
Fast Matching Algorithms for Repetitive
Optimization: An Application to Switch Scheduling

Supratim Deb
Bell Labs Research India

Bangalore-560017, INDIA
Email: supratim@lucent.com

Devavrat Shah
Massachusetts Inst. of Technology

Cambridge, MA-02139, USA
Email: devavrat@mit.edu

Sanjay Shakkottai
The Univ. of Texas at Austin

Austin, TX-78712 USA
E-mail: shakkott@ece.utexas.edu

Abstract— Scheduling in an input buffered switch can be
viewed as repeated matching (corresponding to once every time
slot) in a bipartite graph. It has been shown that scheduling
algorithms based on maximum weight matching (MWM) with
queue-lengths as the weights, leads to excellent performance in
terms of throughput and delay. However, computing MWM using
a strongly polynomial time algorithm requires O(n3) operations
in an n × n switch.

The main motivation for this paper comes from the following
two observations: (1) The weights of edges (packets in buffer)
change only a little between successive time slots, thus changing
the weight of the MWM only by a small amount; (2) Under
MWM algorithm, the average queue-sizes are small. The main
difficulty in utilizing these properties comes from the fact that
small changes in weights can change the matching arbitrarily,
thus making it hard for current popular algorithms to compute
an MWM quickly using the information from past (or memory).

In this paper, we develop an algorithm based on the algorithm
of Cunningham and Marsh [1] that uses the above two properties
in order to to find the new MWM quickly. Specifically, for an
n port input-queued switch, i.e. a switch with n inputs and n

outputs, our algorithm finds MWM in O(n2) operations using
past information. We believe that the incremental nature of our
algorithm may be useful in the context of other applications.

I. INTRODUCTION

Study the past if you would divine the future.

- Confucius (c. 551-c. 479 BC)

Over the past few years the input-buffered switch archi-
tecture has become dominant in high speed switching. This is
mainly due to the fact that the memory bandwidth of its packet
buffers is very low compared to that of an output-queued or a
shared-memory architecture. Furthermore, for an n×n switch,
an output-buffered architecture requires a switch fabric with a
processing speed of n times the line-rate, whereas an input-
buffered switch requires a fabric with a processing speed as
much as the line-rate.

Fig. 1 shows the logical structure for an input-queued (IQ)
switch. Suppose that time is slotted so that at most one packet
can arrive at each input in one time slot. Packets arriving at
input i and destined for output j are buffered in a “virtual
output queue” (VOQ), denoted here by V OQij . The use of
virtual output queues avoids performance degradation due to
the head-of-line blocking phenomenon [2]. Let the average cell
arrival rate at input i for output j be λij . The incoming traffic
is called admissible if

∑n

i=1
λij < 1, and

∑n

j=1
λij < 1. We

assume that packets are switched from inputs to outputs by

Output N

Input 1

11

NN

Output 1

Input N
11

NN

Matching, M

scheduler

switching fabric

Fig. 1. Logical structure of an input-queued cell switch

a crossbar fabric. When switching unicast traffic 1, this fabric
imposes the following constraint: in each time slot, at most
one packet may be removed from each input and at most one
packet may be transferred to each output.

To perform well, an n × n input-queued switch requires
a good packet scheduling algorithm for determining which
inputs to connect with which outputs in each time slot. It
is well-known that the crossbar constraint makes the switch
scheduling problem a matching problem in an n×n weighted
bipartite graph. The weight of the edge connecting input i to
output j is often chosen to be some quantity that indicates the
level of congestion; for example, queue-lengths or the ages of
packets.

A matching for this bipartite graph is a valid schedule
for the switch. Note that a valid matching can be seen as
a permutation of the n outputs. In this paper we will use the
words schedule, matching and permutation interchangeably. A
matching of particular importance for this paper is the maxi-
mum weight matching algorithm (MWM). Given a weighted
bipartite graph, the MWM finds that matching whose weight is
the highest. For example, Figure 2 shows a weighted bipartite
graph and one valid schedule (or matching). We shall use S(t)
to denote the schedule used by the switch at time t. There are
two main quantities for measuring the performance of a switch
scheduling algorithm: throughput and delay. In the papers [3],
[4], authors showed that under Bernoulli IID packet arrival
processes the MWM is stable so long as no input or output is
oversubscribed 2. Further, MWM (with weights as function of
queue-size), is known to perform optimally in terms of delay

1We do not consider multicast traffic in this paper.
2The weights were taken to be the length of Qij originally and later work

[5] took the weights to be the age of the oldest packet in Qij .

12661-4244-0350-2/06/$20.00 ©2006 IEEE

11

22

33

44

11

22

33

44

55

Graph G Matching M

11

22

33

44

11

22

33

44

33

44

22

55
44

88

22

55

44

44

88

Fig. 2. Example of weighted bipartite graph and its maximum weight
matching.

[6].
In addition to IQ switches, there are many other examples of

scheduling in various problems arising in networks, that have
throughput optimal policies as “maximum weight matching”
type algorithms. For example, Max-pressure policy for net-
work of queues [7], scheduling in Radio hop network [4],
Generalized MWM [8] and scheduling in network of switches
[9]. In summary, MWM type algorithms are the heart of good
scheduling solutions in many network applications.

However, MWM is too complicated for implementation in
its full generality in any of these applications. In particular, in
case of n×n IQ switch, the best known strongly polynomial3

time algorithm requires O(n3) operations. There are other
known MWM algorithms that are not strongly polynomial
but have better time-complexity when the weights are small.
The best known among such algorithms (to the best of our
knowledge) is by Gabow and Tarjan [10] that has performs
as follows: Let weights of each edge be an integer between
{1, . . . , M}, V be number of nodes in the graph and E
be number of edges in the graph. Then the algorithm takes
O(

√
V log V α(E, V)E log(MV)) time, where α(·, ·) is the

inverse Acremann’s function4. This algorithm, while more
efficient, is quite complicated for the purpose of implemen-
tation. These implementation related considerations have led
to proposal of a number of practicable scheduling algorithms;
notably, iSLIP [11], iLQF [11], RPA [12], MUCS [13] and
WFA [14]; very little attention has been given to the complex-
ity of MWM algorithm while taking into account the specifics
of the application, e.g. switch dynamics.

Recently, [15] and [16], exploited the following obser-
vation to obtain simple-to-implement stable approximations
of MWM: In each time slot, at most one packet arrives
(departs) per input (output). This means that queue-lengths,
taken to be the weights by MWM, change very little during
successive time slots. Thus, a heavy matching will continue to
be heavy over a few time slots, suggesting that carrying some
information, or retaining memory, between iterations should
help simplify the implementation while maintaining a high
level of performance.

While the algorithms of [15], [16] are good approximations

3The algorithm’s complexity scales only as a function of n, and is
independent of the precise value of weights as long as each arithmetic
operation can be performed over the weight in unit time.

4Ackremann’s function is one of the fastest growing functions and its
inverse is an extremely slowing growing function. It is safe to replace
log(V + E) as an upper bound for α(E, V).

to MWM and are stable, they do not compute the MWM.
Furthermore, none of the algorithms for switching take into
account the dynamics of the queueing behavior in a switch.
In this paper, we are motivated by the following questions:

(1) Is it possible to improve the computational complex-
ity of the MWM provided the information of MWM
from the previous time is utilized?

(2) If yes, how much improvement can be obtained?
We answer questions (1) in affirmative and quantify the

improvement in the complexity using the observation that
switch state (in terms of queue-size) changes “very little”
in successive time-slots. We find that complexity improves
significantly in various scenarios. The exact details are soon
to follow.

A. Switch model

Let time be indexed by m and we will denote by queue
(i, j) the queue for output j at input i. Initially, m = 0. Let
the n×n integer valued matrix Q(m) = [Qij(m)] denote the
queue-sizes of the switch at the beginning of time-slot m ≥ 0.
We assume that the switch starts empty, i.e. Q(0) = [0].

The arrival process to queue (i, j) at time m, denoted by
Aij(m) 5, is exogenous while the service process depends
on the scheduling algorithm. The arrival process is stationary
and ergodic. We assume that line-rates are normalized to one
as well as packets are of unit-size. Hence, at most one packet
can arrive at each input. is,

∑n

j=1
Aij ∈ {0, 1}. Let the arrival

rate-matrix be λ = [λij], where

E[Aij(0)] = λij . (1)

Under Bernoulli IID distribution, Aij(·) are IID random vari-
ables with Pr(Aij(0) = 1) = λij (note that IID refers to IID
in time). We will use this specific distribution to obtain certain
results. Due to constraints on arrivals and departures, we call
an arrival rate-matrix λ as admissible if it is strictly doubly
sub-stochastic, i.e.

λi· < 1; λ·j < 1, ∀ i, j. (2)

where λi· =
∑

k λik and λ·j =
∑

k λkj . We also define the
load, ρ, as the quantity

ρ
�
= max

i,j
{λi·, λ·j} .

Let Dij(m) denote the number of departures from Qij(·)
under the scheduling algorithm6. Since schedule at each time
has to be of matching form, by definition

∑
k

Dik(m) ∈ {0, 1}, ∀i;
∑

k

Dkj(m) ∈ {0, 1}, ∀j.

Thus, each Qij(·) changes by at most 1 between successive
time-slots. Further, there are at most 2n queues that can change
between successive time-slots. This is the crucial property that
we shall use to obtain lower-complexity MWM algorithms.

Now, the departures at time-slot m, (Dij(m)), are decided
by the scheduling algorithm. Let x = (xij) denote a matching.

5We assume that packets always arrive at the end of a time-slot.
6We assume that packets always depart in the middle of a time-slot.

1267

For an n×n switch, there are n! possible such matchings. Let
W (x, m) denote the weight of x at time m, defined as

W (x, m) =
∑
ij

xijQij(m).

Then, MWM algorithm chooses, x∗(m) as the schedule at
time-slot m, where

x∗(m) = arg max
x

W (x, m).

For a scheduling algorithm A, denote the weight of the
matching served at time m by WA(m). Thus, for MWM
algorithm, weight of matching served at time m is denoted
by WMWM (m). We will also denote by πi(m) the input port
i is mapped to at time m.

B. Main Results

We state our main results in this section. The corresponding
algorithms are described in the later sections in detail.

Our results. Before describing our results, we first state a
critical structural property of MWM that will be useful in
describing our results.

(P1) In an MWM based scheduling in a switch, if E is the
number of non-empty edges out of the possible n2 edges,
then E = O(n) in expectation. The constant in the order can
depend on the load in the switch. �

We will refer to the above as property P1. Note that, if
|{(i, j) : λij �= 0}| = O(n), then trivially P1 is satisfied. In
general, we state the following result.

Theorem 1.1: With MWM based scheduling,

E

⎡
⎣∑

i,j

Qij

⎤
⎦ = O(n),

when ρ < 0.5. As a consequence, the property P1 holds for
load ρ < 0.5. �

Based on extensive simulations (see Figure 3 for illustration),
we strongly believe the following.

Conjecture 1: The property P1 holds for any ρ < 1.

Here we note that, a bound on net average queue-size of
O(n2/(1 − ρ)) is known, for example see [6].

We now state the main result on repetitive computation of
MWM.

Theorem 1.2: Given an MWM for time m, a new MWM
can be computed with O(nE + n2) operations under the
Switch model, where E = |{(i, j) : Qij(m) �= 0}| Thus,
under property P1, we can compute a new MWM in O(n2)
operations. �

Fig. 3. Linearity of delay with respect to switch size for various loads

While a computational complexity of O(n2) is provably true
for ρ < 0.5, we reiterate that, there are indications that prop-
erty P1 is true for arbitrary ρ < 1 rendering a computational
complexity of O(n2) for arbitrary ρ.

Comparison with [10]. The algorithm of Gabow and Tarjan
[10], under property P1 takes O(n1.5 log3 n) operations. The
weaker bound of O(n2) on the net average queue-size under
MWM suggests that the algorithm of Gabow and Tarjan should
take O(n2.5 log3 n).

The algorithm of [10], though has better analytical perfor-
mance, is too complicated to implement and requires sophis-
ticated data-structures. In contrast, as it will be clear to the
reader, our algorithm requires simple operations and uses very
light-weight data structures. These are attractive properties
for implementation. Finally, we remark that our algorithm is
by design incremental. For example, it takes only O(E + n)
operations to update MWM upon single arrivals. It is not clear
if algorithm of [10] (or any other algorithm) can be simplified
to make it incremental.

II. INCREMENTAL ALGORITHM FOR COMPUTING MWM

This section presents an algorithm to compute MWM using
information from previous time. This is based on Cunningham-
Marsh algorithm [1], here we extend it for the specific instance
of switch scheduling. We first present a linear programming
formulation of the maximum weight matching. Then, we
present algorithm and finally present proof of Theorem 1.2.

A. Linear Program: MWM

We present linear programming formulation for maximum
weight matching. Let i, j ∈ {1, . . . , n} be generic indices for
input and output ports of the switch respectively. Let Q(m) =
[Qij(m)] denote the queue-size matrix of a switch at time m.
Then, the problem of finding the maximum weight matching
can be described as the following integer program.

IP-MWM.

1268

max
∑
ij

Qij(m)xij

Subject to
∑

k

xik = 1,
∑

k

xkj = 1

xij ∈ {0, 1} ∀1 ≤ i, j ≤ n.

The above optimization problem is an integer program.
However, it is well known that it is the linear programming
(LP) relaxation of the problem LP-MWM, obtained by
dropping the integrality constraints on {xij} as described
below automatically forces the solution to be integral (follows
from the fact that the vertices of the polytope generated
by the constraint set are integral). Hence, it is enough to
solve the LP Thus, it is enough to solve the following problem.

LP-MWM.

max
∑
ij

Qij(m)xij

Subject to
∑

k

xik = 1,
∑

k

xkj = 1

xij ∈ [0, 1] ∀1 ≤ i, j ≤ n.

We will denote the above LP-MWM as Primal LP (P-LP).
Next, we consider the dual of the above problem which will
be useful for describing the algorithm. Denote the ri as the
dual variable corresponding to the constraint {

∑
k xik = 1}

and pj as the dual variable corresponding to the constraint
{
∑

k xkj = 1}. Then, the dual is as follows.

Dual-LP (D-LP).

min
∑

i

ri +
∑

j

pj

Subject to ri + pj ≥ Qij(m), ∀1 ≤ i, j ≤ n.

Let {x∗
ij} and {r∗i , p∗j} be solutions to the above P-LP and

D-LP. Then, due to the well-known fact that there is no duality
gap for the above convex optimization problem, the following
conditions are satisfied.

1) Complementary slackness (CS): x∗
ij = 1 ⇒ r∗i +

p∗j − Qij(m) = 0
2) Feasibility (F): The {x∗

ij , r
∗
i , p∗j} satisfy constraints of

P-LP and D-LP.
The above discussion immediately implies the following key
result that is the heart of our algorithm (as well as the
algorithm of [1]).

Lemma 2.1: Let {xij , ri, pj} be any tuple that satisfies
conditions CS and F with xij ∈ {0, 1}, ∀i, j. Then, {xij}
is a maximum weight matching.

In addition to Lemma 2.1, it can be shown that there exists
r, p such that they are always integers when queue-size are
integral (see [1]).

B. Algorithm

The Lemma 2.1 suggests that one way to find MWM
is to obtain {xij , ri, pj} that satisfy CS and F conditions
simultaneously with xij ∈ {0, 1}. This is precisely what our
algorithm does using information from previous schedule in a
clever manner. Next, we describe our algorithm, denoted by
Inc-Alg.

Before formally describing Inc-Alg, we provide some intu-
ition on its operation. Let us consider consider the case where
an arrival (i.e, Q11 changes by ‘+1’) occurs to Q11 at time
m (the new queue length is Q11 + 1) and that we have a
matching and the associated dual variables from time m − 1
given by {xij , ri, pj}. Also suppose that edge (1, 1) was not
in the matching in the previous time slot m − 1 (if x11 = 1,
clearly it will be in the matching for time slot m as well).
Now, one of two cases can occur: (i) (1, 1) is not in the new
MWM for time slot m, or (ii) (1, 1) is in the new MWM for
time slot m.

Case (i): We first refer the reader to Figure 5. If edge
(1, 1) is not in the new MWM, the dual variables need to
be updated so that the CS and F conditions are satisfied.
Due to the increased queue length, the Feasibility condition
r1 + p1 − (Q11 + 1) ≥ 0 could be violated. If so, we
adopt the procedure where we add ‘+1’ to r1 in this case
to “repair” the feasibility condition. This fix, however, will
violate CS at the corresponding matched output port o1, i.e.
now we have (r1 + 1) + po1

−Q1o1
< 0. Thus, to repair this,

we need to change po1
by ‘-1’. This in turn could (but not

necessarily) cause a Feasibility violation at some input port,
i.e, ri2 + po1

− Qi2o2
< 0 could occur for one (or more than

one) input ports. Thus, we need to change ri2 by ‘+1’ to repair
this. This process now alternates between input and output
ports, and growing a tree in the process with alternate levels
in the tree corresponding to input and output ports respectively.
Alternate edges in the tree correspond to matched edges from
the edges in the MWM from time m − 1 (see Figure 4 and
Fig. 5). Since we are considering Case (i) where the (1, 1)
is not in the new matching, the tree will terminate without
visiting p1.

On the other-hand, in Case (ii) (see Figure 4, the tree
construction will lead to the case where at some level, p1 will
need to be decremented. This clearly is feasibility violation.
This is because we originally had r1 + p1 − (Q11 + 1) < 0
(which is why we repaired the dual variables in the above
discussion). We had repaired this by updating r1 to (r1 + 1).
Now, changing p−1 by ‘-1’ will again lead to a violation, i.e,
(r1+1)+(p1−1)−(Q11+1) < 0. Thus, the conclusion is that
the matching has changed and we should not have repaired all
the dual variables, but instead, added edge (1, 1) to the new
matching and simply change r1 by ‘+1’ from the value in
the previous slot. Further, the new MWM corresponds to the
‘alternate’ edges in the tree construction that led to a loop
in the procedure described above (see Figure 4 and Fig. 5).
The above procedure is formally described in the algorithm

1269

below, both in the context of increase and decrease of the
queue length.

Algorithm Inc-Alg. (computes a new matching using the
matching from previous time)

• Setup.
– Let x(m) = [xij(m)] be the MWM at time

m based on queue-size Q(m) and r(m) =
[ri(m)], p(m) = [pj(m)] be solutions to D-LP such
that {x(m), r(m), p(m)} satisfy CS and F.

– The departures happen from non-empty queues ac-
cording to x(m) and new arrival happens to at most
n queues. Let Q(m+1) be queue-size at time m+1.

– Let � ≤ 2n be the total queues that have changed in
their sizes by +1 or −1 at time m + 1 compared to
time m. Let they be denoted by (i1, j1), . . . , (i�, j�).

– Let Q0 = Q(m). Obtain Qk, 1 ≤ k ≤ � by
adding the � changes in the queue-sizes one by one.
By construction, Qk and Qk+1 differ in only one
queue being different by +1 or −1. As per notation,
Q� = Q(m + 1).

– Let {xk, rk, pk} be tuple satisfying CS and F for P-
LP and D-LP for weight given by Qk, for 0 ≤ k ≤ �.
Note that, {x0, r0, p0} = {x(m), r(m), p(m)}.

• Compute x(m+1).
– For k = 1, . . . , �, compute {xk, rk, pk} using ONE-

STEP with inputs {xk−1, rk−1, pk−1}, where routine
ONE-STEP is described below.

– The x(m + 1) = x� by definition.

Now, we describe the ONE-STEP routine that computes
the solution when only one queue changes by +1 or −1.

Algorithm ONE-STEP (computes a new matching when a
single queue changes by +1/ − 1)

SETUP:
• Input {x, r, p} satisfy CS and F for P-LP and D-LP for

MWM with weight as queue-size matrix Q.
• Let one of the queues changes by +1 or −1 in Q to give

Q̂. Without loss of generality, let the queue that changes
be Q11, that is, Q̂11 = Q11 ± 1.

• Let the set of non-empty edges, E = {(i, j) : Qij �= 0}.
• Define O(i) = {j : ri + pj − Qij = 0} and I(j) = {i :

ri + pj − Qij = 0}.

CASE-1: Q̂11 = Q11 + 1.

• If x11 = 1, then set r1 = r1 + 1. Return this modified
{x, r, p} as the output.

• Else, if x11 = 0 and r1 + p1−Q11 ≥ 1. Return the same
{x, r, p} as the output.

• Else, x11 = 0 and r1 + p1 − Q11 = 0. In this case,
the F condition for D-LP is violate for (1, 1). We need to

compute new {x̃, r̃, p̃} using the {x, r, p} that will satisfy
the CS and F conditions for Q̂. We do so by growing
appropriate ”tree” structure described below.

• Initialize r̂i = ri and p̂j = pj for all 1 ≤ i, j ≤ n. Set
r̂1 = r̂1 + 1. The {r̂, p̂} are intermediate variables.

• Create a tree T0 that contains input 1 and output 1 and
edge (1,1). Set input 1 as leaf of the tree and output 1 as
root of the tree.

• ITER. For k ≥ 0, do the following till one can not grow
tree any more or required to go to AUGMENT step.

– When k is even: let v be any of the leaf of tree Tk.
By construction, each leaf of Tk is input vertex for
even k. For each such v, do the following steps:
1) Let u be such that xvu = 1, that is (v, u) is an

edge in MWM according to old x.
2) If u is output 1, then go to AUGMENT. Else,

set p̂u = p̂u − 1. This satisfies the CS for edge
(v, u).

3) Add u and edge (v, u) to the tree Tk.
– Set modified tree Tk as Tk+1 and k = k + 1. Go to

the step ITER.
– When k is odd: let u be any of the leaf of tree Tk. By

construction, each leaf of Tk is output vertex for odd
k. For each such u, do the following steps (1)-(2).
(1) Consider any v ∈ I(u). If v is already in the Tk

ignore it.
(2) Else if v is not in Tk, then the F condition for
D-LP is not satisfied for (x, r̂, p̂). Add v and (u, v)
to the Tk and set r̂v = r̂v + 1.

– Set modified tree Tk as Tk+1 and k = k + 1. Go to
the step ITER.

• Set x̃ = x, r̃ = r̂ and p̃ = p̂. Return {x̃, r̃, p̃} as the
output.

• AUGMENT. Let at stage k (even), an input vertex v be
such that xv1 = 1.

– Let the path in tree Tk starting from input 1 to vertex
v be (v0 = 1, u1, v2, u3, . . . , uk−1, vk = v).

– Now, consider a cycle, which is extension of this
path, (v0 = 1, u1, . . . , uk−1, vk = v, (output)1, v0).
In this cycle, the alternate edges belong to matching
according to x, that is xv2su2s+1

= 1, 0 ≤ s ≤ k/2−
1 and xvk1 = 1.

– Now, create a new matching x̃ as follows. Set x̃v01 =
1 and x̃v2su2s−1

= 1. For all other (i, j) such that
xij = 1, set x̃ij = 1 while set all remaining x̃ij = 0.

– Set r̃ = r and p̃ = p for all i, j but set r̃1 = r1 + 1.
– Return {x̃, r̃, p̃} as output.

CASE-2: Q̂11 = Q11 − 1.

• If x11 = 0 then return this modified {x, r, p} as the
output.

• Else, if x11 = 1 then by definition r1 + p1 − Q11 = 0.
Thus, the F condition for D-LP is violate for (1, 1) as
Q̂11 = Q11−1. We need to compute new {x̃, r̃, p̃} using
the {x, r, p} that will satisfy the CS and F conditions for
Q̂. This is done in exactly the same manner as done for
the case when Q̂11 = Q11 + 1. We describe the first few

1270

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

Output

Input

Zero

Match

Input 1

output 1

u1

v1

u3

+1

Execution New Matching

Augment

Input 1

output 1

u1

v1

u3

+1

-1

+1

-1

+1v2 v2

Fig. 4. Example of procedure ONE-STEP when Q11 increases by 1. Here
the AUGMENT step is invoked and MWM changes as shown.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Input 1

output 1

u1

v1

u3

+1

-1

+1

-1

+1v2

-1

Execution

Output

Input

Zero

Match

Fig. 5. Example of procedure ONE-STEP when Q11 increases by 1. Here
the matching remains the same however dual variables are updated as shown.

steps as follows.
• Initialize r̂i = ri and p̂j = pj for all 1 ≤ i, j ≤ n. Set

p̂1 = p̂1 − 1. The {r̂, p̂} are intermediate variables.
• Create a tree T1 that contains input 1 and output 1 and

edge (1,1). Set input 1 as root of the tree and output 1 as
leaf of the tree. Now this is the same as T1 of the previous
case. The only difference is we will AUGMENT when
there is an edge between some output vertex and input 1
that needs to be added to the tree. We skip further details.

The description of the algorithm seems rather complicated
due to notation based description. It is better understood via
an example with help of a figure. Consider case when Q̂11 =
Q11 + 1. There are mainly two cases in algorithm: (a) The
MWM is changed when AUGMENT step is invoked and only
r1 increases by 1, or (b) the MWM remains the same but many
dual variables, r, p change by +1 and −1 in an appropriate
manner. The Figure 4 describes the case (a), while the Figure
5 describes the case (b).

C. Analysis of Algorithm

We state the following result about algorithm Inc-Alg. The
Theorem 2.1, as stated below, immediately implies Theorem
1.2.

Theorem 2.1: Algorithm Inc-Alg produces solution {x(m+
1), r(m + 1), p(m + 1)} that satisfies CS and F for Q(m +
1) given {x(m), r(m), p(m)} satisfying CS and F for Q(m).

Further, it can be implemented such that the total number of
operations performed by algorithm is O(nE+n2), where E =
|E|, the number of non-empty edges with respect to Q(m).
Due to space constraints, we skip the proof details.

III. CONCLUSION

In this paper, we have demonstrated that, in an n × n
switch, MWM can be computed using O(n2) operations if the
MWM from the previous time slot is taken into account, and
with suitable assumptions on system load. As the best known
algorithm for ab-initio computing MWM has a complexity
of O(n3), our work shows that there can substantial gains in
complexity if we take the dynamics of the system into account.
We believe that the average complexity results in this paper
can be extended to a “high probability” kind of complexity.

ACKNOWLEDGMENTS

This research was partially supported by NSF Grants ACI-
0305644, CNS-0325788, CNS-0347400 and CNS-0519401.

REFERENCES

[1] W. H. Cunningham and A. B. Marsh, “A primal algorithm for optimum
matching,” Mathematical Programming, pp. 50–72, 1978.

[2] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output
queueing on a space-division packet switch,” IEEE Transactions on
Communications, vol. 35, pp. 1347–1356, Dec 1987.

[3] N. McKeown, V. Anantharan, and J. Walrand, “Achieving 100input-
queued switch,” in Proceedings of IEEE INFOCOM, 1996.

[4] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Transactions on Automatic Control, vol. 37,
no. 12, pp. 1936–1949, 1992.

[5] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achiev-
ing 100% throughput in an input-queued switch,” IEEE Transactions on
Communications, vol. 47, no. 8, August 1999.

[6] D. Shah, “Randomization and heavy traffic: new approaches for switch
algorithms,” Ph.D. dissertation, Computer Science Department, Stanford
University, 2004.

[7] L. Tassiulas, “Adaptive back-pressure congestion control based on local
information,” IEEE Transactions on Automatic Control, vol. 40, no. x2,
pp. 236–250, 1995.

[8] A. Stolyar, “Maxweight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic,” Annals of Applied
Probability, vol. 14, no. 1, pp. 1–53, 2004.

[9] M. Marsan, P. Giaccone, E. Leonardi, and F. Neri, “On the stability
of local scheduling policies in networks of packet switches with input
queues,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 4, pp. 642–655, May 2003.

[10] H. N. Gablow and R. E. Tarjan, “Faster scaling algorithms for general
graph matching problems,” Journal of the ACM, vol. 38, no. 4, pp. 815
– 853, 1991.

[11] N. McKeown, “Scheduling algorithms for input-queued switches,” Ph.D.
dissertation, Department of EECS, UC Berkeley, 1995.

[12] M. Marsan, M. Ajmone, A. Bianco, E. Leonardi, and L. Milia, “Rpa:
A flexible scheduling algorithm for input buffered switches,” IEEE
Transactions on Communications, vol. 47, pp. 1921–1933, December
1999.

[13] H. Duan, J. W. Lockwood, S. M. Kang, and J. D. Will, “A high
performance oc12/oc48 queue design prototype for input buffered atm
switches,” in Proceedings of IEEE INFOCOM97, vol. 1, 1997, pp. 20–
28.

[14] Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for vlsi com-
munication switches,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, pp. 13–27, Jan 1993.

[15] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches,” in Proceedings of IEEE
INFOCOM, 1998.

[16] P. Giaccone, B. Prabhakar, and D. Shah, “Towards simple, high-
performance schedulers for high-aggregate bandwidth,” in Proceedings
of IEEE INFOCOM, 2002.

1271

