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Abstract—In recent years, several high-throughput low-delay scheduling
algorithms have been designed for input-queued (IQ) switches, assuming
admissible traffic. In this paper, we focus on queueing systems that violate
admissibility criteria.

We show that in a single-server system with multiple queues, the Longest
Queue First (LQF) policy disallows a fair allocation of service rates 1. We
also describe the duality shared by LQF’s rate allocation and a fair rate
allocation. In general, we demonstrate that the rate allocation performed
by the Maximum Weight Matching (MWM) scheduling algorithm in over-
loaded IQ switches is unfair. We attribute this to the lack of coordination
between admission control and scheduling, and propose fair scheduling al-
gorithms that minimize delay for non-overloaded queues.

Keywords— Congestion Control, Quality of Service and Scheduling,
Stochastic Processes and Queueing Theory, Switches and Switching, Re-
source Allocation

I. INTRODUCTION

The input-queued (IQ) switch architecture is widely used in
high-speed switching. This is due to its low memory bandwidth
requirements compared to those of output-queued and shared-
memory architectures, making it the preferred choice.

In an N ×N IQ switch, we assume fixed-size cells (packets).
Each input has N FIFO virtual output queues (VOQs), one for
each output 2. Packets queue up at the inputs, arriving at input i
for output j at an average rate λij . In each time slot, at most one
packet can arrive at each input and at most one can be transferred
to an output. Consider these conditions for Λ = [λij ]:

N∑
j=1

λij < 1, ∀i

N∑
i=1

λij < 1, ∀j

The first condition is enforced by the line-rate constraints
at the inputs. Incoming traffic is called admissible when the
second condition is satisfied and inadmissible otherwise. The
switch scheduling problem reduces to a matching problem in a
weighted bipartite graph with N inputs and N outputs 3.

A. Background and Motivation
The primary performance metric of an IQ switch scheduling

algorithm is the throughput it delivers. The Maximum Weight
Matching (MWM) algorithm has been shown to achieve 100%
throughput when arriving traffic is admissible and obeys the
Strong Law of Large Numbers. Practical heuristics to approxi-
mate MWM [7] [4] too have been proposed. In a single-server
queueing system, Longest Queue First (LQF) is also known to

1The formal definition of fairness is provided later.
2The Virtual Output Queueing architecture improves performance by prevent-

ing Head-of-Line blocking [5].
3In this paper, we take the weight of the edge (i, j) as the size of V OQij .

achieve 100% throughput. These results focus on admissible
traffic conditions however, when in practice traffic is frequently
inadmissible. Herein lies our motivation for this paper, where
we study scheduling policies for inadmissible traffic conditions
in IQ switches.

Under admissible traffic, stable scheduling algorithms grant
every flow its desired service, and there does not arise a need
for fairness in rate allocation 4. Under inadmissible traffic, not
all flows can receive desired service. We observe the rate allo-
cations performed by LQF and MWM in such a scenario, and
prove that they lack fairness. This motivates our search for a
scheduling policy that performs a fair rate allocation, given in-
admissibility. We now summarize our results.

B. Outline and Results

In section II, we formalize the notion of fairness that we will
use. We then commence our study of IQ switch-scheduling un-
der inadmissible traffic conditions by observing the performance
of LQF in a system with multiple queues and an over-subscribed
server in section III. As an interesting side observation, we also
present the duality shared by the rate allocations determined by
LQF and Max-Min fairness. In section IV, we provide Fair-
LQF, an algorithm that incorporates fairness into LQF to per-
form a provably fair rate allocation.

In section V, we extend our study to the N × N switch and
observe the rate allocation performed by MWM. We show that
it lacks fairness, and propose the Fair-MWM algorithm in sec-
tion VI, conjecturing that this too performs a fair rate allocation.
Our conclusions follow in section VII.

II. FAIRNESS IN SCHEDULING

To define a fair rate allocation for flows, we use the estab-
lished notion of Max-Min fairness [1].

Definition 1 (Max-Min Fairness) Let there be n flows arriv-
ing at a server of capacity C with rates λ1, · · · , λn respectively.
A rate allocation r = (r1, · · · , rn) is called Max-Min fair iff
(i)

∑
n ri ≤ C, ri ≤ λi, and

(ii) any ri can be increased only by reducing rj s.t. rj ≤ ri.
Definition 2 (Fairness in a Switch) There exist N2 flows in

an N × N switch. We call R = [rij ] a fair allocation for
Λ = [λij ] iff it is Max-Min fair for every output.

4In this paper, each VOQ defines one flow. This can easily be generalized to
accommodate the arrival of multiple flows at an input that are intended for the
same output.
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III. LONGEST QUEUE FIRST AND FAIRNESS

We first consider a system of N queues and a server of unit
capacity. The arrival rate for queue i, 1 ≤ i ≤ N , is denoted by
λi, and the cumulative number of arrivals until time n is denoted
by Ai(n), where Ai(0) = 0. We assume that the arrivals obey
the Strong Law of Large Numbers (SLLN) that states:

lim
n→∞

Ai(n)
n

= λi ∀i w.p.1 (1)

Let Qi(n) denote the size of queue i at time n, Di(n) the
number of departures from queue i until time n (Di(0) = 0),
and Ti(n) the number of time slots queue i is scheduled for ser-
vice in [0, n]. LQF always serves the longest queue, breaking
ties arbitrarily. For n ≥ 0, the equations below describe queue
sizes, departures and the busyness of the server over time.

Qi(n) = Qi(0) + Ai(n) − Di(n)
Di(n) = Di(n − 1) + (Ti(n) − Ti(n − 1))(Qi(n − 1) > 0)

Ti(·) is non-decreasing and
N∑

i=1

Ti(n) = n

The dynamics of the system are completely described by
S(n) = (Qi(n),Di(n), Ti(n))N

i=1.

A. Fluid Model for a Queue
We employ the fluid model technique to study LQF [3]. To

do this, we define a sequence of systems indexed by r =
1, 2, 3 . . . with the associated description vectors Sr(t) =
(Qr

i (n),Dr
i (n), T r

i (n))N
i=1. The relationship between Sr(t) and

S(·) is described by:
Sr(t) = S(�rt�)/r

The fluid model solution of the system is characterized by
S̄(t) such that:

S̄(t) = lim
r→∞Sr(t)

Sr(t) is a non-deterministic quantity. We would like to show
that the limiting quantity S̄(t) is a deterministic solution to a set
of differential equations. We proceed by showing the existence
of a limiting quantity and its characterization.

If for all i, |Dr
i (t) − Dr

i (t
′)| ≤ |t − t′|, |T r

i (t) − T r
i (t′)| ≤

|t − t′|, and limr→∞ |Ar
i (t) − λit| = 0 then S̄(t) exists [2] and

satisfies the fluid model equations 5 as follows:

Q̄i(t) = Q̄i(0) + λit − D̄i(t) (2)

dD̄i(t)
dt

=
dT̄i(t)

dt
if Q̄i(t) > 0 (3)

T̄i(·) is non-decreasing and
N∑

i=1

T̄i(t) = t (4)

We can check that our system satisfies these conditions if we
assume that arriving traffic satisfies condition (1).

By serving only the longest queue at all times, LQF further
imposes the following condition on the evolution of T̄i(·):

If ∃j s.t. Q̄i(t) < Q̄j(t) then
dT̄i(t)

dt
= 0. (5)

5For an example, see [3].

B. Rate Allocation under LQF
When traffic is inadmissible, queues that do not receive de-

sired service grow unboundedly. Since LQF is a non-idling pol-
icy, it services a queue in every time slot. For large enough t,
ri(t) = Ti(t)/t denotes the service rate allocated to queue i
by LQF. The fluid model equations (2) – (5) characterize LQF’s
rate allocation for arrival rates λ1, · · · , λn.

For admissible traffic, techniques such as Lyapunov analysis
may be used to show that LQF services every queue at its arrival
rate. For inadmissible traffic, we state the following theorem to
describe LQF’s rate allocation:

Theorem 1: Let λi represent the arrival rate for queue i, 1 ≤
i ≤ N . Assume λ1 ≥ λ2 ≥ · · · ≥ λN ≥ λN+1 = 0. Let
ri(t) represent the rate allocated by LQF to queue i in time slot
t. Then ∀t ≥ 0:
(i) 0 ≤ rk(t) ≤ λk s.t.

∑
k rk(t) = 1

(ii) Let 1 ≤ l ≤ N be the smallest index such that:

∆
�
= (

l∑
i=1

λi − 1)/l > λl+1

Then ∀k, rk(t) = (λk − ∆)+. That is, all queues served at
a positive rate grow at the rate ∆, while the rest grow at their
respective arrival rates 6.

λ λλ λ1 2 3

r1

r2

r3
WATER

SOLID

WATER

GRAVITY

(a) LQF

λ 4 r2 r3
r4

λ λ2 3

SOLID

WATER

λ 4

(b) Max−Min Fair

1

r1= =
WATER

=

GRAVITY

Fig. 1. Comparison of LQF and Max-Min Fairness.

C. LQF vs. Max-Min Fairness
We momentarily digress to present an interesting duality that

exists between the rates allocated by LQF and those allocated by
Max-Min fairness. It is illustrated in Figure 1, where the shaded
area represents a solid surface and the rest is empty space. There
are N steps such that step i has depth λi and unit width, i.e.
there are N columns with volumes λ1, · · · , λN respectively and
column i represents queue i with arrival rate λi.

We begin our experiment by pouring water (of unit volume)
through the hole. In Figure 1(a) gravity acts downwards, causing
the water to fill the columns deepest-first. In Figure 1(b) gravity
acts upwards, so that the shallowest column fills up first. When
the pouring is complete, the water level in column i indicates the
service rate allocated to queue i by LQF in 1(a) and Max-Min
fairness in 1(b).

We observe that downwards-acting gravity causes the water to
fill up the deepest column first, just as LQF services the longest
queue at the expense of the less-demanding flows. Conversely,
in Figure 1(b), the water first fills all columns equally. When it
reaches a depth of λN , the additional water fills the remaining

6The proof can be found at http://simula.stanford.edu/∼neha/FMWM.pdf.
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N − 1 columns equally and so on. After the water has been
poured, all partially filled columns have equal depth. Moreover,
the water level in column i indicates the Max-Min fair rate allo-
cation to queue i.

This experiment reveals the duality shared by the rates allo-
cated by LQF and those allocated by Max-Min fairness. We
now propose an algorithm that incorporates Max-Min fairness
into LQF to provide a fair rate allocation.

IV. FAIR-LQF

The Fair-LQF algorithm combines the advantages of Max-
Min fairness and LQF. Based on individual queue sizes and a
pre-specified threshold value, it maintains a congested list of
queues whose sizes exceed the threshold 7 and an uncongested
list of all other queues. In the limiting case of this threshold
going to ∞, a congested queue is one that is served at less than
its desired rate.

A. The Algorithm
If nc represents the number of congested queues and nuc rep-

resents the number of non-empty, uncongested queues, for the
next nc time slots, Fair-LQF serves every congested queue ex-
actly once. For the remainder nuc time slots, it mimics LQF.
The pseudocode for Fair-LQF is as follows:

//Information Collection
if (queue_size(queue_ID) >= threshold)

add_to_congested_list(queue_ID);
// Scheduling
// Step1: scheduling congested ports
m = number-of-congested-queues;
while ( m != 0) {

// Round-Robin
schedule-congested-queues();
m--;

}
//Step2: scheduling uncongested ports
m = number-of-nonempty-uncongested-queues;
while ( m != 0) {

LQF-schedule-uncongested-queues();
m-- ;

}

Fair-LQF deviates from LQF as it proactively limits the
throughput of a congested queue. Under admissible traffic, Fair-
LQF behaves identically to LQF, since the limiting size of the
queues is 0. Under inadmissible traffic, it does a provably Max-
Min fair rate allocation.

Theorem 2: Let λ1 ≥ · · · ≥ λN be the arrival rates of N
queues and the server capacity be 1. Let R1, · · · , RN denote the
Max-Min fair rate allocation, and r1, · · · , rN denote the Fair-
LQF rate allocation. Then ∀k, rk = Rk, i.e. Fair-LQF is Max-
Min fair 89.

B. Performance Evaluation
We studied the performance of LQF and Fair-LQF via simu-

lations and compared it to Max-Min fairness. The simulations
attest that the Fair-LQF rate allocation is Max-Min fair and pro-
vides lower delay for uncongested queues 10.

7The threshold may be chosen freely and does not affect the long-term perfor-
mance of the algorithm.

8The proof can be found at http://simula.stanford.edu/∼neha/FMWM.pdf.
9This theorem holds regardless of the threshold value.
10The simulation results are at http://simula.stanford.edu/∼neha/FMWM.pdf.

V. MAXIMUM WEIGHT MATCHING AND FAIRNESS

We now extend our study to the N × N switch and observe
MWM’s rate allocation in an overloaded switch to show that it
lacks fairness.

An input-output matching is represented by a permutation
matrix π = [πij ]i,j≤N where πij = 1 iff it matches input i to
output j. A scheduling algorithm S must determine a matching
π(n) for each time slot n.

The arrival rate for V OQij , 1 ≤ i, j ≤ N , is denoted by λij ,
and the cumulative number of arrivals until time n is denoted by
Aij(n), where Aij(0) = 0. We assume that the arrivals obey the
Strong Law of Large Numbers (SLLN) that states:

lim
n→∞

Aij(n)
n

= λij ∀i, j w.p.1 (6)

Let Qij(n) denote the size of V OQij at time n, Dij(n) the
number of departures from V OQij until time n (Dij(0) = 0),
and W (n) = [Wij(n)], where Wij(n) denotes the weight of the
edge (i, j) at time n in the switch bipartite graph 11. Then the
weight of a matching π is defined thus:

Wπ(n) =
∑
i,j

πijWij(n) = πW (n)

Definition 3 (Maximum Weight Matching) A maximum weight
matching algorithm is one that determines a matching πw(n) at
time n such that:

πw(n) = arg max
π

{Wπ(n)} (7)

We now consider the dynamics of the discrete-time switch.
Let MWM be our scheduling algorithm and

∏
be a collection

of all possible matchings 12. For any π ∈ ∏
, let Tπ(n) be the

cumulative amount of time that a permutation π is scheduled in
the time interval [0, n]. Again, Tπ(0) = 0, ∀π ∈ ∏

. For n ≥ 0,
the equations below describe queue sizes, departures, and the
busyness of the server over time:

Qij(n) = Qij(0) + Aij(n) − Dij(n) (8)

Dij(n) =
∑
π∈∏

n∑
l=1

πij1Qij(l)>0(Tπ(l) − Tπ(l − 1)) (9)

Tπ(·) is non-decreasing and
∑
π∈∏ Tπ(n) = n (10)

A. Fluid Model for a Switch
We use the fluid model technique again to study MWM. By

appropriately scaling the discrete-time switch, we can obtain the
fluid model for a switch [3]. Based on equations (8) – (10),
it has been shown [3] that under condition (6), the continuous,
deterministic fluid model of a switch is as follows:

Qij(t) = Qij(0) + λijt − Dij(t) ≥ 0, t ≥ 0 (11)

Ḋij(t) =
∑
π∈∏ πij Ṫπ(t), if Qij(t) > 0 , t ≥ 0 (12)

11In this paper, we let Wij(n) be Qij(n).
12For an N × N switch, |∏ | = N !.

Globecom 2004 1715 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



Tπ(·) is non-decreasing, and
∑
π∈∏ Tπ(t) = t, t ≥ 0 (13)

For a function f , ḟ(t) denotes its derivative at t, if one exists.
Assuming Tπ(t) is differentiable and ∃ π′ such that: Wπ(t) <

Wπ′
(t), then MWM dictates that Ṫπ(t) = 0.

B. Rate Allocation under MWM
The service rate 13 sij(t) for V OQij is defined as follows:

sij(t) =
1
t

∑
π∈∏ πijTπ(t)

It has been shown [3] that under admissible traffic for MWM, all
queue-sizes Qij(t) = 0,∀t ≥ 0. From equations (11) – (13) for
admissible traffic, we can infer that sij(t) ≥ λij , ∀t ≥ 0. We
now characterize the rates s(t) = [sij(t)] under inadmissible
traffic using the notion of a cycle.

Definition 4 (Cycle) In an N × N bipartite graph, a cy-
cle of length l is an ordered set of input-output pairs
{(i1, o1), (i2, o2),· · · , (il, ol)} comprised of edges connecting
these pairs.

Theorem 3: Let Λ = [λij ] s.t. λij > 0,∀i, j. Let s = [sij ]
represent the rates allocated by MWM. Create an N ×N bipar-
tite graph with edge weights wij = (λij − sij)+. For any cycle
C�, if sij > 0 for all edges in C�, the following holds 14:

�∑
j=1

wij ,oj
= wi1,ol

+
�−1∑
j=1

wij+1,oj
(14)

C. MWM vs. Max-Min Fairness
Theorem 3 does not give a simple closed-form rate allocation

as in Theorem 1. However, we can use this result to show that
MWM’s rate allocation is not fair. For example, consider a 2×2
switch with the following arrival and permutation matrices:

Λ =
[
0.8 0.1
0.3 0.5

]
π1 =

[
1 0
0 1

]
π2 =

[
0 1
1 0

]

Suppose that MWM schedules π1 for α ∈ [0, 1] fraction of the
time and π2 for the remaining (1−α) fraction of the time. From
Theorem 3, it follows that:

(0.8 − α)+ + (0.5 − α)+ =
(0.3 − (1 − α))+ + (0.1 − (1 − α))+ (15)

MWM’s departure rates and the Max-Min fair rate allocation
below show that MWM lacks fairness.

Rmwm =
[
0.75 0.1
0.25 0.5

]
Rmmf =

[
0.7 0.1
0.3 0.5

]

VI. FAIR-MWM

Analogous to Fair-LQF, we now present Fair-MWM, an al-
gorithm that aims to incorporate fairness into MWM to ensure
that at every output of the N × N switch, the rate allocation is
Max-Min fair.

13The service rate may be higher than the arrival rate, as we assume that
MWM schedules a complete matching every time.

14The proof can be found at http://simula.stanford.edu/∼neha/FMWM.pdf.

A. The Algorithm
Fair-MWM combines the advantages of MWM and Max-Min

fairness to provide fair treatment to all V OQs, ensuring a small
delay for uncongested queues. While all well-behaved 15 flows
receive desired service, the offending flows are allotted an even
fraction of the leftover bandwidth.

When a queue exceeds a pre-specified threshold, say a per-
centage of the buffer size 16, it is considered congested. Once a
congested queue V OQij is served, it gets blocked 17 for nj time
slots, where nj is the number of non-empty queues containing
packets headed for output j. In the scenario that multiple out-
puts have congested queues, nj may be different for every over-
subscribed output j. Once the blocking is accounted for, the
matching is determined by MWM as before. The pseudocode
for Fair-MWM is as follows:

//Information Collection
if (voq_size(voq_ID) >= threshold)

add_to_congested_list(voq_ID);

// Scheduling
// Step1: MWM
MWM_schedule_unblocked_voqs();

//Step2: Blocking information
for (i=0; i<N; i++) {

for (j=0; j<N; j++) {
if (voq[i][j] is matched and congested)

cycles_to_block[i][j] =
number-of-nonempty-voqs-to-output-j();

else if (cycles_to_block[i][j] > 0)
cycles_to_block[i][j]--;

}
}

B. Performance Evaluation
In this section, we study the rates allocated by the MWM and

Fair-MWM algorithms by simulating various inadmissible traf-
fic scenarios. The results show that Fair-MWM is indeed fair.
We verified, in addition, that when traffic is admissible, the rate
allocation is identical to that of MWM.

We consider a 4 × 4 example of an overloaded switch. Time
is slotted and arriving traffic is Bernoulli IID. The performance
of each algorithm is evaluated under various overloaded arrival
traffic patterns (with multiple overloaded outputs). Simulations
are run long enough to obtain the equilibrium results.

We first compare the performance of MWM and Fair-MWM
with Max-Min fairness, when arriving traffic causes one output
port to be overloaded. Consider the following arrival matrix:

Λ(1) =




1.0 0.0 0.0 0.0
0.15 0.2 0.2 0.2
0.15 0.2 0.2 0.2
0.15 0.2 0.2 0.2




The Max-Min fair and MWM rate allocations for Λ(1) are:

Rmmf =




0.55 0.0 0.0 0.0
0.15 0.2 0.2 0.2
0.15 0.2 0.2 0.2
0.15 0.2 0.2 0.2


 Rmwm =




0.88 0.0 0.0 0.0
0.04 0.2 0.2 0.2
0.04 0.2 0.2 0.2
0.04 0.2 0.2 0.2




15By well-behaved flows, we mean flows that ask for less than their fair share
of service.

16The threshold may be chosen freely and does not affect the long-term per-
formance of the algorithm.

17Blocking V OQij is equivalent to assigning it a weight of 0.
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Compared to the rate of 0.55 in Rmmf (1), MWM allocates a
service rate of 0.88 to the greedy queue V OQ11 and only 0.04
to the remaining VOQs (V OQ21,31,41) destined for output 1.
The Fair-MWM algorithm gives a rate allocation identical to
that given by Rmmf .

 0.1
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 0.5
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 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
11

λ11

Fair-MWM
MWM

Fig. 2. MWM & Fair-MWM: Comparison of Rate Allocation

Instead of fixing λ11 at 1.0, we now vary it from 0.1 to 1.0
and evaluate the performance of Fair-MWM. Figure 2 depicts
that Fair-MWM successfully limits the service rate of V OQ11

to 0.55, once λ11 exceeds the fair share. Under MWM, how-
ever, the service rate for V OQ11 grows monotonically as λ11

increases. Since the service rates for other queues destined for
the same output are not protected, they become much smaller
than the demand rates.

When there exist multiple offending flows destined for the
same output, Fair-MWM first satisfies the service requirement
for the good flows to that output and then splits the remaining
service capacity evenly among the offenders. For instance, view
the following example:

Λ(2) =




0.5 0.1 0.1 0.1
0.5 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1




The Max-Min fair and MWM rate allocations for Λ(2) are:

Rmmf =




0.4 0.1 0.1 0.1
0.4 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1


 Rmwm =




0.45 0.1 0.1 0.1
0.45 0.1 0.1 0.1
0.05 0.1 0.1 0.1
0.05 0.1 0.1 0.1




The Fair-MWM and Max-Min fair rate allocations are identical.
When there exist offending flows destined for multiple out-

puts, Fair-MWM limits their service rates independently while
protecting other non-offending flows. For example, consider the
arrival matrix Λ(3):

Λ(3) =




0.8 0.0 0.0 0.0
0.3 0.3 0.1 0.1
0.0 0.8 0.0 0.0
0.2 0.2 0.2 0.2




The MWM and Max-Min fair rate allocations for Λ(3) are:

Rmwm =




0.7 0.0 0.0 0.0
0.2 0.2 0.1 0.1
0.0 0.7 0.0 0.0
0.1 0.1 0.2 0.2


 Rmmf =




0.5 0.0 0.0 0.0
0.3 0.3 0.1 0.1
0.0 0.5 0.0 0.0
0.2 0.3 0.2 0.2




This behavior of MWM is analogous to what we observed pre-
viously: greedy flows are served far more than their fair share.
Fair-MWM solves this problem by allocating Max-Min fair
rates: Rf−mwm = Rmmf .

We now test the robustness of Fair-MWM in a more com-
plicated scenario, when there are multiple offending flows for
multiple outputs. The arrival matrix is:

Λ(4) =




0.6 0.0 0.2 0.1
0.6 0.2 0.0 0.1
0.0 0.6 0.0 0.1
0.2 0.6 0.0 0.1




The MWM and Max-Min fair rate allocations for Λ(4) are:

Rmwm =




0.47 0.0 0.2 0.1
0.47 0.06 0.0 0.1
0.0 0.47 0.0 0.1
0.06 0.47 0.0 0.1


 Rmmf =




0.4 0.0 0.2 0.1
0.4 0.2 0.0 0.1
0.0 0.4 0.0 0.1
0.2 0.4 0.0 0.1




Again, our algorithm performs a rate allocation that is Max-Min
fair, i.e. Rf−mwm = Rmmf .

This concludes our study of fairness in switch-scheduling as
we complete the analysis of Fair-MWM, having demonstrated
the benefits it adds to the MWM scheduling algorithm.

VII. CONCLUSIONS

In practice, traffic is often inadmissible and queues are often
overloaded. The inadmissible traffic scenario, however, has thus
far been neglected. In this paper, we showed that the LQF and
MWM algorithms considered ideal for admissible traffic per-
form poorly when traffic is inadmissible. Their allocation of ser-
vice rates to input queues is biased in favor of offending (over-
loaded) traffic flows, penalizing the well-behaved flows unjustly.
We addressed this problem by proposing algorithms based on
the notion of Max-Min fairness, also highlighting the duality
shared by Max-Min fairness and LQF. Finally, we observed that
our algorithms, Fair-LQF and Fair-MWM, effectively perform a
fair rate allocation with low delay, using the knowledge of queue
sizes alone.

The techniques we employed in this paper are of a general
nature and can easily be adapted to study the performance of
other scheduling algorithms under inadmissible traffic.
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