
Fast incremental updates on Ternary-CAMs for routing lookups and
packet classification

Devavrat Shah Pankaj Gupta
Department of Computer Science
Stanford University, CA 94305.
fdevavrat,pankajg@stanford.edu

Abstract— One popular hardware device for performing
fast routing lookups and packet classification is a ternary
content-addressable memory (TCAM). A TCAM searches
the header of the incoming packet against all entries in the
forwarding table or the classifier database in parallel. It
keeps the entries in decreasing order of priority of the rules
in a classifier, or prefix lengths of the entries in a forward-
ing table. Keeping the list sorted under addition and dele-
tion of rules in the classifier is an expensive operation, and
may takeO(N) memory shift (write) operations in the worst
case, whereN is the number of rules in the classifier (or pre-
fixes in the forwarding table). The most common solutions
for this problem improve average case, but waste precious
TCAM space, and may still run into the worst case. This pa-
per proposes two algorithms to manage the TCAM such that
incremental update times remain small in the worst case.
Analysis of these algorithms proves the optimality of one,
and suggests that of the other, under the respectively im-
posed constraints. Finally, simulation results on real data
from the Internet shows the performance benefits achievable
using these algorithms.

Keywords—Routing lookups, packet classification, longest
prefix matching, optimality, online algorithms.

I. INTRODUCTION

Internet routers lookup the destination address of an in-
coming packet in its forwarding table to determine the
packet’s next hop on its way to the final destination. This
is called therouting lookupoperation, and is performed on
each arriving packet by every router in the path that the
packet takes from its source to the destination. The adop-
tion of classless inter-domain routing (CIDR) [1] since
1993 means that a routing lookup needs to perform a
“longest prefix match” operation. A router maintains a
set of destination address prefixes in a forwarding table.
Given a packet, the “longest prefix match” operation con-
sists of finding the longest prefix in the forwarding table
that matches the first few bits of the destination address of
the packet.

In order to provide enhanced services — such as packet
filtering, traffic shaping, policy-based routing etc. —
routers also need to be able to recognizeflows. A flow
is a set of packets that obey somerule, also called as apol-

icy, on the header fields of the packet. These fields include
source and destination IP addresses, source and destination
port numbers, protocol and others. For instance, all pack-
ets with a specified destination IP address and specified
source IP address may be defined by a rule to form a sin-
gle flow. A collection of rules is called apolicy database
or a classifier. Identification of the flow of an incoming
packet is calledpacket classification, and is a generaliza-
tion of the routing lookup operation. Packet classification
requires the router to find the “best-matching rule” among
the set of rules in a given classifier that match an incom-
ing packet. A rule may specify a prefix, range, or a simple
regular expression for each of several fields of the packet
header. The header of an arriving packet may satisfy the
conditions of more than one rule — in which case the rule
with the highest priority determines the flow of the arriving
packet.

Improvements in optical communication technologies
such as DWDM (dense wavelength-division multiplexing)
have resulted in continually increasing link speeds — up
to 40Gbps per installed fiber at the time of writing. How-
ever, routers have been largely unable to keep up at the
same pace — a maximum of 10Gbps (OC192) ports are
available at the time of writing. One main reason for
this is the relatively complex packet processing required
at each router. As a result, the problems of routing lookup
and packet classification have recently received consider-
able attention, both in academia and the industry. See,
for example, [2][3][4][5][6][7] for solutions to the rout-
ing lookup problem and [8][9][10][11][12][13] for solu-
tions to the packet classification problem. Many of these
papers have indicated the difficulty of the general multi-
dimensional packet classification problem in the worst
case.

Hardware realizations of algorithmically simpler solu-
tions such as linear search or fully associative search have
found favor in some commercial deployments. A popu-
lar device is a special type of fully associative memory —
a ternary content-addressable memory (TCAM). Each cell
in a TCAM can take three logic states: ’0’, ’1’, or don’t-
care ’X’. A CAM allows fully parallel search of the for-



2

warding table or classifier database. The ternary capability
allows the TCAM to store wildcards and variable length
prefixes by storing don’t cares. Lookups are perfomed in a
TCAM by storing forwarding table entries in order of de-
creasing prefix lengths and choosing the first entry among
all the entries that match the incoming packet’s destina-
tion address. Packet classification is carried out similarly
by storing classifier rules in order of decreasing priority.

The need to maintain a sorted list makes incremental up-
dates slow in a TCAM. IfN is the total number of prefixes
to be stored in a TCAM havingM entries, naive addition
of a new entry can result in the need to moveO(N) TCAM
entries to create the space required to add the entry at a
particular place in the TCAM to maintain the sorted order.
Alternatively, some entries in the TCAM can be intention-
ally left lying unused in anticipation of future additions
— but this leads to wasted space and under-utilization of
the TCAM memory. Besides, the worst case still remains
O(N).

This paper is motivated by the desire to simultaneously
achieve fast incremental updates as well as full utiliza-
tion of the TCAM. With this objective, the paper describes
worst-case algorithms (one specific for route lookups, and
the other suitable for both lookups and classification) that
achieve the optimal number of TCAM memory operations
(such as move/write/read) required for an incremental up-
date. The algorithms areonline in the sense that they per-
form operations on memory as update requests arrive, in-
stead of batching several update requests. In particular, the
paper shows that, ifL is the width of the destination ad-
dress field (L equals32 in IPv4, and128 in IPv6), no more
thanL=2 memory operations are required. This algorithm
is proved to be optimal; i.e., performs no worse than any
other algorithm in the worst-case that keeps the list of for-
warding table entries in order of decreasing prefix lengths.
This compares favorably with theL memory operations in
the memory management schemes recommended by some
TCAM vendors [14], and discussed later in the paper.

It turns out that it is not necessary to keep all the for-
warding table entries in order of decreasing prefix lengths
— instead, only overlapping prefixes need to be in this or-
der. Two prefixes overlap if one is a prefix of the other;
for example01� overlaps with0101�, but not with001�.
This observation is used in the second algorithm — though
not proved, this algorithm seems to be optimal in the num-
ber of worst-case memory operations required to handle a
forwarding table update. It is also mentioned how this al-
gorithm and results for routing lookups extend to packet
classification.

To the best of our knowledge, there is no previous work
that attempts to (algorithmically) optimize updates on a

101.1/16
101.20/13
100/9

103.23/16
103.23.3/24 171.3.2.22

171.3.2.4
120.33.32.98
320.3.3.1
10.0.0.111

P1
P2
P3
P4
P5

0

2

3

4

5

6
7

1

Memory
Location Prefix Next-hop

103.23.3.7 P1
171.3.2.22

Priority
Encoder

Figure 1. Longest prefix matching using TCAM

TCAM. Most TCAM vendors live with aO(N) worst-case
update time solution. Some attempt to provide a hardware
“max” function that computes the maximum of the pre-
fix lengths (or priorities) of all matching entries, hence
eliminating the requirement of keeping the table entries
sorted. However, computing maximum ofO(M) log2M -
bit numbers is expensive in current technology in terms of
logic area and speed. (M is around 16K to 64K at the time
of writing this paper). This is likely to get worse in the fu-
ture as TCAMs scale to greater densities. Another recent
paper [15] uses circuit-level optimizations for fast updates
at the cost of slower search time and lower memory den-
sity.

It should be noted that while the algorithms in this pa-
per have been mentioned in the context of a parallel-search
TCAM, they are equally applicable to other algorithms
that keep a sorted list of forwarding table entries or classi-
fier rules, such as hardware realizations of a linear search
algorithm.

II. L ONGEST-PREFIX MATCHING USING TCAMS

IP addresses are written in the dotted quad notation,
for instance, 103.23.3.1 representing the four bytes of an
IPv4 destination address separated by dots. An entry in a
router’s forwarding table is a pairhroute-prefix, nextHopi.
A route-prefix, or simply a prefix, is represented like an
IP address but may have some trailing bits treated as wild-
cards — this denotes the aggregation of several 32-bit des-
tination IP addresses. For example, the aggregation of 256
addresses 103.23.3.0 through 103.23.3.255 is represented
by the prefix 103.23.3/24, where 24 is thelength of the
prefix, and the last 8 bits are wildcards. Other examples of
prefixes are 101/8, 54.128/10, 38.23.32/21, 200.3.41.1/32
etc. nextHopis the IP address of a router or end-host that
is a neighbor of this router.

Given an incoming packet’s destination address, a rout-
ing lookup operation finds the entry with the longest, i.e.,
the most specific, of all the prefixes matching the first few
bits of the incoming packet’s destination address; and then
forwards the incoming packet to this entry’s next hop ad-
dress. This longest prefix matching operation is performed
in a TCAM by storing entries in decreasing order of prefix



3

31-bit prefixes

30-bit prefixes

9-bit prefixes

32-bit prefixes

8-bit prefixes
M-1

0

Figure 2. General configuration of a TCAM used for longest
prefix matching. No prefixes of length less than 8-bits are
shown, because they are typically not found in forwarding
tables

lengths. The TCAM searches the destination address of an
incoming packet with all the prefixes in parallel. Several
prefixes (up to L=32 in case of IPv4 lookups) may match
the destination address. A priority encoder logic then se-
lects the first matching entry, i.e., the entry with the match-
ing prefix at the lowest physical memory address. An ex-
ample is shown in Figure 1. The general configuration for
storingN prefixes in a TCAM withM memory locations,
is shown in Figure 2. We will refer to the set of all prefixes
of length j asPj . We will also assume a memory man-
ager software that arranges prefixes in the desired order
and sends appropriate instructions to the TCAM hardware.

Forwarding tables in routers are dynamic — prefixes
can be added or deleted as links go up or down due to
changes in network topology. These changes can occur
at the rate of approximately 100-1000 prefixes per sec-
ond [16]. While this is slow in comparison to the packet
lookup rate (which is of the order of millions of packets
per second), it is desirable to obtain quick TCAM updates.
Slow updates may cause incoming packets to be buffered
while an update operation is being carried out, which is
undesirable for many applications because it may cause
head-of-line blocking and requirement of a large buffer
space separate from the main packet buffer memory in the
router. Indeed, a single cycle update time is being used by
some TCAM vendors [17] as a big competitive advantage.
Hence, it is desirable to keep the incremental update time
as small as possible.

Forwarding table updates complicate keeping the list of
prefixes in the TCAM in sorted order. This issue is best
explained with the example of Figure 1. Assume that a
new prefix 103.23.128/18 is to be added to the forwarding
table. It must be stored between prefixes 103.23.3/24 (P1)
and 103.23/16 (P2), currently at memory locations0 and1

31-bit prefixes

30-bit prefixes

9-bit prefixes

32-bit prefixes

8-bit prefixes

0

Empty space

M-1

N-1

Figure 3. This naive solution keeps the free space pool at the
bottom of memory.

Empty space

31-bit prefixes

30-bit prefixes

9-bit prefixes

32-bit prefixes

8-bit prefixes

0

M-1

Figure 4. This solution improves the average case update time
by keeping empty spaces interspersed with prefixes in the
TCAM.

to maintain the sorted order. There is a problem since there
is no empty space at that location. There can be several
ways to handle this issue:

The TCAM manager keeps the free space pool (contain-
ing all unutilized TCAM entries) at one end of the TCAM,
say at the bottom, as shown in Figure 3. A naive solution
would shift prefixes P2 to P5 downwards in memory by
one location each, thus creating an empty space between
P1 and P2 where the new prefix can be stored. This has
worst-case time complexityO(N), whereN is the num-
ber of prefixes in the TCAM of sizeM , and is clearly
expensive. For instance, ifN = 64000, it will take 1.2
milliseconds (assuming one memory write operation can
be performed in a 20ns clock cycle) to complete one up-
date operation — too slow for a lookup engine which com-
pletes one lookup in 20ns, as a large packet buffer will be
required to store incoming packets while an update is be-
ing completed.

In anticipation of additions and deletions of prefixes, the
TCAM may keep a few empty memory locations everyX

non-empty memory locations, as shown in Figure 4. The



4

31-bit prefixes

30-bit prefixes

9-bit prefixes

32-bit prefixes

8-bit prefixes

0

Empty space

M-1

N-1

Figure 5. The prefix-length ordering constraint enables an
empty memory location to be found in at mostL = 32
memory shifts.

average case update time improves toO(X) but degener-
ates toO(N) if the intermediate empty spaces are filled up.
This solution also wastes precious CAM memory space.

The following solution is based on the observation that
two prefixes that are of the same length do not need to be
in any specific order. This means that ifj > k, all prefixes
in the setPj must appear before those in the setPk, but
prefixes within the setPj may appear in any order. Hence,
there is only a partial ordering constraint between all pre-
fixes (as opposed to a complete ordering constraint in the
naive solution). We call this constraint theprefix-length
ordering constraint. This observation leads to an algo-
rithm, referred to here as theL-algorithm, that can create
an empty space in a TCAM in no more thanL memory
shifts (recall thatL = 32), as shown in Figure 5. The av-
erage case can be improved again by keeping some empty
spaces in between, and not all at the bottom of the TCAM.
Section III-A proposes an optimal algorithm,PLO OPT,
that brings down the worst case number of memory opera-
tions per update toL=2.

It turns out that the prefix-length ordering constraint
is also more restrictive than what is required for correct
longest prefix matching operation using a TCAM. In Fig-
ure 1, while prefix 103.23.3/24 (P1) needs to be at a lower
memory address than prefix 103.23/16 (P2) at all times, it
can be anywhere in the TCAM with respect to prefixes P3,
P4 and P5. This is because P1 does not overlap with pre-
fix P3 or P4 or P5 — i.e., no incoming destination address
can match both P1 and P3, or P1 and P4, or P1 and P5.
Hence, the constraint on ordering of prefixes in a TCAM
can now be relaxed to only overlapping prefixes. Since
two prefixes overlap if one is fully contained inside the
other, there is an ordering constraint between two prefixes
pi andpj if and only if one is a prefix of the other. If all
prefixes were to be visualized as being stored in a trie data

Q1

Q4
Q3

Q2

Figure 6. This figure illustrates the chain-ancestor ordering
constraint. There are two maximal chains in this trie: one
comprises Q1, Q2 and Q3; and the other comprises Q1
and Q4.

structure, only prefixes that lie on the same chain (i.e., path
from the root to a leaf node) of the trie need to be ordered.
For example, as shown in Figure 6, prefixes Q3, Q2 and
Q1 must appear in order since they lie on the same chain.
Prefix Q4 can be stored anywhere with respect to Q2 and
Q3, but must be stored at a lower memory location than
Q1. We will refer to this constraint as thechain-ancestor
ordering constraint. Section III-B proposes an algorithm,
CAO OPT, that exploits this relaxed constraint to decrease
the worst case number of memory operations per update
to D=2, whereD is the maximum length of any chain in
the trie. As observed in this section,D is usually small
(at most 5) for even large backbone forwarding tables —
hence, this algorithm achieves worst-case updates in a few
clock cycles.

III. A LGORITHMS

A. Algorithm (PLOOPT) for prefix-length ordering con-
straint

The basic idea of algorithm PLOOPT is to keep all the
unused entries in the center of the TCAM. The arrange-
ment (shown in Figure 7) is such that the set of prefixes
of lengthL;L�1; :::; L=2 are always above the free space
pool, and the set of prefixes of lengthL=2�1; L=2�2; :::; 1

are always below the free space pool. Addition of a new
prefix will now have to swap at mostL=2 memory entries
in order to obtain an unused memory entry. Deletion of
a prefix is exactly the reverse of addition, and moves the
newly created space back to the center of the TCAM. The
algorithm keeps a trie data structure in order to do book-
keeping of the prefixes stored in the TCAM to support the
update operations.

The average case update time can be again improved to
better thanL=2 by keeping some unused entries near each



5

31-bit prefixes

32-bit prefixes

0

M-1

N-1

Empty space

17-bit prefixes

16-bit prefixes

1-bit prefixes

2-bit prefixes

3-bit prefixes

Figure 7. This figure shows the PLOOPT algorithm that keeps
all the unused TCAM entries in the center of the TCAM
such that all prefixes longer than 16-bits are above the
empty space, and all prefixes shorter than 16-bits are be-
low the empty space at all times.

setPi, as was done in Figure 4. The worst case number of
memory operations is now at leastL=2, and can become
even higher. The distribution of the number of unused
entries to be kept aroundPi depends on the distribution
of updates, and is therefore difficult to determine apriori.
Possible heuristics for placement of empty space include
a uniform distribution, or a distribution learned from re-
cently observed update requests.

Algorithm PLO OPT can be proved to be anoptimalon-
line algorithm under the prefix-length ordering constraint.
In other words, no algorithm, that is unaware of future up-
date requests, can perform better than algorithm PLOOPT
under the prefix-length ordering constraint.

B. Algorithm (CAOOPT) for chain-ancestor ordering
constraint

Before we describe algorithm CAOOPT, we need some
terminology:
� LC(p) = the longest chain comprising prefixp
� len(LC(p)) = length of (i.e., number of prefixes in)
LC(p)

� rootpath(p) = the path from the trie root node to nodep
� ancestor ofp = any node inrootpath(p)
� prefix-child ofp = a child node ofp that has a prefix
� hcld(p) = highest prefix-child ofp — i.e., among the
children ofp, the node which has the highest memory lo-
cation in the TCAM
� HCN(p) = the chain comprising ancestors ofp, prefixp
itself, hcld(p), hcld(hcld(p)) and so on — i.e., a descen-
dant node ofp is inHCN(p) if it is the highest prefix-child
of its ancestor

Algorithm CAO OPT also keeps the free space pool
in the center of the TCAM while maintaining the chain-

M-1

0

Q4

Q2

Q3

Q1

Figure 8. This figure illustrates the memory assignment of pre-
fixes of Figure 6 under the chain-ancestor ordering con-
straint. Also shown is the logical inverted trie.

M-1

0

hcld(p)

p

Free space pool

hcld(hcld(p))

pj

pi

pi+1

LC(p)

Figure 9. This figure illustrates the distribution of chains in
the TCAM under the chain-ancestor ordering constraint.
Every prefix,p, is at a distance less than or equal todD=2e
prefixes from the free space pool, whereD = len(LC(p)).

ancestor ordering among the entries in the TCAM. Hence,
a logical inverted trie can be superimposed on the prefixes
stored in the TCAM. For example, the prefixes in Figure 6
may be stored as shown in Figure 8, with the logical in-
verted trie shown in dotted lines. The basic idea is to ar-
range the chains in such a way so as to maintain the fol-
lowing invariant. Assume thatD = len(LC(p)) for a
prefix p. Every prefixp is stored in a memory location
such that there are at mostdD=2e prefixes betweenp and
a free space entry in the TCAM. Basically, the algorithm
distributes the maximal trie chains around the free space
pool as equally as possible (see Figure 9).

B.1 Insertion

Insertion of a new prefixq proceeds in the following
manner. First,LC(q) is identified using an auxiliary data
structure that is described below, and it is determined
whetherq needs to be inserted above or below the free
space pool (to maintain the balance ofLC(q)). The two



6

M-1

0

Free space pool

pj

pi

pi+1
insert q here

m1

m2

LC(q)

Figure 10. Showing how insertion proceeds in Algorithm
CAO OPT when the prefix to be inserted is above the free
space pool

M-1

0

Free space pool
m1

m2

insert q here

HCN(q)

LC(q)

Figure 11. Showing how insertion proceeds in Algorithm
CAO OPT when the prefix to be inserted is below the free
space pool

cases are handled separately:
Case I (Figure 10): Assume thatq is to be inserted above

the free space pool between prefixespi andpi+1 onLC(q).
One empty unused entry can be created at that location by
moving prefixes onLC(q) downwards one by one start-
ing from pj to the unused entry at either the top (mem-
ory location markedm1 in Figure 10) or the bottom (m2)
of the free space pool. The total number of movements
is clearly less thandD=2e, whereD = len(LC(q)). The
movements do not violate the chain-ancestor ordering con-
straint since a prefix is moved downwards after its ancestor
has moved, and hence, the constraint is always satisfied.

Case II (Figure 11): Now assume thatq is to be inserted
below the free space pool. Creating an empty entry in the
TCAM now requires moving the prefixes upwards towards
the free space pool. Hence, the chain we consider in this
case isHCN(q), which may or may not be identical to
LC(q). Movement of prefixes one by one upwards does
not violate the chain-ancestor ordering constraint since a
prefix is moved to the location previously occupied by the

M-1

0

Free space pool
m1

m2

q

Delete q

p

Figure 12. Deletion of a prefix in Algorithm CAOOPT

child that occupied the highest memory location among
all the children. Again, the total number of movements is
clearly less thandD=2e.

B.2 Deletion

Deletion is similar to insertion, except: (1) It works in
reverse, moving the newly created empty space to the free
space pool, and (2) It works on the chain that has the pre-
fix p adjacent to the free space pool — i.e., prefixp is at
memory locationsm1 � 1 or m2 + 1. This is shown in
Figure 12. The new unused entry created by deletion of
prefix q is rippled up by moving prefixes downwards on
this chain. The total number of movements is less than
dD=2e, whereD is now either the length ofLC(p) if q
is deleted from below the free space pool, or the length of
HCN(p) if q is deleted from above the free space pool.

B.3 Auxiliary trie data structure

Algorithm CAO OPT maintains an auxiliary trie data
structure similar to PLOOPT for supporting the update
operations. However, more information is needed to be
kept in a trie node,p, to determineLC(p) andHCN(p)

quickly. This takes no more thanO(L) time by main-
taining the following additional fields in every trie node:
wt(p), wt ptr(p) andhcld ptr(p). wt(p) equals:

8>><
>>:

1 if p is a leaf
max(wt(lchild(p); rchild(p)) if p is not a leaf

and not a prefix
1 +max(wt(lchild(p); rchild(p)) otherwise

(1)

wherelchild(p) andrchild(p) are the immediate left and
right children nodes ofp respectively.wt ptr(p) keeps a
pointer to the prefix-child which has the highest weight,
andhcld ptr(p) keeps a pointer to the prefix-child which
appears at the highest memory location in the TCAM.



7

MAE-EAST MAE-WEST
Prefixes 43344 35217
Inserts 34204 34114
Deletes 9140 1103

TABLE I
STATISTICS OF ROUTING TABLES AND UPDATE TRACES

USED IN THE SIMULATIONS.

0

1

2

3

4

5

6

7

8

9

10

11

0 50 100 150 200 250 300 350 400 450

N
um

be
r 

of
 m

em
or

y 
m

ov
em

en
ts

Number of updates (x100)

MAE-WEST
MAE-EAST

Figure 13.The running average of the number of memory move-
ments required by theL-algorithm to support updates on
MAE-WEST and MAE-EAST routing tables.

Though we have not been able to prove, we conjecture
that algorithm CAOOPT is anoptimal online algorithm
under the chain-ancestor ordering constraint.

IV. SIMULATION RESULTS

This section presents simulation results using two pub-
licly available routing table snapshots (at MAE-EAST and
MAE-WEST network access points) and three hour BGP-
update traces on these snapshots taken from [18]. Statistics
of the routing tables and BGP updates are shown in Table I.

Figure 13 shows a running average of the number of
memory movements (i.e., memory writes or shifts) re-
quired in theL-algorithm as a function of the number of
updates. The figure shows that the average settles down to
around 8 memory movements per update operation. This
is expected since most of the updates happen to prefixes
that are between 8 and 24 bits long, because there are very
few prefixes (less than 0.1%) that are longer than 24 bits.
Hence, if we assume that updates are uniformly distributed
between these lengths, the running average should settle
at (24 � 8)=2 = 8. As shown in Figure 14, the average
drops to approximately4 for algorithm PLOOPT. This is
again expected since theoretical analysis showed an im-
provement over theL-algorithm by a factor of 2.

The motivation for a less stringent constraint (the chain-

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

0 50 100 150 200 250 300 350 400 450

N
um

be
r 

of
 m

em
or

y 
m

ov
em

en
ts

Number of updates (x100)

MAE-WEST
MAE-EAST

Figure 14.The running average of the number of memory move-
ments required by algorithm PLOOPT to support updates
on MAE-WEST and MAE-EAST routing tables.

1

10

100

1000

10000

100000

1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r 

of
 c

ha
in

s

Maximal chain length

MAE-WEST
MAE-EAST

Figure 15. The chain length distribution on the two routing
tables. Note the logarithmic scale on the y-axis

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 50 100 150 200 250 300 350 400 450

N
um

be
r 

of
 m

em
or

y 
m

ov
em

en
ts

Number of updates (x100)

MAE-WEST
MAE-EAST

Figure 16.The running average of the number of memory move-
ments required by algorithm CAOOPT to support updates
on MAE-WEST and MAE-EAST routing tables.



8

Max Avg Std Dev
L-algorithm 22.0 7.76 3.93
PLO OPT 13.0 3.56 1.93
CAO OPT 3.0 1.05 0.02

TABLE II
SUMMARY OF PERFORMANCE NUMBERS ONMAE-WEST

ROUTING TABLE.

Max Avg Std Dev
L-algorithm 21.0 7.27 4.09
PLO OPT 12.0 4.1 2.03
CAO OPT 3.0 1.02 0.01

TABLE III
SUMMARY OF PERFORMANCE NUMBERS ONMAE-EAST

ROUTING TABLE.

ancestor ordering constraint) is immediate from Figure 15,
which plots the maximal chain length distribution of the
two routing tables. The figure shows exponentially de-
creasing distributions — for example, 97% of the MAE-
EAST chains have length less than or equal to two and
all chains have length less than six. Figure 16 plots the
running average of the number of memory movements re-
quired as a function of the number of updates using algo-
rithm CAO OPT. This figure shows that the average drops
quickly down to 1.02-1.06 for both routing tables.

Performance summary statistics of both algorithms on
the two routing tables is shown in Table II and Table III.
It is to be noted that the standard deviation of algorithm
CAO OPT is quite small (and much less than that of algo-
rithm PLO OPT) — probably because of the exponentially
decreasing chain length distribution. This should make al-
gorithm CAOOPT even more attractive in practice.

V. PACKET CLASSIFICATION

So far we have discussed updates in the context of rout-
ing lookups. Both algorithms PLOOPT and CAOOPT
extend to packet classification as follows.

The prefix-length ordering constraint is equivalent to
keeping the list of rules in a classifier ordered by priority.
Algorithm PLO OPT then degenerates to the naive algo-
rithm that requiresO(N) memory movements per update
in the worst case. This could be brought down by doing
an analysis to determine the set of overlapping rules and
generating aconstraint tree. Two rules overlap if there ex-
ists a packet which matches both rules. Only overlapping
rules need to be kept in the order of their priority in the

TCAM. The constraint tree captures these constraints in a
tree form. Now, algorithm CAOOPT can be used with lit-
tle modification, using the constraint tree to determine rule
ordering instead of the prefix trie. Of course, the benefit of
using the chain-ancestor ordering constraint is dependent
on the chain length distribution in the constraint tree, and
can only be determined by doing an analysis of real-life
classifiers — a task made difficult by the absence of large
publicly available classifiers.

VI. CONCLUSIONS

Handling incremental updates in routing lookups can be
slow — even in simple data structures such as that main-
tained in a ternary CAM. This paper proposes algorithms
for high speed updates in TCAMs under two separate con-
straints. Both algorithms do not require any additional cir-
cuitry on the TCAM chip and one can be proved optimal.
In particular, the paper proposes algorithm PLOOPT for
the stricter (and more well-known) prefix-length ordering
constraint, and achieves a factor of two update speed im-
provement over the best known solution. This paper also
proposes algorithm CAOOPT for the less stringent chain-
ancestor ordering constraint. Algorithm CAOOPT guar-
antees correctness at all times, and completes one prefix
update in slightly greater than one (observed 1.02-1.06
using simulations on real-life routing tables and update
traces) memory movements per update operation. Algo-
rithm CAO OPT is also useful for fast updates when a
TCAM is used for packet classification.

VII. A CKNOWLEDGMENTS

We would like to gratefully acknowledge Spencer
Greene, now at Juniper Networks, for mentioning the pos-
sibility of a better algorithm with a less stringent constraint
than the prefix-length ordering constraint.

REFERENCES

[1] Y. Rekhter and T. Li, “An Architecture for IP Address Allocation
with CIDR,” RFC 1518, 1993.

[2] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scal-
able high-speed ip routing lookups,” inProceedings of ACM SIG-
COMM, Oct. 1997, pp. 25–36.

[3] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink, “Small
forwarding tables for fast routing lookups,” inProceedings of
ACM SIGCOMM, Oct. 1997, pp. 3–13.

[4] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware
at memory access speeds,” inProceedings of INFOCOM, Mar.
1998, pp. 1240–7.

[5] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups us-
ing multiway and multicolumn search,” inProceedings of INFO-
COM, Mar. 1998, pp. 1248–1256.

[6] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,”
IEEE Journal on Selected Areas in Communications, vol. 17, no.
6, pp. 1083–92, 1999.



9

[7] V. Srinivasan and G. Varghese, “Fast address lookups using con-
trolled prefix expansion,”ACM Transactions on Computer Sys-
tems, vol. 17, no. 1, pp. 1–40, Oct. 1999.

[8] T. V. Lakshman and D. Stiliadis, “High-speed policy-based
packet forwarding using efficient multi-dimensional range match-
ing,” in Proceedings of ACM SIGCOMM, Sept. 1998, pp. 191–
202.

[9] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Scalable
level 4 switching and fast firewall processing,” inProceedings of
ACM SIGCOMM, Sept. 1998, pp. 203–214.

[10] P. Gupta and N. McKeown, “Classifying packets using hierarchi-
cal intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 34–41,
Jan-Feb 2000.

[11] P. Gupta and N. McKeown, “Packet classification on multiple
fields,” in Proceedings of ACM SIGCOMM, Sept. 1999, pp. 147–
60.

[12] M. M. Buddhikot, S. Suri, and M. Waldvogel, “Space decompo-
sition techniques for fast layer-4 switching,”Protocols for High
Speed Networks, vol. 66, no. 6, pp. 277–83, Aug. 1999.

[13] V. Srinivasan, G. Varghese, and S. Suri, “Fast packet classification
using tuple space search,” inProceedings of ACM SIGCOMM,
Sept. 1999, pp. 135–46.

[14] “Sibercore technologies,” www.sibercore.com/scan01cidr p03.pdf.
[15] M. Kobayashi, T. Murase, and A. Kuriyama, “A longest prefix

match search engine for multi-gigabit ip processing,” inProceed-
ings of ICC 2000, June 2000.

[16] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing in-
stability,” The IEEE/ACM Transactions on Networking, vol. 6,
no. 5, pp. 515–28, Oct. 1999.

[17] “Netlogic microsystems,” www.netlogicmicro.com.
[18] “Merit,” www.merit.edu/ipma/routingtable.


