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ABSTRACT

The need to rank items based on user input arises in many
practical applications such as elections, group decision mak-
ing and recommendation systems. The primary challenge in
such scenarios is to decide on a global ranking based on par-
tial preferences provided by users. The standard approach
to address this challenge is to ask users to provide explicit
numerical ratings (cardinal information) of a subset of the
items. The main appeal of such an approach is the ease of
aggregation. However, the rating scale as well as the indi-
vidual ratings are often arbitrary and may not be consistent
from one user to another. A more natural alternative to
numerical ratings requires users to compare pairs of items
(ordinal information). On the one hand, such comparisons
provide an “absolute” indicator of the user’s preference. On
the other hand, it is often hard to combine or aggregate
these comparisons to obtain a consistent global ranking.

In this work, we provide a tractable framework for uti-
lizing comparison data as well as first-order marginal in-
formation (see Section 2) for the purpose of ranking. We
treat the available information as partial samples from an
unknown distribution over permutations. We then reduce
ranking problems of interest to performing inference on this
distribution. Specifically, we consider the problems of (a)
finding an aggregate ranking of n items, (b) learning the
mode of the distribution, and (c) identifying the top k items.
For many of these problems, we provide efficient algorithms
to infer the ranking directly from the data without the need
to estimate the underlying distribution. In other cases, we
use the Principle of Maximum Entropy to devise a concise
parameterization of a distribution consistent with observa-
tions using only O(n2) parameters, where n is the number
of items in question. We propose a distributed, iterative al-
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gorithm for estimating the parameters of the distribution.
We establish the correctness of the algorithm and identify
its rate of convergence explicitly.

Categories and Subject Descriptors
G.3 [Information Systems Applications]: Statistical Com-
puting

Keywords
Ranking, Aggregation, Maximum Entropy

1. INTRODUCTION
Judging, rating, or ranking objects is omnipresent: whether

it be restaurants in a city, movies on Netflix, books on Ama-
zon, candidates interviewed for faculty positions or papers
submitted to the ACM Sigmetrics conference. In all such in-
stances, a global ranking of objects is achieved based on the
inputs about partial rankings provided by a large number of
people.

The current practice is to seek input in terms of scores,
e.g. assign between 1 to 5 stars to a restaurant/movie or
score between 1 to 5 for a paper. The key advantage of
seeking such quantitative input is that it is easy to achieve
global aggregation: in Sigmetrics, for example, each paper
may receive scores from, say 5 TPC reviewers, between 1 to
5; the average of these scores will lead to the global ranking
of all the submitted papers to assist in making the final
acceptance/rejection decisions in the TPC meeting.

On the flip side, the key disadvantage stems from the fact
that scores are relative: the score of 4, for example, may be
interpreted differently by different individuals. Furthermore,
the same individual may score objects differently depending
upon the contextual details, such as the order in which s/he
reviewed the assigned papers. While one may argue that it
could be possible to correct for such reviewer “biases” using
auxiliary information, such an approach is somewhat ad-
hoc and even not feasible when the ratings are obtained
anonymously.

An alternative approach of seeking input,which we advo-
cate in this paper, is qualitative 1 : for example, ask review-
ers explicitly to compare the papers they reviewed (score
assignments do not necessarily achieve this as there could

1We believe that in an ideal system, inputs of both forms
should be obtained for better decision making. In this paper,
we focus on qualitative inputs primarily to understand what
sorts of information, on its own, does it contain.
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be a tie and in the context of anonymous ratings, this is to-
tally different from quantitative rating). One key advantage
of seeking such information is that it is more absolute: when
two individuals say they like A over B, they do mean the
same; or a reviewer is likely to compare two papers in the
same way despite the order in which they review them. It
is no surprise that some polling sites (e.g. Washington Post
[1]) have started using such interfaces to collect information.
Further, in many settings data is naturally available in this
form; for instance, customers reveal their preferences among
items on display at a store by purchasing one of them, cf.
[15].

The key challenge with qualitative information arises in
the aggregation phase, due to possible contradictions: for
three items A, B and C, we could have a scenario where
one person prefers A over B, another prefers B over C, and
two people prefer C over A as shown in Figure 1. Such ap-
parent conflicts have created challenges for aggregation over
the centuries starting with the celebrated work of Condorcet
[9]; also see work on impossibility of existence of rankings
pioneered by Arrow [5]. Unlike the standard setting of the,
so called, ranked elections considered in the literature fol-
lowing the works [9] [5], in our context, we have access to
partial ranking information of objects: in general, we have
a fraction of population comparing a given pair of objects
unlike in the standard ranked election literature where each
individual provides complete ranking.

The main contribution of this paper lies in a proposal of
a novel method for aggregation of such partial (qualitative)
ranking information to come up with a global ranking. The
key insight is to view the collected data as the partial in-
formation about an underlying distribution over complete
orderings of all objects. For example, the votes shown on
the left in Figure 1 could have originated from the complete
user preferences shown on the right.

Figure 1: Data and Underlying Distribution

That said, the problem of aggregation reduces to mak-
ing certain inferences on the underlying distribution. For
many aggregation tasks, these inferences can be made di-
rectly from the data, with or without making assumptions
about the underlying distribution. For other tasks, learn-
ing the distribution is necessary. Both cases are presented,
and when the latter is the case, our approach involves find-
ing the distribution with maximal entropy (near) consistent
with the observed data. The inference problems and our so-
lutions are summarized in the table below.

Problem First-Order Comparison

Aggregate Ranking From Data From Data
Mode From Data Max-Ent
Top-K Ranking From Data Max-Ent

Table 1: Summary of results.

In Table 1, we use “From Data” to indicate the combina-
tion of data type and problem that can be solved directly
from the data, and“Max-Ent” to indicate those where learn-
ing an underlying distribution (a maximum entropy one in
our case), is necessary. Before we describe these contribu-
tions in further detail, we quickly recall related work.

Related Work. The question of learning distribution over
permutations from partial or limited information has been
well studied in the recent literature. Notably, in the work
of Huang, Guestrin and Guibas [18], the task of interest is
to infer the most likely permutation of identities of objects
that are being tracked through noisy sensing by maintain-
ing distribution over permutations. To deal with the ‘fac-
torial blowup’, authors propose to maintain only the first-
order marginal information of the distribution (essentially
corresponding to certain Fourier coefficients), then use the
Fourier inversion formula to recover the distribution and
subsequently predict its mode as the likely assignment. In
the work by Jagabathula and Shah [19], authors took a dif-
ferent approach to the same problem where they proposed
to learn the distributed over permutations by finding the
sparsest distribution consistent with the observed partial in-
formation. Finally, this approach was further extended and
integrated with the decision making in the context of rev-
enue management in work by Farias, Jagabathula and Shah
[15]. None of these works, however, deals with the question
of aggregation or achieving ranking. While the mode of the
distribution is a candidate for such a ranking, it might not
necessarily be a robust one. It should also be noted that,
through maximum entropy distribution learning, we are try-
ing to be maximally unconstrained subject to observed data,
unlike the above cited approaches which implicitly or explic-
itly impose additional constraints (e.g. sparsity).

The task of ranking objects or assigning scores has been
of great interest over the past decade or so with similar con-
cerns. There is a long list of works, primarily in the context
of bipartite ranking, including the RankBoost by Freund et
al. [16], label ranking by Dekel et al. [11], Crammer and
Singer [10], Shalev-Shwartz and Singer [25] as well as ana-
lytic, learning results on bipartite ranking including those
of Agarwal et al. [3], Usunier et al. [27] and Rudin and
Schapire [24]. The algorithm that will be closest to our pro-
posal is the p-norm push algorithm by Rudin [23] which uses
�p norm of information to achieve ranking.
The algorithmic view on rank aggregation was revived in

work by Dwork et al [13] where they consider design of ap-
proximation algorithms to find ‘optimal’ ranking with re-
spect to a specific metric on permutations. Very recently, a
high-dimensional statistical inference view for learning dis-
tribution over permutations based on comparison data has
been introduced by Mitliagkas et al [22].

The maximum entropy approach for learning distribution
is a classical one dating back to the work of Boltzman.
The maximum entropy (max-ent) distribution, a member of
an appropriate exponential distribution family, is maximum
likelihood estimation of the parameters in that family (cf.
see [29]). Indeed, the use of exponential family distribution
over rankings has been around for more than few decades
now (cf. see [12, Chapter 9]). We provide a careful analysis
of a stochastic sub-gradient algorithm for learning the pa-
rameters of this max-entropy distribution. This algorithm
is distributed and iterative. It directly builds upon the al-
gorithm used in [21] for distributed wireless scheduling. It
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is worth taking note of use of maximum entropy distribu-
tion over permutation based on given marginal information
to learn the “missing” marginals by Agrawal et al [4] in the
context of parimutuel betting.

Our contributions. The primary contribution of this pa-
per is the use of the framework of distributions over permu-
tations as means to reach rank aggregation from collection
of partial preferences.

In our setting, the data available for ranking comes in two
different flavors: (a) pair-wise comparison data (e.g. item
i is preferred to item j), and (b) first-order marginal data
(e.g. item i is ranked in position k). Given data in either
form, we focus our attention on three aggregation problems:
(1) finding an aggregate ranking over a collection of items
(e.g. NetFlix movies), (2) finding the most likely ordering of
the items (e.g. object tracking a la [18]), and (3) identifying
the top-k items in a collection (e.g. selecting accepted pa-
pers for Sigmetrics 2012, such as this one). We solve (1) by
introducing a general method which gives each item a score
that reflects its importance according to the distribution.
We then present a specific instance of this method which
allows us to compute the desired scores from the data (com-
parison or first-order marginal) directly, without the need to
learn the distribution. More importantly, we show that the
ranking induced by this scoring method is equivalent to the
ranking obtained from the family of Thurstone (1927, [26];
also see [12, Ch 9]) models, a popular family of parametric
distributions used in a wide range of applications (e.g. on-
line gaming and airline ticket pricing). For (2), we use the
principle of maximum entropy to derive a concise parameter-
ization of an underlying distribution (most) consistent with
the data. Given the form of the max-ent distribution (an
exponential family), computing the mode reduces to solving
a maximum-weight matching problem on a bipartite graph
with weights induced from the parameters. For the case of
first-order marginals, this is an easy instance of the network-
flow problem (can be solved, for example, using belief prop-
agation [6]). Furthermore, we propose a heuristic for mode
computation as well that bypasses the step of learning the
max-ent parameters but uses directly the available partial
preference data. Such a heuristic, for example, can speed
up computation of [18] drastically. Somewhat curiously, we
show that this heuristic is first-order approximation of the
mode finding of the max-ent distribution. For pair-wise com-
parisons representation, the problem is not known to be solv-
able in polynomial time. We propose a simple randomized
scheme that is a 2-approximation of it. We solve problem
(3) using another distribution-based scoring scheme where
the scores can be computed directly from the data for first
order marginals, or by learning a max-ent distribution in the
case of comparisons.

We present a stochastic gradient algorithm for learning
the max-ent distribution needed for some of the aforemen-
tioned problems. This algorithm is derived from [21], how-
ever the proof is different (and simpler). It provides explicit
rate of convergence for both data types (comparisons and
first-order marginals). In both cases, the algorithm uses an
oracle to compute intermediate marginal expectations of the
max-ent distibution. We prove that the exact computation
of such marginal expectations is #P -hard. Using standard
MCMC methods and their known mixing time bounds, our
analysis suggests that for a collection of n items, the com-
putation time scales exponentially in n and polynomially in

n respectively for the pair-wise comparisons and first-order
marginals respectively. Two remarks are in order: first, the
result for first-order marginals also suggests a distributed
scheduling algorithm for input-queued switches with polyno-
mial time learning complexity (unlike exponential for wire-
less network model). Second, the standard stochastic ap-
proximation based approaches cf. [8] do not apply as is (due
to compactness of domain related issues).

2. MODEL AND PROBLEM STATEMENT
Model. We consider a universe of n available items, N =
{1, 2, ..., n}. Each user has preference order, represented as
permutation, over these n items. Specifically, if σ is the
permutation, the user prefers item i over j if σ(i) < σ(j).
We assume that there is a distribution, say μ, over the space
of permutations of n items, Sn, that defines the collective
preferences of the entire user population.

Data. We consider scenarios where we have access to partial
or limited information about μ. Specifically, we shall restrict
our attention to two popular types of data: first-order rank-
ing and comparisons. Each of these two types correspond to
some sort of marginal distribution of μ as follows:

First-order marginals: For any 1 ≤ i, k ≤ n, the fraction of
population that ranks item i as their kth choice is the first-
order marginal information for distribution μ. Specifically,

mik
�
= Pμ[{σ(i) = k}] =

∑
σ∈Sn

μ(σ)I{σ(i)=k} (1)

where I{E} denotes the indicator variable for event E. Col-
lectively, we have the n × n matrix [mij ] of the first-order
marginals, that we shall denote by M . This is the type of
information that was maintained for tracking agents in the
framework introduced by Huang, Guestrin and Guibas [18].

Comparison Data: For any 1 ≤ i, j ≤ n, the fraction of
population that prefers item i over item j is the comparison
marginal information. Specifically,

cij
�
= Pμ[{σ(i) < σ(j)}] =

∑
σ∈Sn

μ(σ)I{σ(i)<σ(j)}. (2)

Collectively, we have access to the n×n matrix [cij ] of com-
parison marginals, denoted by C. Such data is available
through customer transactions in many businesses, cf. [15].

Remarks. First, while we assume mik (resp. cij) available
for all i, k (resp. i, j), if only a subset of it is available, the
algorithm with that information works equally well, with the
obvious caveat that the quality of the output is dependant
on the richness of our data. Second, we shall assume that
mik ∈ (0, 1) for all i, k (resp. cij ∈ (0, 1) for all i, j). Fi-
nally, in practice one may have a noisy version of M or C
data. However, the procedures we describe are inherently ro-
bust (as they are simple continuous functions of the observed
data) with respect to small noise in the data. Therefore, for
the purpose of conceptual development, such an idealized
assumption is reasonable.

Goal. Roughly speaking, the goal is to utilize data of type
M or C to obtain various useful rankings of the objects of
interest. Specifically, we are interested in (a) finding an ag-
gregate or representative ranking over the items in question,
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(b) finding ‘most likely’ (or mode) ranking, and (c) finding
a ranking that emphasizes the top k objects.

To address these questions, we propose the following ap-
proach: (a) assume that the data originates from some un-
derlying distribution over permutations. (b) Use the data to
answer the question directly, without learning the distribu-
tion, whenever possible. (c) Otherwise, learn a distribution
that is consistent with the data (M or C), and use said dis-
tribution to answer the question. In principle, there could
be multiple, possibly infinitely many, distributions that are
consistent with the observed data (M or C, assuming it is
generated by a consistent underlying unknown distribution).
As mentioned earlier, we shall choose the max-ent distribu-
tion that is consistent with the observed data.

Result outline. Here we provide somewhat detailed ex-
planation of the results summarized in the table presented
earlier. Specifically, we solve problems (a), (b), and (c) as
follows. To find an aggregate ranking (Section 3.1), we as-
sign each item a score derived from the distribution over
permutations. We then propose an efficient algorithm to
compute said score directly from the data, without learn-
ing the distribution . We show that the ranking induced by
the computed scores is equivalent to the ranking induced by
the parametric family of Thurstone models [26][12, Ch 9]
(Section 3.1), a popular family of distributions used in ap-
plications ranging from online gaming to airline ticket pric-
ing. Effectively, our result implies that if one learns any of
the distributions in this family from the data, and uses the
learned parameters to obtain a ranking, then this ranking
is identical to the ranking we obtain directly from the data
(i.e. no need to learn the distribution)!

As for the mode of the distribution, we assume a maxi-
mum entropy underlying model, and derive a concise param-
eterization of the model using O(n2) parameters (Section
3.2). We also show that finding the mode of the distribution
is equivalent to solving an optimization problem on these
parameters. In the case of First-Order Marginals (see [18]),
this problem is easy and can be solved using max-weight
matching on a bipartite graph. We also provide an effi-
cient heuristic for finding the mode in the case of first-order
marginal data directly from the data, without learning the
max-ent distribution. In the case of comparison data, the
problem is more challenging. In this case, we provide an
2-approximation algorithm for finding the mode. In Section
3.3, for the top-k ranking problem, we propose a score that
emphasizes the top-k items. We show that this score can be
computed exactly and directly from First-Order Marginal
data, and approximated using the max-ent distribution in
the case of comparison data.

3. MAIN RESULTS

Before we get into the details of estimation the distribution,
lets consider the problem of ranking given said distribution.
More precisely, lets assume that we are given a distribution
over permutations μ, and asked to obtain an ordered list of
the items of interest that reflects the collective preference
implied by the distribution. A classical approach in this
setting is the axiomatic one. In this approach one comes
up with a set of axioms that the ranked list should satisfy,
and then try to come up with a ranking function or algo-

rithm that satisfies these axioms. Unfortunately, seemingly
natural axioms cannot be satisfied by any algorithm [5].

In this section, we opt for a non-axiomatic approach to
aggregate preferences. We address the problems of finding:
(a) an overall aggregate ranking of all items, (b) the mode
of the distribution, and a (c) top-k ranking. These problems
demonstrate the utility of having or assuming an underly-
ing distribution, and give rise to situations where one can
bypass the learning step and use the data directly for rank-
ing. In the latter situation, one can make the conceptual use
of assuming a distribution, without performing complicated
computations to obtain a ranking.

3.1 Aggregate Ranking
Here we propose a method to obtain an entire ranking

of all objects. Building on the intuition followed by popu-
lar voting rules, the basic premise is that the objects that
are ranked higher more frequently should be getting higher
ranking. This can be formalized as follows: for any mono-
tonically strictly increasing non-negative function f : N →
[0,∞], define score Sf (i) for object i as

Sf (i) =
n∑

k=1

f(n− k)P(σ(i) = k). (3)

The choice of f(x) = xp assigns the pth norm of the distri-
bution of σ(i) as score to object i.

One can take this line of reasoning further by noting that
the exponential function for a given Θ > 0, fΘ(x) = exp(Θx),
effectively captures the combined effect of all p-norms. There-
fore, we propose, what we call the Θ-ranking, with scores
defined as:

SΘ(i) =
n∑

k=1

exp(−Θk)P(σ(i) = k). (4)

By selection Θ ≈ ln k, the scores are effectively capturing
the occurrence of objects in top k positions only; and for
Θ near 0 they are capturing the effect of lower p moments
more prominently. Furthermore, intermediate choices of Θ
give effective ranking for various scenarios.

We focus our attention on the case where p = 1, and
present a score that can take us directly from the data to
the ranking, without the intermediate step of learning the
distribution. We refer to this ranking as the �1 ranking.

�1 Ranking

The �1 score is given by:

S1(i) =

n∑
k=1

(n− k) · P[σ(i) = k]

In the case of first-order marginal data, this score can be
computed in a straightforward way. For comparison data,
however, the marginals P[σ(i) = k] are not available, with-
out having the distribution. Fortunately, the score above
can be computed from the data directly in the following
form:

S(i) =
1

n− 1

∑
j �=i

P
[
σ(i) < σ(j)

]
=

1

n− 1

∑
j �=i

cij

using the following lemma:

358



Lemma 1. Given the definition of S(i) and S1(i) above,
we have

S1(i) = S(i)

A proof of this lemma is provided in Section 6. One interest-
ing aspect of this shortcut is that the equivalence between
the different scores does not assume any particular distri-
bution. It only assumes that the underlying distribution is
consistent with the data. This suggests that the produced
ranking should work with different distributions. One fam-
ily of such distributions is the one based on the celebrated
model of Thurstone [26][12, Ch 9], as we shall see in the next
section.

Why �1 Ranking?

Here we demonstrate the utility of our �1 ranking by show-
ing its equivalence to the ranking obtained using a Thur-
stone model. In a Thurstone model, preferences over n items
come from a “hidden” process as follows: the “favorability”
of each item i is a random variable Xi = ui + Zi, where ui

is an unknown parameter (also known as the skill param-
eter), and Zi is a random variable with some distribution.
Furthermore, the random variables Z1, ..., Zn are identically
distributed. If we take the tuple (x1, x2, ..., xn) to be the
outcome of some trial, then item j is ranked in position k if
xj is ranked kth among the values x1, ..., xn. Equivalently,
item i is preferred to item j if xi > xj . In a typical ap-
plication of such models one observes these comparisons or
positional rankings, and uses these observations to infer the
values of the unkown parameters u1, ..., un. These values are
then used to find a ranking over all items. More precisely,
items i > j > ... > k if ui > uj > ... > uk.

As it turns out, the ranking obtained by following the
algorithm based on �1 scores is equivalent to the ranking
one would get by fitting a Thurstone model. The formal
statement is as follows:

Theorem 1. Let ui and uj be the (skill) parameters as-
signed to item i and j (respectively) in a Thurstone model,
and let S(i) and S(j) be the score assigned to the same items
using our method (�1 scores), then:

uj ≤ ui ⇔ S(j) ≤ S(i) ∀i, j
(5)

A proof of this theorem is provided in Section 6. Thurstone
models have been used in a wide range of applications such
as revenue management in airline ticket sales, and player
ranking in online gaming platforms (e.g. a variant of this
model is used in Microsoft’s TrueSkill [17]).

3.2 The Mode

Given a distribution over permutations that is consistent
with the data, in the context of object tracking (a la Huang
et al. [18]) one would like to find the most likely permuta-
tion under said distribution, or the mode. It is easy to see
that the mode of a distribution over permutations is hard
to compute in general. To address this difficulty, one might
want to follow some criteria for selecting a tractable class
of distributions to deal with. Ideally, we would like distri-
butions from this class to obey the constraints given by the

data, without imposing any additional structure. This intu-
itive requirement is captured by the Maximum Entropy cri-
terion, whereby we choose a distribution that maximizes the
information entropy while satisfying the data constraints. In
the following section, we provide a formal derivation of the
maximum entropy distribution along those lines.

The Maximum Entropy Model
Formally, the observations M or C impose the constraints
that the distribution, μ, should belong to class M:

∑
σ∈Sn

μ(σ)I{σ(i)=k} = mik, ∀i, k ∈ N (6)

or class C:
∑
σ∈Sn

μ(σ)I{σ(i)<σ(j)} = cij , ∀i, j ∈ N (7)

with the the normalization and non-negativity constraints
in both cases.

∑
σ∈Sn

μ(σ) = 1, μ(σ) ≥ 0, ∀σ ∈ Sn. (8)

M (resp. C) is non-empty only if M (resp. C) is generated
by a distribution over Sn to begin with. For clarity of expo-
sition, we will assume that this is the case. When this is not
the case, The algorithm that we shall present is based on the
solving the Lagrangian dual of an appropriate optimization
problem in which the constraints imposed by M (resp. C)
are “dualized”. Therefore, by construction such algorithm is
robust.

Now |Sn| = n! and the data of type M (resp. C) im-
poses O(n2) constraints. Therefore, there could be multiple
solutions. The max-ent principle suggests that we choose
the one that has maximal entropy in the class M (resp. C).
Philosophically, we follow this approach since we wish to
utilize the information provided by the data and nothing
else, i.e. we do not wish to impose any additional structure
beyond what data suggests. It is also well known that such
a distribution provides maximum likelihood estimation over
certain class of exponential family distributions (cf. [29]).
In effect, the goal is to find the distribution that solves the
following optimization:

max
ν

HER(ν)
�
= −

∑
σ∈SN

ν(σ) log ν(σ)

ν ∈M or C. (9)

It can be checked that the Lagrangian dual of this problem
is as follows (since all entries of M,C in (0, 1)): let λik

be the dual variables associated with marginal consistency
constraint for M in (6). Then, the dual takes the following
form:

max
λ

∑
i,k

λikmik − log
(∑

σ

exp
(∑

ik

λikI{σ(i)=k}
))

(10)

It can be shown that this is a strictly concave optimization
and has a unique optimal solution. Let it be λ∗ = [λ∗

ik].
Then the corresponding primal optimal solution of (9) (with
M) is given by

μ(σ) ∝ exp
( ∑
i,k∈N

λ∗
ik · I{σ(i)=k}

)
. (11)
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Similarly, for the comparison data, the dual optimization
takes the form

max
λ

∑
i,j

λi<jcij − log
(∑

σ

exp
(∑

ij

λi<jI{σ(i)<σ(j)}
))

, (12)

and the optimal primal of (9) given optimal dual λ∗ = [λ∗
i<j ]

is

μ(σ) ∝ exp
( ∑
i �=j∈N

λ∗
i<j · I{σ(i)<σ(j)}

)
. (13)

As can be seen, in either case the maximum entropy distri-
bution is parameterized by at most n2 parameters, which is
the same as the degrees of freedom of the received data. For
future purposes and with a slight abuse of notation, we shall
use F (λ) to represent the objective of both Lagrangian dual
optimization problems (10) and (12).

Computing the Mode

Having restricted our attention to the maximum entropy dis-
tribution, we now proceed to compute the mode. We begin
by providing an algorithm for computing the mode exactly
in the case of First-Order Marginal data. We then present a
more efficient algorithm for approximating the same mode
directly from the data without the need to learn the max-ent
distribution. Finally, we present an algorithm that uses the
max-ent distribution to compute a 2-approximation of the
mode in the general case.

Recall that under the maximum-entropy distribution, the
logarithm of the probability of a permutation σ is propor-
tional to

∑
i,k λikI{σ(i)=k} for first-order marginal data, and∑

i,j λi<jI{σ(i)<σ(j)} for comparison data. Since the log
function is monotone, finding the mode, in both cases, boils
down to finding:

σ∗ ∈ arg max
σ∈Sn

(∑
i,k

λikI{σ(i)=k}
)

(14)

σ∗ ∈ arg max
σ∈Sn

(∑
i,j

λi<jI{σ(i)<σ(j)}
)

(15)

Solving the problem in (14) exactly is equivalent to the fol-
lowing maximum weight matching problem: consider an
n × n complete bipartite graph with edge between node i
on left and node k on right having weight λik. A match-
ing is a subset (of size n) edges so that no two edges are
incident on same vertext. Let the weight of the matching
be the summation of the weights of the edge chosen by it.
Then the maximum weight matching in this graph is pre-
cisely solving (14). This is a well known instance of the
classical network flow problem and has strongly polynomial
time algorithms [14]. It also allows for distributed iterative
algorithm for finding it including the auction algorithm of
Bertsekas [7] and the recently popular (max-product) belief
propagation [6]. Thus, overall finding the mode of the distri-
bution for the case of first-order marginal is easy and admits
distributed algorithmic solution.

Next, we describe a (heuristic) method for finding the
mode without requiring the intermediate step of finding the
max-ent parameters λ in the case of first-order marginal
data. Declare the solution of the following optimization as
the mode:

max
∑
i,k

mikI{σ(i)=k}.

That is, in place of λik, use mik. The intuition is that λik

is higher if mik is and vice versa. While there is no direct
relation between this heuristic and mode of the max-ent ap-
proximation, we state the following result which establishes
the heuristic to be a ‘first-order’ approximation. A proof is
provided in Section 6.

Theorem 2. For λ = [λik] in small enough neighborhood
of 0 = [0],

mik ≈ 1

n
+

1

n− 1
λik.

For comparison data, the problem in (15) is also equiv-
alent to a combinatorial problem with the space of objects
being the matchings. However, it does not admit the nice
representation as above. One way to represent the match-
ings in comparison form is n × n matrices, say B = [Bij ]
with (a) each entry Bij being +1 or −1 for all 1 ≤ i, j ≤ n,
(b) for all 1 ≤ i, j ≤ n, Bij +Bji = 0 (anti-symmetric), and
(c) if Bij = Bjk = 1, then Bik = 1 for all 1 ≤ i, j, k ≤ n.
The goal is to find B so that

∑
ij Bijλi<j is maximized. It

is not clear if this is an easy problem.
To address this problem, we have the following 2-approx.

algorithm to compute the mode using the parameters of the
max-ent distribution: choose L permutatations uniformly
at random, compute their weights (defined as per (15)) and
select the one with maximal weight among these L permu-
tations. For L large enough, this is essentially with 1/2
weight of the maximum weight. This requires λ to have all
non-negative components. This is not an issue since given
the structure of the permutations (each having equal num-
ber comparisons, σ(i) < σ(j), correct) and hence an affine
transformation of λ by vector with all components being
same constant does change the distribution. Therefore, in
principle, we could require the subgradient algorithm to be
restricted to the non-negative domain (projected verison).
The formal statement about this algorithm is stated below.

Theorem 3. Let λ = [λi<j ] be non-negative vector. Let
OPT be the maximum of

∑
ij λi<jI{σ(i)<σ(j)} among all per-

mutation σ ∈ Sn. Then in the above described randomized
algorithm, if we choose L ≥ 1

2δ
ln 1

ε
, then

P

[
W (σ̂) <

1

2
(1− δ)OPT

]
< ε

A proof of this theorem is included in Section 6. To com-
plete the solution, we only need to estimate the parameters
of the max-ent distribution. An algorithm is provided in
Section 4.

3.3 Top-K Ranking
Here the interest is in finding a ranking that emphasizes

the top k objects (the favorites). To do this, we can compute
the aggregate ranking, or the mode, and then declare the top
k ranked objects in resulting list. We propose a natural way
to emphasize the favorites. Intuitively, if an object is ranked
among top k positions by a large fraction (probability-wise)
of the permutations in the distribution, then it ought to be
among favorites. This suggests that for a distribution λ,
each object i can be given a score Sk(i), defined as

Sk(i) = Pλ[σ(i) ≤ k],
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In the case of first-order marginal data, this score is nothing
but

∑
�≤k mi�, and can be computed directly from the data.

In the case of comparison data, this score can be inferred
from the max-ent distribution, which can be learned by the
procedure outlined in Section 4. Finally, once the score is
computed, we can now declare the top k objects with highest
scores as per Sk(·) as the result of top k.

4. LEARNING THE MAX-ENT MODEL
Here we describe an iterative, distributed sub-gradient al-

gorithm that solves the dual optimization problems (10),
(12). First, we describe an idealized procedure that calls cer-
tain oracle that estimates marginals of distribution from ex-
ponential family. We can, in general, only hope to estimate
these marginals approximately because the exact estimation,
as we show later, is #P -hard. Therefore, the main result
that we state is for a sub-gradient algorithm based on such
an approximate oracle. In a later section, we shall describe
how to design such an approximate oracle in a distributed
manner along with its associated computational cost.

Algorithm 1 MaxEnt Estimation: Using Ideal Oracle

Require: Ranking data mik ∀i, k.
1: Initialize: λ0

ik = 0 ∀i, k.
2: for t = 1→ T do

3: λt+1
ik ← λt

ik + 1√
t

(
mik − Eλt [I{σ(i)=k}]

)

(Eλt [I{σ(i)=k}] is provided by an oracle)
4: end for

5: Choose τ ∈ {1, . . . , T} at random so that P(τ = t) ∝
1/
√
t

6: return λτ

Here, Eλt [I{σ(i)=k}] =
∑

σ∈Sn
Pλt(σ)I{σ(i)=k} where

Pλt(σ) =
1

Z(λt)
exp

(∑
i,k

λt
ikI{σ(i)=k}

)
,

with normalizing constant (partition function) defined as:

Z(λt) =
∑
σ∈Sn

exp
(∑

i,k

λt
ikI{σ(i)=k}

)

Instead of Eλt [I{σ(i)=k}], we will use a randomized estima-

tion, Ẽλt(i, k) = Ẽλt [I{σ(i)=k}], such that the error vector
e(t) = [eik(t)] where each component

eik(t) = Eλt [I{σ(i)=k}]− Ẽλt(i, k)

is sufficiently small. We state the following result about the
convergence of this algorithm.

Theorem 4. Suppose that each iteration of the sub-gradient
algorithm uses an approximate estimate Ẽ·(·, ·) such that
‖e(t)‖1 ≤ 1

A(t)+‖λ∗‖∞+‖λ∗‖2
2

, where A(t) =
∑t

s=1 1/
√
s and

λ∗ is a solution of the optimization problem. Then, for any

γ > 0, for choice of T = Θ
(
ε−2−δ

(
n2+‖λ∗‖∞+‖λ∗‖22

)2+δ)
,

we have

E

[
F (λτ )

]
≥ F (λ∗)− ε,

where F (·) is the objective of dual optimization (10). The
identical result holds for the comparison information (12).

A proof of this theorem is included in Section 6.

An Approximate Oracle

Theorem 4 relies on existence of an oracle that can produce
an estimation of marginals approximately with appropriate
accuracy for each time step t. Computing marginals exactly
is computationally hard. For first-order marginal data, this
follows from [4]. We prove a similar result for comparison
data. Both results are summarized by the following theorem:

Theorem 5. Given a max-ent distribution λ, computing
Eλ[I{σ(i)=k}] and Eλ[I{σ(i)<σ(j)}] is #P -hard.

We skip the proof due to space constraint. We now de-
scribe an approximate oracle. We shall restrict our descrip-
tion to the Markov Chain Monte Carlo (MCMC) based or-
acle. In principle, one may use heuristics like Belief Prop-
agation to estimate these marginals instead of MCMC (of
course, this may lead to the loss of the performance guaran-
tee).

Now the computation of marginals requires computing
Pλt(σ) for any σ ∈ Sn. From its form, the basic challenge
is in computing the partition function Z(λt). The partition
function Z(λt) is the same as computation of permanent of
a non-negative valued matrix A = [Aik] where Aik = eλik .
In an amazing work, Jerrum, Sinclair and Vigoda [20] have
designed Fully Polynomial Time Randomized Approxima-
tion Scheme (FPRAS) for computing permanent of any non-
negative valued matrix. That is, Z(λt) (hence Pλt(σ)) can
be computated within multiplicative accuracy (1±ε) in time
polynomial in 1/ε, n, log(1/δ) with probability at least 1−δ.
Therefore, it follows that the desired guarantee in Theorem
4 can be provided for all timesteps (using union bound) with
probability at least 1− 1/n within polynomial in n building
upon the algorithm of [20].

For the case of comparison information, however no such
FPRAS algorithm for computing the partition function is
known. Therefore, we suggest a simple MCMC based algo-
rithm and provide the obvious (exponential) bound for it.
To that end, define Wλ(σ) =

∑
i,k∈N λik · I{σ(i)<σ(j)}, and

construct a Markov chain, M(λ), whose state space is the
set of all permutations, Sn, and whose transitions from a
given state σ to a new state σ′ are given as follows:

1: With probability 1
2
let σ′ = σ.

2: Otherwise, construct σ′ as follows:

◦ Choose two elements i and j uniformly at random;
set σ̃(i) = σ(j), σ̃(j) = σ(i) and σ̃(k) = σ(k) for
all k �= i, j.

◦ Set σ′ = σ̃ with probability min{1, exp (Wλ(σ̃) −
Wλ(σ)

)}; else set σ′ = σ.

Using this Markov chain, we estimate Eλ[I{σ(i)<σ(j)}] as
follows: starting from any initial state, run the Markov chain
for Tm steps and then record the state of the Markov chain,
say σTm . If σTm(i) < σTm(j), then record 1 else record 0.
Repeat this for S times and obtain the empirical average
of the recorded 0/1 values. Declare this as the estimate
of Eλ[I{σ(i)<σ(j)}]. Indeed, one simultaneously obtains such
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estimates for all i, j. We have the following bound on Tc,
which we establish in Section 6:

Theorem 6. The above stated Markov chain has station-
ary distribution μ∗ so that

μ∗(σ) ∝ exp
(
Wλ

)
.

Let μ(t) be the distribution of the Markov chain after t steps
starting from any initial condition. Then for any given δ >
0, there exists

Tc = Θ
(
exp

(
Θ
(
n2

∥∥λ∥∥∞ + n log n
))

log
1

δ

)
,

such that for t ≥ Tc,
∥∥∥μ(t)

μ∗ − 1
∥∥∥
2,μ∗

< δ,

where ‖ · ‖2,μ is the χ2 distance.

Now the total variation distance between μ(t) and μ∗ is
smaller than the χ2 distance between them. Therefore, by
Theorem 6, it follows that the estimation error of Pλ(σ)
using μ(t) will be at most δ. From Chernoff’s bound, by se-
lecting S (mentioned above) to be O(δ−2 log n) (with large
enough constant), it will follow that the estimated empiri-
cal marginals for all i, j components must be within error
O(δ) with probability 1− 1/poly(n). Given that increment
in each component of λ as part of the sub-gradient algo-
rithm is O(

√
T ) by time T , from Theorem 4, it follows that

the ‖λ‖∞ = O
(
(n+ ‖λ∗‖∞ + ‖λ∗‖22)1+γ

)
(for any choice of

γ > 0 in Theorem 4). Finally, the smallest δ required in
Theorem 4 is an inverse polynomial in n, ε, from above dis-
cussion it follows that the overall cost of the approximate
oracle required for the comparisons effectively scales expo-
nentially in n3+γ (ignoring other smaller order terms).

5. EXPERIMENTS AND SCALABILITY
Here we provide results from a simple experiment to demon-

strate that the ranking produced by our �1 algorithm con-
verges to the right ranking for the Multinomial Logit Model,
an instance of Thurstone model (choose Zis to be i.i.d. logit
distribution). Specifically, we sample distinct items i and
j from 1, ..., n uniformly at random as per the distribution.
We then consult an MNL model, defined using n parame-
ters, for the value of I{σ(i)<σ(j)}. All the samples are then
combined into a matrix [cij], which is used to find the �1
ranking. In Figure 2, we show a plot of the error measured
using the normalized number of discordant pairs versus the
number of samples used for n = 10. As we can see, beyond
500 samples, the error induced is extremely small.

To test the scalability of our method, we implemented a
voting/survey tool that enables a large number of partici-
pants to vote on any number of items in real time. By doing
so, we had the following two questions in mind: in addition
to being theoritically interesting, can our algorithm be ap-
plied in real time? is comparison based voting practical and
simple enough for adoption? through this exeperiment, we
believe the answer to both questions to be affirmative.

Our tool was installed in voting booths that were made
available to the visitors of the MIT150 event [2], a university-
wide public open house. Voting categories included movies,
actors, musicians, atheletes, among others, and the results at
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Figure 2: Plot of the error induced by �1 ranking

algorithm for the MNL model, a specific instance of

Thurstone’s model.

any time were continuously displayed on a large screen. The
participation was impressive, and the feedback was mostly
positive, which makes us believe that adopting comparison
as form of voting is worth a serious consideration.

6. PROOFS
This section provides detailed proofs of all the results

stated earlier in the paper. Due to space constraints, proof
of Theorems 5 and 6 are omitted from this version. 2.

6.1 Proof of Lemma 1
With some arithmetic manipulation, we get

S(i) =
1

n− 1

∑
j �=i

∑
σl∈Sn

P
[
σ(i) < σ(j)|σ = σl

]
P
[
σ = σl

]

=
1

n− 1

∑
σl∈Sn

∑
j �=i

P
[
σ(i) < σ(j)|σ = σl

]
P
[
σ = σl

]

=
1

n− 1

∑
σl∈Sn

(
n− σl(i)

)
P
[
σ = σl

]

=
1

n− 1

[
n− E[σ(i)]

]
=

n∑
k=1

(n− k)1 · P[σ(i) = k
]

= S1(i)

6.2 Proof of Theorem 1
Recall that, under Thurstone’s model, each item i has

“skill” parameter ui associated with it. The random “favor-
ability” Xi = ui + Zi where Zi are i.i.d. random variables
with some distribution. Our algorithm, with access to ex-
act partial marginal data (first-order or comparison), com-
putes scores for each item i: S1(i) using first-order data and
S(i) using comparison data. As proved in Lemma 1, these
two scores are equivalent. Therefore, if we establish that
ui > uj if and only if S(i) > S(j), it is equivalent to being
S1(i) > S2(j) as well. We shall establish this statement in
two parts: (a) ui > uj , and (b) ui = uj .

2A full version of this paper is available at web.mit.edu/
ammar/www/rankaggregation2012full.pdf
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Let us start with the first case, ui > uj . Recall that, score
for an item i is

S(i) =
1

n− 1

∑
k �=i

P
[
Xi > Xk

]

Therefore, for i �= j,

S(i)− S(j) ∝
(∑

k �=i

P
[
Xi > Xk

])−
(∑

��=j

P
[
Xj > X�

])

=
(
P
[
Xi > Xj

]− P
[
Xj > Xi

])
+

( ∑
��=i,j

(
P
[
Xi > X�

]− P
[
Xj > X�

])

=
(
P
[
Xj ≤ Xi

]− P
[
Xi ≤ Xj

])
+

( ∑
��=i,j

(
P
[
Xj ≤ X�

]− P
[
Xi ≤ X�

])
. (16)

Recall that Xi = ui +Zi and Xj = uj +Zj where ui, uj are
the “skill” parameters of i and j respectively while Zi, Zj

are i.i.d. random variables with some distribution. Define,
Wij = Zi − Zj . Then for all i, j, Wij are identically dis-
tributed, say with distribution similar to a random variable
W which has CDF given by FW , i.e. FW (x) = P[W ≤ x].
Since W is difference of independent and identically dis-
tributed random variables, by definition it is ‘symmetric’
around 0. That is, for any x ≥ 0,

P
[
W < −x] = P

[
W > x

]
. (17)

Given these notations, it follows that

P
[
Xi ≤ Xj

]
= P

[
Wij ≤ uj − ui

]

= FW (uj − ui). (18)

Similarly,

P
[
Xj ≤ Xi

]
= FW (ui − uj)

P
[
Xi ≤ X�

]
= FW (u� − ui)

P
[
Xj ≤ X�

]
= FW (u� − uj). (19)

Since ui > uj , we have u� − uj > u� − ui for any � �= i, j.
Since FW is a CDF and hence monotonically non-decreasing,
i.e. FW (x) ≤ FW (y) for all x ≤ y,

FW (u� − uj)− FW (u� − ui) ≥ 0, (20)

for all �. Also, let δ = ui − uj > 0. Then, from above
discussion, (16) becomes

S(i)− S(j) ∝
(
FW (δ)− FW (−δ)

)
+

( ∑
��=i,j

(
FW (u� − uj)− FW (u� − ui)

))

(21)

Now,

FW (δ)− FW (−δ) = P[W ∈ (−δ, δ]]
≥ P[|W | ≤ δ/2]. (22)

As we shall show next, for any distribution of Zs, W is such
that for any γ > 0,

P[|W | ≤ γ] > 0. (23)

From (20)-(23) (and γ = δ/2 in last equation), it follows
that if ui > uj , then

S(i)− S(j) > 0. (24)

Now we establish (23). For this note that due to Z (dis-
tributed as Zi, Zj) being a distribution, there exists (tight-

ness) [−a, a] ⊂ R for some a > 0 so that P
[
Z ∈ [−a, a]

]
> 1

2
.

Given any γ > 0, partition this interval into at most N =
� 4a

γ
� disjoint contiguous intervals, each of length γ/2. One

of these intervals must have probability at least 1/2N . Call
this interval I. That is, P[Z ∈ I] ≥ 1/2N . Since Zi, Zj are
distributed independently and identically distributed man-
ner with distribution same as that of Z, we have that

P[Zi ∈ I, Zj ∈ I] ≥ 1

4N2
> 0. (25)

But when both Zi and Zj are in I, their difference W =
Zi − Zj must be withint [−γ/2, γ/2]. This completes the
justification of (23).

For the case (b), ui = uj , using identical arguments as
above, one can argue that S(i) = S(j). This complete the
proof of Theorem 1.

6.3 Proof of Theorem 2
Let λ be in neighborhood of 0 = [0]. We shall establish

claim by means of Taylor’s expansion of m as function of λ
around 0. For simplicity, let us denote σij = I{σ(i)=j}. Then

mij(λ) =
∑
σ∈Sn

σij
1

Z(λ)
exp

(∑
kl

λklσkl

)
,

where partition function Z(λ) =
∑

σ∈Sn

1
Z(λ)

exp
(∑

k,l λklσkl

)
.

For λ = 0, we have mij(0) =
1
n
for all i, j. By the first-order

Taylor expansion, for λ near 0.

mij(λ) ≈ mij(0) +
∑
kl

λkl
∂mij(
)

∂λkl

∣∣

=0

. (26)

By the property of exponential family (see [29] for example),
it follows that

∂mij(λ)

∂λkl

= Eλ

[
σijσkl

]− Eλ

[
σij

]
Eλ

[
σkl

]

= Eλ

[
σijσkl

]−mij(λ)mkl(λ). (27)

From (26) and (27), it follows that for λ near 0,

mij(λ) ≈ 1

n
+

(∑
k,l

λklEλ

[
σijσkl

])− 1

n2

(∑
k,l

λkl

)
(28)

We state the following proposition.

Proposition 1. All distributions can be represented by λ
s.t. ∑

k

λik = 0,
∑
k

λkj = 0, for 1 ≤ i, j ≤ n. (29)

Proof. Consider a λ such that (29) is not satisfied. We
will transform λ to ν which satisfies (29) but induces exactly
the same distribution. Specifically, we shall prove that for
each σ, σ̃ ∈ Sn∑

k,l

νkl(σkl − σ̃kl) =
∑
k,l

λkl(σkl − σ̃kl).
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To that end, define

νij = λij − 1

n
λi· − 1

n
λ·j +

1

n2
λ··,

where

λi· =
n∑

k=1

λik , λ·j =
n∑

k=1

λkj , λ·· =
n∑

k,l=1

λkl. (30)

Then,

n∑
k=1

νik =
n∑

k=1

λik − 1

n
λi·

n∑
k=1

1− 1

n

n∑
k=1

λ·k +
1

n2
λ··

n∑
k=1

1

= λi· − λi· − 1

n
λ·· +

1

n
λ·· = 0, ∀i.

Similarily, we can check
∑n

k=1 νkj for all j. Now we have:

∑
k,l

νklσkl =
∑
k,l

λklσkl − 1

n

∑
k

λk·
( n∑

l=1

σkl

)

− 1

n

∑
l

λ·l
( n∑
k=1

σkl

)
+

1

n2
λ··

(∑
k,l

σkl

)

= σklλklσkl − 1

n

n∑
k=1

λk· − 1

n

n∑
l=1

λ·l +
n

n2
λ··

=
∑
kl

λklσkl − 2

n
λ·· +

1

n
λ·· =

∑
kl

λklσkl − 1

n
λ··

Therefore:

∑
kl

νkl(σkl − σ̃kl) =
∑
kl

λkl(σkl − σ̃kl)− 1

n
λ·· +

1

n
λ··

=
∑
kl

λkl(σkl − σ̃kl).

This implies that the distributions induced by λ and ν are
identical.

Given Proposition 1, we shall assume λ satisfying (29)
without loss of generality. Then, from (28)

mij(λ) =
1

n
+

∑
k,l

λklE
[
σijσkl

]− 1

n
λ··

=
1

n
+

∑
k,l

λklE
[
σijσkl

]
(31)

Now,

E
[
σijσkl

]
=

⎧⎨
⎩

1
n

: k = i, j = l
1

n(n−1)
: k �= i, j �= l

0 : k = i, j �= l

Then from (31)

mij =
1

n
+

1

n
λij +

∑
k �=i,l �=j

1

n(n− 1)
λkl. (32)

Focusing on the last term, we have

∑
k �=i,l �=j

1

n(n− 1)
λkl =

1

2n(n− 1)

[∑
k �=i

( n∑
q=1,q �=j

λkq

)

+
∑
l �=j

( n∑
q=1,q �=i

λql

)]

=
1

2n(n− 1)

[∑
k �=i

(λk· − λkj)+

∑
l �=j

(λ·l − λil)
]

= − 1

2n(n− 1)

[∑
k �=i

λkj +
∑
l �=j

λil

]

= − 1

2n(n− 1)

[
λ·j = λij + λi· − λij

]

= − 1

2n(n− 1)
(−2λij) =

λij

n(n− 1)

Combining this with (32), we get

mij(λ) =
1

n
+ λij

( 1
n
+

1

n(n− 1)

)
=

1

n
+

1

n− 1
λij ,

as desired.

6.4 Proof of Theorem 3
Denote the difference between the weight of a permuta-

tion, σi, and the mode by Δi, defined as:

Δi
�
= W (σ∗)−W (σi)

Since the permutations σ1, . . . , σk are drawn uniformly at
random, for each permutation σi we have:

E
[
W (σi)

]
=

∑
i,j

λi<jE
[
σi<j

]
=

1

2

∑
i,j

λi<j ≥ 1

2
W (σ∗)

And therefore,

E
[
Δi

]
= W (σ∗)− E

[
W (σi)

] ≤ 1

2
W (σ∗)

Since σ̂ is chosen to have the maximum weight W (·) of
all permutations, and since these permutations are drawn
independently, we have:

P

[
W (σ̂) < (

1

2
− δ)W (σ∗)

]
=

k∏
i=1

P

[
W (σi) < (

1

2
− δ)W (σ∗)

]

=

k∏
i=1

P

[
Δi > (

1

2
+ δ)W (σ∗)

]

Using the Markov inequality we get:

P

[
W (σ̂) < (

1

2
− δ)W (σ∗)

]
≤

k∏
i=1

1

1 + 2δ
≈

k∏
i=1

(1− 2δ)

≤
k∏

i=1

e
−2δ ≤ e

−2δk

Where the approximation is valid for sufficiently small δ.
Setting k > 1

2δ
log 1

ε
, we have:

P

[
W (σ̂) < (

1

2
− δ)W (σ∗)

]
< ε
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6.5 Proof of Theorem 4: subgradient algorithm
We shall establish result for the first-order marginal. The

proof for comparison is identical. To that end, recall that
the optimization problem of interest is

max
λ

F (λ)
�
=

∑
i,k

λikmik − log
(∑

σ

exp
(∑

ik

λikI{σ(i)=k}
))

.

(33)

Let λ∗ be an optimizer of the objective function with op-
timal value F (λ∗). Now F (·) is a concave function. As
before, we shall use t as the index of algorithm’s iteration,
λt be parameter value in iteration t, gt be the subgradient
of F (λt) = m− Eλt [[I{σ(i)=k}]] and e(t) be the error in this
subgradient. Then

‖λt+1 − λ∗‖2 = ‖λt + αt(g
t + e(t))− λ∗‖2

= ‖λt − λ∗‖2 + α2
t‖gt + e(t)‖2

+ 2αt〈gt, λt − λ∗〉+ 2αt〈e(t), λt − λ∗〉
≤ ‖λt − λ∗‖2 + α2

t‖gt + e(t)‖2
+ 2αt(F (λt)− F (λ∗)) + 2αt〈e(t), λt − λ∗〉

where the last inequality follows from the fact that gt is a
subgradient of F at λt. Applying this inequality recursively,
and keeping in mind that ‖ · ‖ ≥ 0, we get:

0 ≤ ‖λ0 − λ∗‖2 + 2
t∑

s=0

αs(F (λs)− F (λ∗))

+
t∑

s=0

α2
s‖gs + e(s)‖2 + 2

t∑
s=0

αs〈e(s), λs − λ∗〉

Therefore

2
t∑

s=0

αs(F (λ∗)− F (λs)) ≤ ‖λ0 − λ∗‖2

+
t∑

s=0

α2
s‖gs + e(s)‖2

+ 2

t∑
s=0

αs〈e(s), λs − λ∗〉

Let λ be chosen to be λs with probability ps = αs∑
q=1tαq

.

Then on average, we have

E
[
F (λ∗)− F (λ)

] ≤ ‖λ0 − λ∗‖2 +∑t

s=0 α
2
s‖gs + e(s)‖2

2
∑t

s=0 αs

+
2
∑t

s=0 αs〈e(s), λs − λ∗〉
2
∑t

s=0 αs

. (*)

To simplify the term in (∗), note that gs + e(s) is a vector
whose elements are in [−1, 1]. Therefore ‖gs + e(s)‖ ≤ n2,
where n is the dimension of the vector. Furthermore, the
term 〈e(s), λs − λ∗〉 can be bounded as follows:

〈e(s), λs − λ∗〉 ≤ |〈e(s), λs − λ∗〉| ≤ ‖e(s)‖1‖λs − λ∗‖∞
≤ ‖e(s)‖1(‖λs − λ0‖∞ + ‖λ0 − λ∗‖∞)

And,

‖λs − λ0‖∞ ≤
s∑

q=0

αq‖Δq‖∞ ≤
s∑

q=0

αq

where Δq is the change in the value of λ at step q. Combin-
ing this with the previous inequality, we get:

〈e(s), λs − λ∗〉 ≤ ‖e(s)‖1(
s∑

q=0

αs + ‖λ0 − λ∗‖∞)

Combining this with (∗), and letting
B = max{‖λ0 − λ∗‖∞, ‖λ0 − λ∗‖2}, we get:

E
[
F (λ∗)− F (λ)

] ≤ B +
∑t

s=0 α
2
sn

2

2
∑t

s=0 αs

+
2
∑t

s=0 αs‖e(s)‖1(∑s

q=0 αs +B)

2
∑t

s=0 αs

Using our approximation oracle, we can choose the value of
‖e(s)‖ to be αs∑

s
q=0

αq+B
, which yields:

E
[
F (λ∗)− F (λ)

] ≤ B +
∑t

s=0 α
2
sn

2 + 2
∑t

s=0 α
2
s

2
∑t

s=0 αs

=
B + (n2 + 2)

∑t

s=0 α
2
s

2
∑t

s=0 αs

(34)

Recall that αs = 1√
s
. Therefore,

∑t

s=0 αs = Θ(
√
t) and nu-

merator scales as log t. Therefore, the quantity above con-
verges to zero, and F (λt) converges to F (λ∗). Now (ignoring
constants), the bound in (34) scales like (B + n2 log t)/

√
t.

Therefore, for t ≥ T ,

E
[
F (λ∗)− F (λ)

] ≤ ε,

for any γ > 0,

T = Θ
(
ε−2−γ

(‖λ∗‖∞ + ‖λ∗‖22 + n2)2+γ
)
.

7. CONCLUSION
In this paper, we have introduced a novel approach for

rank aggregation from observed partial data. The key con-
ceptual contribution is viewing the partial data as coming
from an underlying ‘ground truth’ that is distribution over
permutations and thus providing a consistent resolution of
paradoxes like that of Condorcet. We make this approach
feasible by providing efficient algorithms for solving three
important classes of rank aggregation problems: (a) select-
ing an entire ranking, (b) selection of most likely ranking
as per the underlying distribution, and (c) choosing top k
items. Interestingly, in many of these problems, we can de-
vise algorithms that reach decision directly from data (with-
out learning the underlying distribution) that is consistent
with the approach in which one first learns the distribution
and then processes the distribution to obtain the desired an-
swer. This makes algorithmic solutions of this paper very
attractive for designing large scale ranking systems such as
recommendation systems. We strongly believe that algo-
rithmic result of this paper will be of great practical utility
across variety of applications and developing such system
design could be an interesting direction going forward.

8. REFERENCES
[1] Who had the “worst year in washington”? http://

voices.washingtonpost.com/thefix/

worst-week-in-washington/

worst-year-in-washington.html.

365



[2] MIT open house “Under the dome”, 150 years of
celebration, Massachusetts Institute of Technology,
http://mit150.mit.edu/open-house.

[3] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled,
and D. Roth. Generalization bounds for the area
under the roc curve. Journal of Machine Learning
Research, 6(1):393, 2006.

[4] S. Agrawal, Z. Wang, and Y. Ye. Parimutuel betting
on permutations. Internet and Network Economics,
pages 126–137, 2008.

[5] K.J. Arrow. Social choice and individual values.
Number 12. Yale Univ Pr, 1963.

[6] M. Bayati, D. Shah, and M. Sharma. Max-product for
maximum weight matching: Convergence, correctness,
and lp duality. Information Theory, IEEE
Transactions on, 54(3):1241–1251, 2008.

[7] D.P. Bertsekas. The auction algorithm: A distributed
relaxation method for the assignment problem. Annals
of Operations Research, 14(1):105–123, 1988.

[8] V.S. Borkar. Stochastic approximation: a dynamical
systems viewpoint. Cambridge Univ Pr, 2008.

[9] M. Condorcet. Essai sur l’application de l’analyse á la
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