.,
A(t) = D5 _ga(t'). Let B(t) (resp. B;(t)) be the matrix B
(resp. Bj) after incorporating the slot ¢ arrivals, i.e., at the
end of step 3 in slot 7. Let H(¢) be a matrix whose rows are
the global coefficient vectors of the queue contents at the end
of step 3 in slot ¢, i.e., the coefficient vectors in terms of the
original packet stream. Note that each row of H (¢) is in IF? ®

Let g(¢) denote the vector g calculated in step 4 in slot ¢,
i.e., the local coefficient vector of the packet transmitted in
slot ¢. Also, let Ba(¢) (resp. B (), B} (r) and B}/(t)) denote
the matrix Ba (resp. B”, B;. and B}/) at the end of step 6 in
slot 7.

Lemma 3: The rows of H(t) are linearly independent for
all t.

See Appendix D for the proof.

Define the following:

U(t) := Row span of H(¢)

U;(t) := Row span of B;(t)H (t)

Uj’. () := Row span of B} O H (1)

Uy(r) == ﬂ;!ZIUj/.(t)

U"(t) := Row span of B”(¢)H (¢)

U;.’(t) := Row span of B}/(I)H(t)

All the vector spaces defined above are subspaces of IF;‘(I).
Figure 3 shows the points at which these subspaces are defined
in the slot.

The fact that H(¢t) has full row rank (from Lemma 3)
implies that the operations performed by the algorithm in
the domain of the local coefficient vectors can be mapped
to the corresponding operations in the domain of the global
coefficient vectors:

1) The intersection subspace U (¢) is indeed the row span
of BA(t)H (¢).

2) Let R;(t) be an indicator (0-1) random variable which
takes the value 1 iff the transmission in slot 7 is
successfully received without erasure by receiver j and
in addition, receiver j does not have all the information
that the sender has. Let gj(¢) := R;(r)g(t)H (¢). Then,

Uj(1) = U, (1) ® span (1)) 3)
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where @ denotes direct sum of vector spaces. The way
the algorithm chooses g(f) guarantees that if R;(¢) is
non-zero, then gj(t) will be outside the corresponding
Uj (1), i.e., it will be innovative. This fact is emphasized
by the direct sum in this equation.

3) Because of the way the algorithm performs the com-
pletion of the bases in the local domain in step 6, the
following properties hold in the global domain:

Ut) =Uy@)®U" (1) 4)
Ui(t) = Un(t) ® U} (1) 5)

and,
U]/-’(t)g Uu'(t), vVi=1,2,...,n (6)

From the above properties, we can infer that U’ (r)+ U5 (1)+
...U)(r) € U"(¢). After incorporating the arrivals in slot 741,
this gives U1 (t + 1) + Ua(t + 1) + ... Up(t + 1) C U@ + 1).
Since this is true for all ¢, we write it as:

U®)+U@t)+...U,(t) CU®) (7

Now, in order to relate the queue size to the backlog in
number of degrees of freedom, we define the following vector
spaces which represent the cumulative knowledge of the sender
and receivers (See Figure 3 for the timing):

V(t) := Sender’s knowledge space after incorporating the
arrivals (at the end of step 3) in slot 7. This is simply equal
to ]F‘;i4 ®

V;(t) := Receiver j’s knowledge space at the end of step 3
in slot ¢

V;(t) := Receiver j’s knowledge space in slot 7, after
incorporating the channel state feedback into V;(¢), ie.,
VI(t) = V;(t) ® span(@(1)).

Vat) = ﬂ;%:lvj ®)

VA@) =0, Vi)

For completeness, we now prove the following facts about
direct sums of vector spaces that we will use.

Lemma 4: Let 'V be a vector space and let
Va, U, Ua,...U, be subspaces of V  such that,
Va is independent of the span of all the Uj’s, ie.,
dim[VaN (U + Uz +...+U,)] =0. Then,

Va©® [m?=l Ui] = m?:] [Va & U;]

See Appendix E for the proof.

Lemma 5: Let A, B, and C be three vector spaces such
that B is independent of C and A is independent of B & C.
Then the following hold:

1) A is independent of B.
2) A @ B is independent of C.
3) Ae(BeC)=(A®B)®C.
See Appendix F for the proof.
Theorem 3: For all t > 0,
V() =Va) @ U(1)
Vi) =Va)® U;(t) Vj=1,2,...n
Vo) = Va(®) ® Uy (1)

Proof: The proof is by induction on 7.
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Basis step:

Att =0, V(0), U(0) as well as all the V;(0)’s and U;(0)’s
are initialized to {0}. Consequently, VA (0) is also {0}. It is
easily seen that these initial values satisfy the equations in the
theorem statement.

Induction Hypothesis:
We assume the equations hold at ¢, i.e.,

V() =Va@) @ U@) (8
Vi) =Va) ®U; (1), Vj=1,2,...n 9)
Va(t) = Va(t) ® Uy (1) (10)

Induction Step: We now prove that they hold in slot (r + 1).
We have:

V() = Valt) ®U(t) (from (8))

Va@) ® [Up() @ U"(1)] (from (4))
[VA() @ UL D U"(t) (Lemma 5)
Vi) @ U"(¢) (from (10))

Thus, we have proved:

V)=V e U (1) (11)

Now, we incorporate the arrivals in slot (#41). This converts
Vi) to Va(t+1), U"(t) to U(r + 1), and V(1) to V(t + 1),
due to the following operations:

Basis of Va(r + 1) = [Basis of V(1) 0]

: 1
Basis of U(t +1) = [Bas1s of U"(t) 0 :|

0 Ia(t+1)
Basis of V(t +1) = [BaSIS gf V() , (0 1)}
a(t+

Incorporating these modifications into (11), we get:
Ve+1D)=Vat+1)aU(+1)
Now, consider each receiver j = 1,2,...n.

Vi)

Vi(t) ® span(g;(t))

[Va(®) @ Uj(1)] @ span(gj(t)) (from (9))
Va@t) ® [U;(t) ® span(gj(t))] (Lemma 5)
Va() ® Uj(r) (from (3))

Va(t) ® [UA(1) @ U ()] (from (5))
[VA() ® Up(D)] D U}’(t) (Lemma 5)
VA @ UJ(t) (from (10))

Incorporating the new arrivals into the subspaces involves
adding a(t + 1) all-zero columns to the bases of ij(t),
VA (1), and Uj’/ (), thereby converting them into bases of
Vi(t+1), Va(t+1), and U, (t +1) respectively. These changes
do not affect the above relation, and we get:

Vite+ 1) =Vat+ D U;t+1), Vji=1,2,...n
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And finally,

Vit +1)
=M Vit +1)
= N[Vt + 1) ® span(gj(t + 1))]
= ﬂ;zl[VA(t +1D)@ U+ 1)@ span(gi(t + 1))]

DVt + 1) @M_, U + 1) ® span(g(i + 1))
= Vat+1)@dUL+1)

Step (a) is justified as follows. Using equation (7) and the fact
that gj( 4+ 1) was chosen to be inside U(f 4 1), we can show
that the span of all the [U; (t +1) ®span(gj(t +1))]’s is inside
U(t + 1). Now, from the induction step above, Va(t + 1) is
independent of U (¢ 4 1). Therefore, VA (t + 1) is independent
of the span of all the [U;(t + 1) ® span(gj(t + 1))]’s. We can
therefore apply Lemma 4. ]

Theorem 4: Let Q(t) denote the size of the queue after the
arrivals in slot t have been appended to the queue.

Q@) =dim V(t) —dim V(1)

Proof:

0@) =dimU(@t) =dim U"(t — 1) +a(t)

=dim U(t —1)—dim Uy (t — 1) +a(r)
(using (4))

=dim V(t — 1) —dim Va(t — 1) —dim U\ (t) + a(t)
(from Theorem 3)

=dim V(t — 1) —dim V) (t) +a(t)
(from Theorem 3)

=dim V(t) —dim Va(t)

|
Lemma 6: Let Vi, Va,..., Vi be subspaces of a vector

space V. Then, for k > 1,

k
dim(ViNVan...0 Vi) = D dim(V;) — (k — dim(V)
i=1

See Appendix G for the proof. The above result can be
rewritten as:

k
dim(V) —dim(Vi N\ Vo 0 ... Vi) < > [dim(V) — dim(V;)]
= (12)
Using this result, we can now prove Theorem 2.

Proof of Theorem 2: If we apply Lemma 6 to the vector
spaces V;(t),j = 1,2,...,n and V(¢), then the left hand
side of inequality (12) becomes the sender queue size (using
Theorem 4), while the right hand side becomes the sum of the
differences in backlog between the sender and the receivers,
in terms of the number of degrees of freedom. Thus, we have
proved Theorem 2. ]
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C. Algorithm 2 (b): Drop when seen

The drop-when-seen algorithm can be viewed as a spe-
cialized variant of Algorithm 2 (a). It uses the notion of
seen packets (defined in Section II) to represent the bases of
the knowledge spaces. This leads to a simple and easy-to-
implement version of the algorithm which, besides ensuring
that physical queue size tracks virtual queue size, also provides
some practical benefits. For instance, the sender need not
store linear combinations of packets in the queue like in
Algorithm 2 (a). Instead only original packets need to be
stored, and the queue can be operated in a simple first-in-first-
out manner. We now present some mathematical preliminaries
before describing the algorithm.

1) Some Preliminaries: Algorithm 2 (b) uses the notion of
reduced row echelon form (RREF) of a matrix to represent the
knowledge of a receiver. The definition and properties of the
RREF can be found in [19]. We now present the connection
between the RREF and the notion of seeing packets.

The RREF leads to a standard way to represent a vector
space. Given a vector space, arrange the basis vectors in any
basis of the space as the rows of a matrix, and perform Gauss-
Jordan elimination. This process produces a unique matrix in
RREF such that its row space is the given vector space. We call
this the RREF basis matrix of the space. We will use this
representation for the knowledge space of the receivers.

Let V be the knowledge space of some receiver. Suppose m
packets have arrived at the sender so far. Then the receiver’s
knowledge consists of linear combinations of these m packets,
ie., V is a subspace of Fi'. Using the procedure outlined
above, we can compute the dim(V) x m RREF basis matrix
of V over Fy.

In the RREF basis, the first nonzero entry of any row is
called a pivot. Any column with a pivot is called a pivot
column. By definition, each pivot occurs in a different column.
Hence, the number of pivot columns equals the number of
nonzero rows, which is dim[V]. Let px denote the packet
with index k. The columns are ordered so that column k£ maps
to packet px. The following theorem connects the notion of
seeing packets to the RREF basis.

Theorem 5: A node has seen a packet with index k if and
only if the kth column of the RREF basis B of the knowledge
space V of the node is a pivot column.

Proof: The ‘if’ part is clear. If column k of B is a pivot
column, then the corresponding pivot row corresponds to a
linear combination known to the node, of the form px + q,
where q involves only packets with index more than k. Thus,
the node has seen pg.

For the ‘only if’ part, suppose column k of B does not
contain a pivot. Then, in any linear combination of the rows,
rows with pivot after column k cannot contribute anything to
column k. Rows with pivot before column k will result in a
non-zero term in some column to the left of k. Since every
vector in V is a linear combination of the rows of B, the first
non-zero term of any vector in V cannot be in column k. Thus,
Px could not have been seen. [ ]

Since the number of pivot columns is equal to the dimension
of the vector space, we obtain the following corollary.
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Corollary 1: The number of packets seen by a receiver is
equal to the dimension of its knowledge space.
The next corollary introduces a useful concept.

Corollary 2: If receiver j has seen packet p, then it knows
exactly one linear combination of the form px + q such that q
involves only unseen packets with index more than k.

Proof: We use the same notation as above. The receiver
has seen pkx. Hence, column k in B is a pivot column.
By definition of RREF, in the row containing the pivot in
column k, the pivot value is 1 and subsequent nonzero terms
occur only in non-pivot columns. Thus, the corresponding
linear combination has the given form pk+q, where q involves
only unseen packets with index more than k.

We now prove uniqueness by contradiction. Suppose the
receiver knows another such linear combination pg + ¢’ where
q’ also involves only unseen packets. Then, the receiver must
also know (q— q'). But this means the receiver has seen some
packet involved in either q or q' — a contradiction. ]

Definition 10 (Witness): We denote the unique linear com-
bination guaranteed by Corollary 2 as W;j(pk), the witness for
receiver j seeing Ppk-

2) Description of Algorithm 2 (b): The central idea of the
algorithm is to keep track of seen packets instead of decoded
packets. The two main parts of the algorithm are the coding
and queue update modules.

In Section IV-C5, we present the formal description of
our coding module. The coding module computes a linear
combination g that will cause any receiver that receives it,
to see its next unseen packet. First, for each receiver, the
sender computes its knowledge space using the feedback and
picks out its next unseen packet. Only these packets will be
involved in g, and hence we call them the transmit set. Now,
we need to select coefficients for each packet in this set.
Clearly, the receiver(s) waiting to see the oldest packet in
the transmit set (say pp) will be able to see it as long as
its coefficient is not zero. Consider a receiver that is waiting
to see the second oldest packet in the transmit set (say p2).
Since the receiver has already seen pip, it can subtract the
witness for pj, thereby canceling it from g. The coefficient
of p2 must be picked such that after subtracting the witness
for py, the remaining coefficient of pp in g is non-zero.
The same idea extends to the other coefficients. The receiver
can cancel packets involved in g that it has already seen by
subtracting suitable multiples of the corresponding witnesses.
Therefore, the coefficients for g should be picked such that for
each receiver, after canceling the seen packets, the remaining
coefficient of the next unseen packet is non-zero. Then, the
receiver will be able to see its next unseen packet. Theorem
8 proves that this is possible if the field size is at least n, the
number of receivers. With two receivers, the coding module is
a simple XOR based scheme (see Table I). Our coding scheme
meets the innovation guarantee requirement because Theorem
5 implies that a linear combination that would cause a new
packet to be seen brings in a previously unknown degree of
freedom.

The fact that the coding module uses only the next unseen
packet of all receivers readily implies the following queue
update rule. Drop a packet if all receivers have seen it.

6639

This simple rule ensures that the physical queue size tracks

the virtual queue size.

Remark 2: In independent work, [30] proposes a coding
algorithm which uses the idea of selecting those packets for
coding, whose indices are one more than each receiver’s rank.
This corresponds to choosing the next unseen packets in the
special case where packets are seen in order. Moreover, this
algorithm picks coding coefficients in a deterministic manner,
just like our coding module. Therefore, our module is closely
related to the algorithm of [30].

However, our algorithm is based on the framework of seen
packets. This allows several benefits. First, it immediately
leads to the drop-when-seen queue management algorithm, as
described above. In contrast, [30] does not consider queuing
aspects of the problem. Second, in this form, our algorithm
readily generalizes to the case where the coding coefficients
are picked randomly. The issue with random coding is that
packets may be seen out of order. Our algorithm will guarantee
innovation even in this case (provided the field is large), by
selecting a random linear combination of the next unseen
packets of the receivers. However, the algorithm of [30] may
not work well here, as it may pick packets that have already
been seen, which could cause non-innovative transmissions.

The compatibility of our algorithm with random coding
makes it particularly useful from an implementation perspec-
tive. With random coding, each receiver only needs to inform
the sender the set of packets it has seen. There is no need to
convey the exact knowledge space. This can be done simply by
generating a TCP-like cumulative ACK upon seeing a packet.
Thus, the ACK format is the same as in traditional ARQ-based
schemes. Only its interpretation is different.

We next present the formal description and analysis of the
queue update algorithm.

3) The Queuing Module: The algorithm works with the
RREF bases of the receivers’ knowledge spaces. The coef-
ficient vectors are with respect to the current queue contents
and not the original packet stream.

Algorithm 2 (b)

" 1. Initialize matrices By, Ba, ..., B, to the empty matrix.
These matrices will hold the bases of the incremental
knowledge spaces of the receivers.

2. Incorporate new arrivals: Suppose there are a new
arrivals. Add the new packets to the end of the queue.
Append a all-zero columns on the right to each B; for
the new packets.

3. Transmission: If the queue is empty, do nothing; else
compute g using the coding module and transmit it.

4. Incorporate channel state feedback:

For every receiver j = 1 to n, do:

If receiver j received the transmission, include the
coefficient vector of g in terms of the current queue
contents, as a new row in B;. Perform Gauss-Jordan
elimination.

5. Separate out packets that all receivers have seen:
Update the following sets and bases:

S} := Set of packets corresponding to the pivot
columns of B;
Sy =M, S}



6640

New B; := Sub-matrix of current B; obtained by
excluding columns in S’y and corresponding pivot rows.
6. Update the queue: Drop the packets in §',.
7. Go back to step 2 for the next slot.

4) Connecting the Physical and Virtual Queue Sizes:

Theorem 6: For Algorithm 2 (b), the physical queue size at
the sender is upper-bounded by the sum of the virtual queue
sizes, i.e., the sum of the degrees-of-freedom backlog between
the sender and the receivers. Hence, the expected size of the
physical queue in steady state for Algorithm 2 (b) is O (ﬁ)

In the rest of this section, we will prove the above result.
Now, in order to relate the queue size to the backlog in number
of degrees of freedom, we will need the following notation:

S(t) := Set of packets arrived at sender till the end of slot ¢
V(t) := Sender’s knowledge space after incorporating the
arrivals in slot ¢. This is simply equal to IquS(I)‘

V;i(t) := Receiver j’s knowledge space at the end of slot ¢.
It is a subspace of V (t).

S;(t) := Set of packets receiver j has seen till end of slot ¢

We will now formally argue that Algorithm 2 (b) indeed
implements the drop-when-seen rule in spite of the incre-
mental implementation. In any slot, the columns of B; are
updated as follows. When new packets are appended to the
queue, new columns are added to B; on the right. When
packets are dropped from the queue, corresponding columns
are dropped from Bj. There is no rearrangement of columns
at any point. This implies that a one-to-one correspondence is
always maintained between the columns of B; and the packets
currently in the queue. Let U;(t) be the row space of B; at
time ¢. Thus, if (u1,u2,...,ug()) is any vector in U;(¢), it
corresponds to a linear combination of the form ZZQ:({) u;pi,
where pj is the ith packet in the queue at time ¢. The following
theorem connects the incremental knowledge space U;(¢) to
the cumulative knowledge space V;(¢).

Theorem 7: In Algorithm 2 (b), for each receiver j, at the
end of slot t, for any w € Uj(t), the linear combination
Z,Q:(i) u;pi is known to receiver j, where pi denotes the ith
packet in the queue at time t.

Proof: We will use induction on ¢. For ¢ = 0, the system is
completely empty and the statement is vacuously true. Let us
now assume that the statement is true at time (f — 1). Consider
the operations in slot . A new row is added to B; only if
the corresponding linear combination has been successfully
received by receiver j. Hence, the statement is still true. Row
operations involved in Gauss-Jordan elimination do not alter
the row space. Finally, when some of the pivot columns are
dropped along with the corresponding pivot rows in step 5, this
does not affect the linear combinations to which the remaining
rows correspond because the pivot columns have a 0 in all
rows except the pivot row. Hence, the three operations that
are performed between slot (f — 1) and slot # do not affect the
property that the vectors in the row space of B; correspond to
linear combinations that are known at receiver j. This proves
the theorem. ]

If a packet corresponds to a pivot column in Bj, the
corresponding pivot row is a linear combination of the packet
in question with packets that arrived after it. From the above
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theorem, receiver j knows this linear combination which
means it has seen the packet. This leads to the following
corollary.

Corollary 3: If a packet corresponds to a pivot column in
Bj, then it has been seen by receiver j.

Thus, in step 5, S’ (7) consists of those packets in the queue
that all receivers have seen by the end of slot ¢. In other
words, the algorithm retains only those packets that have not
yet been seen by all receivers. Even though the algorithm
works with an incremental version of the knowledge spaces,
namely U;(t), it maintains the queue in the same way as if
it was working with the cumulative version V;(¢). Thus, the
incremental approach is equivalent to the cumulative approach.

We will require the following lemma to prove the main
theorem.

Lemma 7: Let Ay, Ay, ..., Ax be subsets of a set A. Then,

for k > 1,
k
Al = 0_; Ail < D (1Al = |AiD) (13)
i=1
Proof:
|Al =Ny Al

=]AN (ﬂleAi)ﬂ (since the A;’s are subsets of A)
=]AN (UleAf)| (by De Morgan’s law)
= |U_, (AN A9 (distributivity)
k
< D IANA{| (union bound)
i=1

k
=D (Al - A
i=1

|

Now, we are ready to prove Theorem 6.

Proof of Theorem 6: Since the only packets in the queue at
any point are those that not all receivers have seen, we obtain
the following expression for the physical queue size at the
sender at the end of slot ¢:

) = 1S —Nj_; S )]

If we apply Lemma 7 to the sets S(r) and S;(t),
j = 1,2,...,n then the left hand side of inequality (13)
becomes the sender queue size Q(r) given above. Now,
[S;(t)] = dim[V;(t)], using Corollary 1. Hence the right hand
side of inequality (13) can be rewritten as Z?:l [di m[V(t)]—
dim[V; (t)]], which is the sum of the virtual queue sizes.

Finally, we can find the asymptotic behavior of the physical
queue size in steady state under Algorithm 2 (b). Since the
expected virtual queue sizes themselves are all O (ﬁ) from
Equation (2), we obtain the stated result.

5) The Coding Module: We now present a coding module
that is compatible with the drop-when-seen queuing algorithm
in the sense that it always forms a linear combination using
packets that are currently in the queue maintained by the
queuing module. In addition, we show that the coding module
satisfies the innovation guarantee property.

Let {uy, uy, ..., u,} be the set of indices of the next unseen
packets of the receivers, sorted in ascending order (In general,
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m < n, since the next unseen packet may be the same for some
receivers). Exclude receivers whose next unseen packets have
not yet arrived at the sender. Let R(u;) be the set of receivers
whose next unseen packet is py;. We now present the coding
module to select the linear combination for transmission.

1) Loop over next unseen packets

For j =1 to m, do:

All receivers in R(u ;) have seen packets py; for i < j.
Now, ¥r € R(u;), find yr := {:_11 o; Wr(py;), Where
We(py;) is the witness for receiver r seeing py;. Pick
aj € F, such that a; is different from the coefficient of
Py; in yr for each r € R(uj).

2) Compute the transmit packet: g := > 7" | a;iPy;

It is easily seen that this coding module is compatible
with the drop-when-seen algorithm. Indeed, it does not use
any packet that has been seen by all receivers in the linear
combination. It only uses packets that at least one receiver
has not yet seen. The queue update module retains precisely
such packets in the queue. The next theorem presents a useful
property of the coding module.

Theorem 8: If the field size is at least n, then the coding
module picks a linear combination that will cause any receiver
to see its next unseen packet upon successful reception.

Proof: First we show that a suitable choice always exists
for a; that satisfies the requirement in step 1. For r € R(uy),
yr = 0. Hence, as long as a; # 0, the condition is satisfied.
So, pick a; = 1. Since at least one receiver is in R(up), we
have that for j > 1, |[R(u;)| < (n — 1). Even if each y, for
r € R(u;) has a different coefficient for py;, that covers only
(n—1) different field elements. If g > n, then there is a choice
left in ¥, for a;.

Now, we have to show that the condition given in step 1
implies that the receivers will be able to see their next unseen
packet. Indeed, for all j from 1 to m, and for all » € R(u;),
receiver r knows yyr, since it is a linear combination of
witnesses of r. Hence, if r successfully receives g, it can
compute (g—yr). Now, g and y, have the same coefficient for
all packets with index less than u ;, and a different coefficient
for py;. Hence, (g —yr) will involve py; and only packets with
index beyond ;. This means r can see py; and this completes
the proof. ]

Theorem 5 implies that seeing an unseen packet corresponds
to receiving an unknown degree of freedom. Thus, Theorem
8 essentially says that the innovation guarantee property is
satisfied and hence the scheme is throughput optimal.

This theorem is closely related to the result derived in [30]
that computes the minimum field size needed to guarantee
innovation. The difference is that our result uses the frame-
work of seen packets to make a more general statement by
specifying not only that innovation is guaranteed, but also that
packets will be seen in order with this deterministic coding
scheme. This means packets will be dropped in order at the
sender.

V. OVERHEAD

In this section, we comment on the overhead required for
Algorithms 1 and 2 (b). There are several types of overhead.
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A. Amount of Feedback

Our scheme assumes that every receiver feeds back one
bit after every slot, indicating whether an erasure occurred or
not. In comparison, the drop-when-decoded scheme requires
feedback only when packets get decoded. However, in that
case, the feedback may be more than one bit — the receiver
will have to specify the list of all packets that were decoded,
since packets may get decoded in groups. In a practical
implementation of the drop-when-seen algorithm, TCP-like
cumulative acknowledgments can be used to inform the sender
which packets have been seen.

B. Identifying the Linear Combination

Together with a linear combination of packets, a sender must
specify which packets have been involved in the combination,
and what coefficients were used for these packets.

1) Set of Packets Involved: The baseline algorithm uses all
packets in the queue for the linear combination. The queue
is updated in a first-in-first-out (FIFO) manner. This is a
consequence of the fact that the receiver signals successful
decoding only when the virtual queue becomes empty.’ The
FIFO rule implies that specifying the contents of the queue
reduces to specifying the sequence number of the head-of-line
packet and the last packet in the queue in every transmission.

The drop-when-seen algorithm does not use all packets from
the queue, but at most n packets (the next unseen packet of
each receiver). The sender could specify the set of packets
involved by listing their sequence numbers. Here also the
sender’s queue follows a FIFO rule, since the coding module
guarantees that packets will be seen in order.

In both cases, the sequence number of the original stream
cannot be used as it is, since it grows with time. However,
since the queues are updated in a FIFO manner, we can express
the sequence number relative to an origin that also advances
with time. If the sender knows that the receiver’s estimate of
the sender’s queue starts at a particular point, then both the
sender and receiver can reset their origin to that point and
count from there.

For the baseline case, if the receiver has a decoding event
in a particular slot, it must have had a successful reception
in that slot. Hence, upon receiving feedback that indicates the
successful decoding, the sender can be certain that the receiver
must have received the latest update about the queue contents
and is therefore in sync with the sender. At this point, both
the sender and receiver can reset their origin to the current
HOL packet. Since the decoding epochs of different receivers
may not be synchronized, the sender will have to maintain a
different origin for each receiver and send a different sequence
number to each receiver, relative to that receiver’s origin. This
can be done simply by concatenating the sequence number
for each receiver in the header. The range of values that the
sequence number can take will be proportional to the busy
period of the virtual queue, since this determines how often
the origin is reset. Thus, the overhead in bits for each receiver

5As mentioned earlier in Remark 1, we assume that the sender checks
whether any packets have been newly decoded only when the virtual queue
becomes empty.
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will be proportional to the logarithm of the expected busy
period, i.e., O (log2 ﬁ)

For the drop-when-seen scheme, the origin can be reset
whenever the receiver sends feedback indicating successful
reception. Thus, the origin advances a lot more frequently than
in the baseline scheme.

2) Coefficients Used: The baseline algorithm uses a random
linear coding scheme. Here, potentially all packets in the
queue get combined in a linear combination. So, in the worst
case, the sender would have to send one coefficient for every
packet in the queue. If the queue has m packets, this would
require m log, g bits, where ¢ is the field size. In expectation,

this would be O ( (110 Z;’Z) bits. If the receiver knows the

pseudorandom number generator used by the sender, then it
would be sufficient for the sender to send the current state
of the generator and the size of the queue. Using this, the
receiver can generate the coefficients used by the sender in
the coding process. The new drop-when-seen algorithm uses
a coding module which combines the next unseen packet of
each receiver. Thus, the overhead for the coefficients is at most
nlog, g bits, where n is the number of receivers. It does not
depend on the load factor p at all.

C. Overhead at Sender

While Algorithm 2 (b) saves in buffer space, it requires the
sender to store the basis matrix of each receiver, and update
them in every slot based on feedback. However, storing a row
of the basis matrix requires much less memory than storing a
packet, especially for long packets. Thus, there is an overall
saving in memory. The update of the basis matrix simply
involves one step of the Gauss-Jordan elimination algorithm.

D. Overhead at Receiver

The receiver will have to store the coded packets till they are
decoded. It will also have to decode the packets. For this, the
receiver can perform a Gauss-Jordan elimination after every
successful reception. Thus, the computation for the matrix
inversion associated with decoding can be spread over time.

VI. DECODING DELAY

With the coding module of Section IV-C.5, although a
receiver can see the next unseen packet in every successful
reception, this does not mean the packet will be decoded
immediately. In general, the receiver will have to collect
enough equations in the unknown packets before being able
to decode them, resulting in a delay. We consider two notions
of delay in this paper:

Definition 11 (Decoding Delay): The decoding delay of a
packet with respect to a receiver is the time that elapses
between the arrival of the packet at the sender and the decoding
of the packet by the receiver under consideration.

As discussed in Section I, some applications can make use
of a packet only if all prior packets have been decoded. In
other words, the application will accept packets only up to the
front of contiguous knowledge. This motivates the following
stronger notion of delay.
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Definition 12 (Delivery Delay): The delivery delay of a
packet with respect to a receiver is the time that elapses
between the arrival of the packet at the sender and the delivery
of the packet by the receiver to the application, with the
constraint that packets may be delivered only in order.

It follows from these definitions that the decoding delay is
always less than or equal to the delivery delay. Upon decoding
the packets, the receiver will place them in a reordering buffer
until they are delivered to the application.

In this section, we study the expectation of these delays
for an arbitrary packet. It can be shown using ergodic theory
that the long term average of the delay experienced by the
packets in steady state converges to this expectation with high
probability. We focus on the asymptotic growth of the expected
delay as p — 1.

The section is organized as follows. We first study the deliv-
ery delay behavior of Algorithms 1 and 2(b), and provide an
upper bound on the asymptotic expected delivery delay for any
policy that satisfies the innovation guarantee property. We then
present a generic lower bound on the expected decoding delay.
Finally, we present a new coding module which not only
guarantees innovation, but also aims to minimize the delivery
delay. We conjecture that this algorithm achieves a delivery
delay whose asymptotic growth matches that of the lower
bound. This behavior is verified through simulations.

A. Upper Bound on Delivery Delay

Theorem 9: The expected delivery delay of a packet for any
coding module that satisfies the innovation guarantee property
is 0 (=5):

The arguments leading to this bound are presented next.
For any policy that satisfies the innovation guarantee property,
the virtual queue size evolves according to the Markov chain
in Figure 2. The analysis of Algorithm 1 in Section IV-A
therefore applies to any coding algorithm that guarantees
innovation.

As explained in that section, the event of a virtual queue
becoming empty translates to successful decoding at the
corresponding receiver, since the number of equations now
matches the number of unknowns involved. Thus, an arbitrary
packet that arrives at the sender will get decoded by receiver
j at or before the next emptying of the jth virtual queue.
In fact, it will get delivered to the application at or before
the next emptying of the virtual queue. This is because, when
the virtual queue is empty, every packet that arrived at the
sender gets decoded. Thus, the front of contiguous knowledge
advances to the last packet that the sender knows.

The above discussion implies that Equation (14) gives an
upper bound on the expected delivery delay of an arbitrary
packet. We thus obtain the result stated above.

We next study the decoding delay of Algorithm 2 (b).
We define the decoding event to be the event that all seen
packets get decoded. Since packets are always seen in order,
the decoding event guarantees that the front of contiguous
knowledge will advance to the front of seen packets.

We use the term leader to refer to the receiver which has
seen the maximum number of packets at the given point in
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time. Note that there can be more than one leader at the same
time. The following theorem characterizes sufficient conditions
for the decoding event to occur.

Theorem 10: The decoding event occurs in a slot at a
particular receiver if in that slot:

(a) The receiver has a successful reception which results in
an empty virtual queue at the sender; OR

(b) The receiver has a successful reception and the receiver
was a leader at the beginning of the slot.

Proof: Condition (a) implies that the receiver has seen
all packets that have arrived at the sender up to that slot.
Each packet at the sender is an unknown and each seen
packet corresponds to a linearly independent equation. Thus,
the receiver has received as many equations as the number of
unknowns, and can decode all packets it has seen.

Suppose condition (b) holds. Let px be the next unseen
packet of the receiver in question. The sender’s transmitted
linear combination will involve only the next unseen packets
of all the receivers. Since the receiver was a leader at the
beginning of the slot, the sender’s transmission will not involve
any packet beyond p, since the next unseen packet of all other
receivers is either px or some earlier packet. After subtracting
the suitably scaled witnesses of already seen packets from such
a linear combination, the leading receiver will end up with
a linear combination that involves only pk. Thus the leader
not only sees pk, but also decodes it. In fact, none of the
sender’s transmissions so far would have involved any packet
beyond pk. Hence, once px has been decoded, px—1 can also
be decoded. This procedure can be extended to all unseen
packets, and by induction, we can show that all unseen packets
will be decoded. ]

The upper bound proved in Theorem 9 is based on the
emptying of the virtual queues. This corresponds only to
case (a) in Theorem 10. The existence of case (b) shows that
in general, the decoding delay will be strictly smaller than
the upper bound. A natural question is whether this difference
is large enough to cause a different asymptotic behavior, i.e.,
does Algorithm 2 (b) achieve a delay that asymptotically has
a smaller exponent of growth than the upper bound as p — 17
We conjecture that this is not the case, i.e., that the decoding

delay for Algorithm 2 (b) is also Q ﬁ) although the
constant of proportionality will be smaller. For the two receiver
case, based on our simulations, this fact seems to be true.
Figure 4 shows the growth of the decoding delay averaged

over a large number of packets, as a function of (1+p). The

resulting curve seems to be close to the curve (10;3;)2, implying

a quadratic growth. The value of p ranges from 0.95 to 0.98,
while u is fixed to be 0.5. The figure also shows the upper
bound based on busy period measurements. This curve agrees
with the formula in Equation (14) as expected.

B. The Lower Bound

Lemma 8: The expected per-packet delay is lower bounded
by ()
Proof: The expected per-packet delay for the single

receiver case is clearly a lower bound for the corresponding
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quantity at one of the receivers in a multiple-receiver system.
Figure 2 shows the Markov chain for the queue size in the
single receiver case. If p = 4 <1, then the chain is positive
recurrent and the steady state expected queue size can be
computed to be p((ll__/f;) =0 (ﬁ) (see Equation (1)). Now,
if p < 1, then the system is stable and Little’s law can be
applied to show that the expected per-packet delay in the single

receiver system is also ® (ﬁ) [ ]

We now present the new coding module for the general
case of any number of receivers. First, we describe the main
ideas behind the algorithm. Then, we present the detailed
specification.

C. Intuitive Description

The intuition behind the algorithm is to first identify for
each receiver, the oldest packet that it has not yet decoded,
which we will call the request of that receiver. The algorithm
then transmits a linear combination that involves packets from
only within this set.

The linear combination is constructed incrementally. The
receivers are grouped according to their request, and the
groups are processed in descending order of their requested
packet’s index. First, the newest request (i.e., the one with
the largest index) is included in the linear combination, as
otherwise, the corresponding receivers, having decoded every-
thing older, will find the transmission non-innovative. Then,
the algorithm checks whether the linear combination formed
thus far is innovative to every receiver in the next group. If it is
not innovative, then the coefficient of the next group’s request
is adjusted till it is simultaneously innovative to the whole
group. The key idea is that, since the groups are processed
in descending order of their requests, the choices made for
the coefficient of subsequent groups’ requests will not affect
the innovation of earlier groups. This is because, the earlier
groups have already decoded the subsequent groups’ requests.

After processing all the groups in this order, the transmitted
linear combination is thus chosen so that it satisfies the
innovation guarantee property.
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D. Representing Knowledge

Before specifying the algorithm, we first propose a way
to systematically represent the state of knowledge of the
receivers. This is based on the representation used in
Section IV, with a key difference described below.

Let px denote the packet with index k. Suppose the total
number of packets that have arrived at any time 7 is denoted
by A(t). Since the code is linear, we can represent the state
of knowledge of a node by a vector space consisting of all
the linear combinations that a node can compute using what
it has received thus far. We represent the state of knowledge
using a basis of this vector space. The basis is represented
as the rows of a matrix which is in the reduced row echelon
form (RREF). The matrix has A(¢) columns, one for each
packet that has arrived thus far. While all this is identical
to the representation in Section IV, the main difference is in
the ordering of the columns of the basis matrix. We use the
same framework, except that in this section, the columns of
the RREF basis matrix are ordered so that packet px maps to
column A(¢) — k. In other words, the columns are arranged
in reverse order with respect to the order of arrival at the
sender.

Throughout this section, we will use the RREF represen-
tation of the basis matrix, with this reverse ordering of the
packets. We also make use of the notion of seen packets
that was introduced in Section II-A. Note however that the
definition becomes quite different from the previous definition
if we use the reverse ordering on the packets.

Definition 13 (Seeing a Packet With Reverse Ordering):

A node is said to have seen a packet with index k if and
only if the kth column from the right, of the RREF basis B
of the knowledge space V of the node, is a pivot column.
Alternatively, a node has seen a packet pk if it has received
enough information to compute a linear combination of the
form (pk +q), where q is itself a linear combination involving
only packets with an index less than that of p. (Decoding
implies seeing, as we can pick q = 0.)

In contrast, the definition used in Section II-A had replaced the
word “less” with the word “greater” in the above statement.
We believe the reverse ordering is better suited to analyzing
the delivery delay. We now make some observations about the
new definition.

Observation 1: As with the forward ordering, the notion
of seen with reverse ordering also has connections to the
dimension of the knowledge space. In particular, we can show
that every innovative reception causes a new packet to be seen.
In other words, the number of seen packets is equal to the
dimension of the knowledge space.

Observation 2: Due to the reverse ordering of the packets,
we have an interesting property. For any k > 0, if all packets
p1 to px have been seen, then they have also been decoded,
and hence can be delivered to the application.

E. Algorithm Specification

Now, we present the formal coding algorithm. Note that the
algorithm and its analysis use the notion of seen packets with
reverse ordering.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

Let {u1,uz,...,u;,} be the set of indices of the oldest
undecoded packets of the n receivers, sorted in descending
order (m < n, since the oldest undecoded packet may be
the same for some receivers). Exclude receivers whose oldest
undecoded packet has not yet arrived at the sender. We call
this resulting set of packets the transmit set, since the coding
module will use only these packets in computing the linear
combination to be transmitted.

Let R(u;) be the group of receivers whose request is py;.
We now present the coding module to select the linear com-
bination for transmission.

Initialize the transmit coefficient vector a to an all zero

vector of length Q, the current sender queue size.

for j =1tom do { (Loop over the transmit set)}

Initialize the veto list® to the empty set.
for all r € R(u;) do
Zero out the coefficient of all packets seen by receiver r
from the current transmission vector a by subtracting
from a, suitably scaled versions of the rows of the
current RREF basis matrix, to get the vector a’. (This
is essentially the first step of Gauss-Jordan elimination.)
Hence, find out which packet will be newly seen if the
linear combination corresponding to a is transmitted.
This is simply the index of the packet corresponding
to the first non-zero entry in a’.
if no packet is newly seen then
Append 0 to the veto list
else if the newly seen packet’s index is u; then
Append the additive inverse of the leading non-zero
entry of a’ to the veto list
else if the newly seen packet is anything else then
Do not add anything to the veto list
end if
end for
Arrange the elements of the finite field in any order,
starting with 0. Choose ay; to be the first element in this
order that is not in the veto list.
end for
Compute the transmit packet: g:= Zszl aiPk

FE. Properties of the Algorithm

1) Throughput: To ensure correctness, the algorithm uses a
finite field of size at least as large as the number of receivers.
Theorem 11 shows that this is a sufficient condition to guar-
antee innovation and thereby achieve optimal throughput.

Theorem 11: 1If the field is at least as large as the number
of receivers, then the above algorithm will always find values
for the ai’s such that the resulting transmission satisfies the
innovation guarantee property.

Proof: We first show that the choices made by the
algorithm guarantee innovation. For any j > 0, consider the
jth request group. Let a(j — 1) be the value of the coefficient
vector just before processing group j (Note, a(0) = 0.).

Any receiver in group j has not decoded py; yet. Hence,
it cannot know a linear combination of the form a(j —1)+fBey;

OThis will hold the list of unacceptable coefficients of Pu;-
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for more than one value of 8, where ey; is the unit vector with
a 1 in the u;th coordinate and O elsewhere. (If it knew two
such combinations, it could subtract one from the other to
find Py;, a contradiction.)

Suppose the receiver knows exactly one such linear combi-
nation. Then, after the row reduction step, the vector a(j — 1)
will get transformed into 2’ = — Bey;. Hence, the leading non-
zero coefficient of a’ is —f, and its additive inverse gives S.
(Note: the resulting value of £ could be 0. This corresponds
to the non-innovative case.) If the receiver does not know any
linear combination of this form, then packet u; is not seen,
and nothing is added to the veto list.

In short, the values that are vetoed are those values of f for
which some receiver knows a linear combination of the form
a(j — 1) + Bey;. Hence, by picking a value of a,; from outside
this list, we ensure innovation. Thus, the algorithm essentially
checks for innovation by considering different coefficients £
for including py; into the transmission and eliminating the ones
that do not work. Finally, processing subsequent groups will
not affect the innovation of the previous groups because the
subsequent groups will only change the coefficient of their
requests, which have already been decoded by the previous
groups.

We now show that the algorithm always has enough choices
to pick such an a,; even after excluding the veto list.
As argued above, at any point in the algorithm, each receiver
adds at most one field element to the veto list. Hence, the veto
list can never be longer than the number of receivers in the
corresponding request group. Now, we consider two cases.

Case 1: If the group requesting the highest request u; does
not include all the receivers, then none of the groups contain
n receivers. Hence, the veto list for any group will always be
strictly shorter than n, and hence if the field size is at least n,
there is always a choice left for Ay -

Case 2: If all n receivers request the highest packet u1, then
it has to be the case that they have all decoded every packet
before u1. Hence, the only coefficient that any receiver would
veto for py, is 0, thus leaving other choices for a,,.

This completes the proof. ]

2) Decoding and Delivery Delay: We conjecture that the
coding module described above has good delay performance.

Conjecture 1: For the coding module in Section VI-E, the
expected decoding delay per packet, as well as the expected
delivery delay per packet with respect to a particular receiver,

grow as O (ﬁ) as p — 1, which is asymptotically optimal.

The exact analysis of the delay and the proof of this
conjecture are open problems. We believe that the notion of
seen packets will be useful in this analysis. In particular, to
analyze the delivery delay, we can make use of Observation
2 from Section VI-D. A packet is delivered if and only if this
packet and all packets with a lower index have been seen. This
condition is the same as what arises in problems involving a
resequencing buffer. Thus, we can formulate our delivery delay
problem in terms of traditional queuing problems.

In our formulation, we break down the delivery delay of a
packet for a particular receiver into two parts, as though the
packet has to traverse two queues in tandem. The first part
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is simply the time until the packet is seen. Once it is seen,
the packet moves into a second queue which is essentially a
resequencing buffer. The second part is the time spent in this
buffer waiting for all older packets to be seen.

The expectation of the first part is easy to calculate, since
every innovative reception causes a new packet to be seen.
By Little’s theorem, the delay is directly proportional to the
size of the queue of unseen packets. This queue’s behavior was
studied in Section IV. Although that section used the older
notion of seeing a packet, it can be shown that the analysis
still holds even if we use the new notion of seen packets based
on reverse ordering. Hence, we get a O (ﬁ) bound on the
first part of the delay. The analysis of the second part of the
delay however, seems more complicated.

3) Queue Management: The coding module described
above makes use of only the oldest undecoded packet
of each receiver in any given time-slot. Since our defini-
tion of seen packets uses reverse ordering of the packets
(see Section VI-D), the oldest undecoded packet is always
an unseen packet. In other words, the algorithm never uses
packets that have been seen by all the receivers. This implies
that the algorithm is compatible with the drop-when-seen
queuing algorithm (Algorithm 2 (b))that was proposed and
analyzed in Section IV, provided we use the new definition
of seen. As pointed out in Observation 1 in Section VI-D,
the new definition of seeing a packet has the same relation to
the dimension of the knowledge space as the old definition
of Section VI-D. Thus, we can obtain all the queue size
guarantees that were obtained in the earlier work. In other
words, we can get a provable O (ﬁ) growth of the expected
queue size at the sender, in addition to the provable innovation
guarantee property and the conjectured delay guarantees.

G. Simulation Results

We now evaluate the performance of the newly proposed
coding module through simulations. In particular, we study
the behavior of the decoding delay and the delivery delay as
a function of the load factor p, in the limit as p approaches 1,
i.e., as the loading on the system approaches capacity.

The probability of reception in any slot is ¢ = 0.5. The
packets arrive according to a Bernoulli process, whose arrival
rate is calculated according to the load factor p. The load factor
is varied through the following values: 0.8, 0.9, 0.92, 0.94,
0.96, 0.97, 0.98 and 0.99. The decoding delay and delivery
delay are averaged across the packets over a large number of
slots. The number of slots is set to 10° for the first four data
points, 2 X 10° for the next two points, and at 5 x 10° for the
last two points.

We consider two different cases. In the first case, there are
three receivers. The entire operation is therefore performed
over a G F(3) (i.e., integer operations modulo 3). In the second
case, we consider the situation where there are five receivers.
In this case, the operations are performed over a field of size 5.

Figure 5 shows the plot of the decoding and delivery delay
as a function of 1% for both the three and the five receiver
cases. Figure 6 shows the same plot in a logarithmic scale.
From both these figures, it is clearly seen that the algorithm
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achieves a linear growth of the delay in terms of 1% We have
thus verified Conjecture 1 for the case of 3 and 5p receivers,
using simulations.

VII. APPLICATIONS AND FURTHER EXTENSIONS

Although we have presented the algorithms in the context
of a single packet erasure broadcast channel, we believe the
main ideas in the scheme are quite robust and can be applied
to more general topologies. The scheme readily extends to
a tandem network of broadcast links (with no mergers) if
the intermediate nodes use the witness packets in place of
the original packets. The notion of encoding only unseen
packets, acknowledging seen packets, and the algorithm of
dropping packets that each receiver has acknowledged to have
seen are applicable even at intermediate hops in a multi-
hop network coding system. The format for conveying the
coding vectors across multiple hops will need careful design.
We expect that it will also extend to other topologies with
suitable modifications. In addition, we believe the proposed
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scheme will also be robust to delayed or imperfect feedback,
just like conventional ARQ. Such a generalization can lead to
a TCP-like protocol for systems that use network coding [36].

We have assumed the erasures to be independent and iden-
tically distributed across receivers. However, the analysis for
Algorithm 2 (b) will hold even if we allow adversarial erasures.
This is because, the guarantee that the physical queue size
tracks the backlog in degrees of freedom is not a probabilistic
guarantee, but a combinatorial guarantee on the instantaneous
value of the queue sizes. Note that, while the erasures can
be chosen adversarially, we will require the adversary to
guarantee a certain minimum long-term connection rate from
the sender to every receiver, so that the virtual queues can
themselves be stabilized.

From a theoretical point of view, our results mean that any
stability results or queue size bounds in terms of virtual queues
can be translated to corresponding results for the physical
queues. In addition, results from traditional queuing theory
about M/G/1 queues or a Jackson network type of result [8]
can be extended to the physical queue size in coded networks,
as opposed to just the backlog in degrees of freedom. From
a practical point of view, if the memory at the sender has to
be shared among several different flows, then this reduction in
queue occupancy will prove quite useful in getting statistical
multiplexing benefits.

For instance, one specific scenario where our results can
be immediately applied is the multicast switch with intra-
flow network coding, studied in [20]. The multicast switch
has broadcast-mode links from each input to all the outputs.
“Erasures” occur because the scheduler may require that only
some outputs can receive the transmission, as the others are
scheduled to receive a different transmission from some other
input. In this case, there is no need for explicit feedback, since
the sender can track the states of knowledge of the receivers
simply using the scheduling configurations from the past. The
results stated in [20] in terms of the virtual queues can thus
be extended to the physical queues as well.

VIII. CONCLUSION

In this work, we have presented a completely online
approach to network coding based on feedback, which does
not compromise on throughput and yet, provides benefits in
terms of queue occupancy at the sender and decoding and
delivery delay at the receivers.

The notion of seen packets introduced in this work, allows
the application of tools and results from traditional queuing
theory in contexts that involve coding across packets. Using
this notion, we proposed the drop-when-seen algorithm, which
allows the physical queue size to track the backlog in degrees
of freedom, thereby reducing the amount of storage used at the
sender. Comparing the results in Theorem 1 and Theorem 6,
we see that the newly proposed Algorithm 2 (b) gives a
significant improvement in the expected queue size at the
sender, compared to Algorithm 1.

We have proposed a new coding scheme that makes use of
feedback to dynamically adapt the code in order to ensure low
decoding delay for any number of receivers. As argued earlier,

® (ﬁ) is an asymptotic lower bound on the decoding delay
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and the stronger notion of delivery delay in the limit of the
load factor approaching capacity (p — 1). We conjecture that
our scheme achieves this lower bound. If true, this implies
the asymptotic optimality of our coding module in terms of
both decoding delay and delivery delay. We have verified this
conjecture through simulations.

In summary, we believe that the proper combination of
feedback and coding in erasure networks presents a wide range
of benefits in terms of throughput, queue management and
delay. Our work is a step towards realizing these benefits.

APPENDIX A
PROOF OF THEOREM 1

Proof: Let T be the time an arbitrary arrival in steady
state spends in the physical queue before departure, excluding
the slot in which the arrival occurs (Thus, if a packet departs
immediately after it arrives, then T is 0.). A packet in
the physical queue will depart when each virtual queue has
become empty at least once since its arrival. Let D; be the time
starting from the new arrival, until the next emptying of the
Jjth virtual queue. Then, T = max; D; and so, E[T] > E[D;].
Hence, we focus on E[D;].

We condition on the event that the state seen by the new
arrival just before it joins the queue, is some state k. There
are two possibilities for the queue state at the end of the slot
in which the packet arrives. If the channel is ON in that slot,
then there is a departure and the state at the end of the slot
is k. If the channel is OFF, then there is no departure and the
state is (k+1). Now, D; is simply the first passage time from
the state at the end of that slot to state O, i.e., the number of
slots it takes for the system to reach state O for the first time,
starting from the state at the end of the arrival slot. Let ',
denote the expected first passage time from state u to state
v. The expected first passage time from state u to state 0, for
u > 0 is derived in Appendix B, and is given by the following
expression:

Luo=u/(u—2)

Now, because of the property that Bernoulli arrivals see time
averages (BASTA) [37], an arbitrary arrival sees the same
distribution for the size of the virtual queues, as the steady
state distribution given in Equation (1).

Using this fact, we can compute the expectation of D; as
follows:

o0
E[D;] = Z]P’(New arrival sees state k)E[D;|State k]

k=0
o0
= > mlulio+ (1 = W)Tkp0]
k=0
o uk+(1=pwk+1)
= Zn’k . — /’{
k=0 H
l—u p
L — (14)
wo (1=p)?

Now, the expected time that an arbitrary arrival in steady
state spends in the system is given by:

1
E[T] = E[mjax D;1 = E[D;]=Q (m)
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Since each virtual queue is positive recurrent (assuming 1 <
1), the physical queue will also become empty infinitely often.
Then we can use Little’s law to find the expected physical
queue size.

The expected size of the physical queue in steady state if
we use algorithm 1 is given by:

. 1
tl_l)fglo E[Q(1)] = AE[T] = Q (m)

APPENDIX B
DERIVATION OF THE FIRST PASSAGE TIME

Consider the Markov chain {Q;(#)} for the virtual queue
size, shown in Figure 2. Assume that the Markov chain has
an initial distribution equal to the steady state distribution
(Equivalently, assume that the Markov chain has reached
steady state.). We use the same notation as in Section IV-A.

Define N,, :=inf{r > 1 : Q;(¢) = m}. We are interested in
deriving for k > 1, an expression for I o, the expected first
passage time from state k to 0, i.e.,

Ir0 = E[Np|Q;(0) = k]

Define fori > 1: X; :=a(i) —d(i),
where a(i) is the indicator function for an arrival in slot i,
and d(i) is the indicator function for the channel being on in
slot i. Let S, := >'_, X;. If Q;(t) > 0, then the channel
being on in slot ¢ implies that there is a departure in that slot.
Thus the correspondence between the channel being on and a
departure holds for all 0 < ¢ < Np. This implies that:

Forr < Np, Q;(t) = Q;(0) + S;

Thus, Ng can be redefined as the smallest ¢ > 1 such that S;
reaches —Q;(0). Thus, Ny is a valid stopping rule for the X;’s
which are themselves IID, and have a mean E[X] = (1 — u).
We can find E[Np] using Wald’s equality:

E[Sn,1Q;(0) = k] = E[No|Q;(0) = k] - E[X]
ie, —k=E[No|Q;0) =k]- (41— n)

k
= I'to = E[No|Q;(0) = k] = ——
w—2

APPENDIX C
PROOF OF LEMMA 1
Proof: We show that any completion of B into a basis of
span(B;) can be changed to a basis with the required property.
Let Bo = {b1, b2, ..., bm}. Suppose we complete this into
a basis C; of span(Bj) such that:

Cj=BaUf{cr, ¢, ..., CBj—m)

Now, we claim that at the beginning of step 6, span(B;) C
span(B) for all j. This can be proved by induction on the slot
number, using the way the algorithm updates B and the B;’s.
Intuitively, it says that any receiver knows a subset of what
the sender knows.

Therefore, for each vector ¢ € C;\Ba, ¢ must also be
in span(B). Now, since Bo U B” is a basis of span(B),
we can write ¢ as > ;- ; a;bj+ ¢ with ¢’ € span(B”). In this
manner, each ¢; gives a distinct ¢j. It is easily seen that
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C} = BpaU{c}, ¢, .. "chj\fm} is also a basis of the same
space that is spanned by C;. Moreover, it satisfies the property
that C}\BA C span(B"). [ |

APPENDIX D
PROOF OF LEMMA 3

Proof: The proof is by induction on ¢.

Basis step: In the beginning of slot 1, a(1) packets arrive.
So, H (1) = I,(1) and hence the rows are linearly independent.

Induction hypothesis: Assume H (t — 1) has linearly inde-
pendent rows.

Induction step: The queue is updated such that the linear
combinations corresponding to local coefficient vectors in
B” are stored, and subsequently, the a(¢) new arrivals are
appended. Thus, the relation between H (¢ — 1) and H (¢) is:

H) = [B (t—l())H(t— 1) Ia(:,)}

Now, B”(t — 1) has linearly independent rows, since the
rows form a basis. The rows of H(t — 1) are also linearly
independent by hypothesis. Hence, the rows of B”(t — 1)
H(t — 1) will also be linearly independent. Appending a(t)
zeros and then adding an identity matrix block in the right
bottom corner does not affect the linear independence. Hence,
H (¢t) also has linearly independent rows. ]

APPENDIX E
PROOF OF LEMMA 4

Proof: For any z € VA ® NY_,U;, there is a x € V and
y € N?_,U; such that z = x + y. Now, for each i, y € U;.
Thus, z = x + y implies that z € N?_,[Va @ U;]. Therefore,
Va® N Ui SN [Va © Uil
Now, let w € ﬂl'.’zl Va @ U;. Then for each i, there is a
x;j € Vp and y; € U; such that w = x;+y;. But, w = x;+y; =
Xj 4 y; means that x; —x; = y; — y;. Now, (x; —x;) € Va
and (y; — y;) € (Uy + Uz + ...+ Uy,). By hypothesis, these
two vector spaces have only 0 in common. Thus, x; — x; =
yi —yj = 0. All the x;’s are equal to a common x € Vi
and all the y;’s are equal to a common y which belongs to
all the U;’s. This means, w can be written as the sum of a
vector in Va and a vector in N?_, U;, thereby proving that
N [Va® Uil € Va ®N_, Ui. u

APPENDIX F
PROOF OF LEMMA 5

Proof: Statement 1 follows from the fact that B is a subset
of B & C. Hence, if AN (B & C) is empty, so is AN B.

For statement 2, we need to show that (A & B) N C = {0}.
Consider any element x € (A @ B) N C. Since it is in A ® B,
there exist unique a € A and b € B such that x = a+b. Now,
since b € B and x € C, it follows thata=x—c isin B C.
It is also in A. Since A is independent of B & C, a must be 0.
Hence, x = b. But this means x € B. Since it is also in C, it
must be 0, as B and C are independent. This shows that the
only element in (A ® B) ® C is 0.
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Statement 3 can be proved as follows.

XeADBBCO)
& Juniqueac A,de BOCst.x=a+d
< Juniqueac A,be B,ceCst.x=a+b+c
& Juniqueec AP B,ceCst.x=e+c
sxe(AdB)C

APPENDIX G
PROOF OF LEMMA 6

Proof: For any two subspaces X and Y of V, let X + VY
denotes the span of subspaces X and Y. Then,

dim(XNY)=dim(X)+dim(Y)—dim(X+7)
> dim(X) +dim(Y) —dim(V)
(since X + Y is also a subspace of V) (15)

Now, we prove the lemma by induction on k.
Basis step:

k=1:LHS = dim(Vy), RHS = dim(V})

k=2:LHS =dim(ViNV,), RHS =dim(V))+dim(V,)—
dim(V)

The claim follows from inequality (15).
Induction Hypothesis:

For some arbitrary k,

k—1
dim(OEZ1 Vi) = > dim (Vi) — (k — 2dim(V)
i=1
Induction Step:
dim(N_, V)
= dim(Vi N2 V)
> dim(Vy) + dim(ﬁf.:]l\/,-) —dim(V) (using (15))

k—1
> dim (Vi) + |:Zdim(Vi) — (k- 2)dim(V):|
i=1
—dim(V)

k
= Zdim(Vi) — (k — Ddim(V)

i=1
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