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Abstract

In this paper, we are interested in identifying algorithmically efficient networks. That is, determine minimal
structural properties of a network that are sufficient to design simple, distributed algorithms to operate a commu-
nication network efficiently. The key algorithmic tasks in a communication network pertain scheduling (physical
layer) and congestion control (network layer). Recent exciting progress has led to the understanding that good
algorithmic solution for joint scheduling and congestion control can be obtained via combination of the “maximum
weight scheduling” of Tassiulas and Ephremides (1992) along with a rate controller inspired by flow-level resource
allocation model (e.g. Kelly, Maullo and Tan (1998)). Since the rate controller, by design, is simple and distributed,
the key algorithmic challenge lies in designing efficient implementation of “maximum weight scheduling” in the
network. In general, this involves solving a network-wide hard combinatorial optimization problem (maximum weight
independent set) every time. And this problem, in general is known to be computationally hard.

Motivated to find algorithmically efficient networks, we characterize a large class of network structure that allow
for simple, distributed algorithm design for finding approximate maximum weight independent set (or schedule).
Specifically, we establish that for any network structure with geometry (i.e. polynomial growth of network neigh-
borhood), an algorithm, that determines schedule of each node based information obtained from constant-depth
local neighborhood, achieves essentially optimal performance. Our algorithm allows for a smooth trade-off between
overhead for computing schedule versus the performance. The key technical innovation is based on a novel graph
decomposition algorithm, which we believe should be of interest in its own right.

It should be noted that our results immediately apply to wireless network deployed in a geographic area as they
naturally posses geometry. In general, a network designer may engineer the network so as to induce geometry and
therefore allow for efficient algorithm design.

I. INTRODUCTION

The primary purpose of a well engineered communication network is to satiate heterogeneous demands of
various network users while utilizing network resources efficiently. This involves design of appropriate resource
allocation mechanisms that can be implemented. Most of the modern communication networks are built using layered
architecture. Therefore, they require designing simple, distributed algorithms for scheduling (physical layer) and
congestion control (network layer).

The exciting progress over the past two decades has finally led to the following understanding (see Srikant
and Shakkottai [20]): a good algorithmic architectural solution for joint scheduling and congestion control can be
obtained based on the maximum weight scheduling by Tassiulas and Ephremides [23] along with a rate control
algorithm that attempts to solve a utility maximization problem subject to network resource constraints (e.g. works
by Kelly, Maullo and Tan [11], Low and Lapsley [14] and Srikant [22]). Therefore, a network can be operated in
an algorithmically efficient manner with high performance if the maximum weight scheduling and rate control can
be performed efficiently.

The rate control algorithm is simple and distributed because essentially it is an iterative algorithm to solve a
concave maximization problem with linear constraints that have separable structure (a la monotropic program).
On the other hand, the maximum weight scheduling algorithm is required to determine schedule of nodes subject
to network scheduling constraints that are imposed by the physical layer. For example, in a wireless network
this corresponds to determining which set of non-interfering nodes should transmit so that their collective weight
(which is usually their queue-size) is maximized. In general, this can be abstracted as finding maximum weight
independent set in the graph induced by network scheduling constraints. It is well known that finding maximum
weight independent set in general graph is NP-hard [4] and even hard to approximate within n1−o(1) (B/2O(

√
log B)
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for degree B graph) factor [25]. Therefore, algorithmic efficient design of joint scheduling and congestion control
in a general is unlikely.
This leads to the following key question of this paper:

what are the minimal structural properties of the network that allow for efficient design of scheduling algorithm
and thus lead to efficient communication network design?

A. Previous work

We present a brief summary of previous results about design of efficient network scheduling algorithms. The
maximum weight independent set scheduling algorithm of Tassiulas and Ephremides that we discussed earlier
provides excellent performance guarantees: it is throughput optimal and has low average delay (or average queue-
size). However, finding such schedule (or maximum weight independent set) is computationally hard. This led
researchers to consider various approximations of maximum weight independent set (or scheduling) algorithm.

Roughly speaking, there are two types of approximation algorithms. The first class of algorithms are very simple
and greedy (like) (e.g. see [7], [2], [3], [13] and their adoptions to independent set model). These algorithms are not
even throughput optimal and can be arbtirarily bad in terms of loss of throughput. The second class of algorithms are
throughput optimal and very simple (e.g. natural adaptation of algorithm of Modiano, Shah and Zussman [16] – see
[10]). They are based on randomization and distributed computation of summation. However, this algorithm suffers
from possibly very huge average queue-size or delay. This raises the question about possibility of a throughput
optimal and low delay scheduling algorithm. In a recent work, Shah, Tse and Tsitsiklis [19] established impossibility
of such result under standard computational hypothesis.

This impossibility result is an adversarial or a worst-case result. Therefore, it is natural to inquire whether there
is a large class of network structure for which such impossibility result does not hold. Implicitly, such line of
query was pursued in some of the recent works for very specific graph structures. Specifically, work by Hunt et.
al. [9] provides an approximation algorithm for maximum weight independent set for unit disk graphs. This was
utilized by Sharma, Mazumdar and Shroff [21] in their work to identify that max-weight scheduling with K−hop
matching. A similar approach was employed in another recent work by Sarkar and Ray [17] for a very restricted
class of graph structures. However, identification of a broad class of graph structures that posses such property has
remained unknown.

B. Our contributions

As the main result of this paper, we provide an intuitively pleasing characterization of a class of network graphs
that allow for simple algorithmic design for finding maximum weight independent set. Specifically, we establish
that networks with geometry are algorithmically efficient. By networks with geometry, we mean graphs in which the
size of the local neighborhood of each node in the network grows polynomially. We call such graphs polynomially
growing graphs. We show that many of the popular graph models are special instances of our thus identified
structure. For example, popular wireless newtork model of geometric random graph (e.g. Gupta and Kumar [6])
or popular computational geometric graph model of finite doubling dimension graphs are special instances of our
polynomially growing graphs.

Our result is indeed constructive in the sense that we provide a simple algorithm that obtains excellent approxima-
tion (formally, also known as Polynomial Time Approximation Scheme or PTAS) of maximum weight independent
set for any polynomially growing graph. The basic version of the algorithm is randomized. It is based on a
novel randomized graph decomposition scheme. Its distributed implementation can be obtained in a straightforward
manner. This decomposition partitions the graph into constant size local partitions and our algorithm decides solution
of each node only based on information of this partition. Interestingly enough, due to geometry of the graph and
clever randomized decomposition, thus obtained solution is an excellent approximation of the maximum weight
independent set. As part of this algorithm, each node requires only constant amount of information exchange with
its local neighbors. This information exchange and quality of approximation exhibit an intuitively pleasing trade-off
between them. It should be noted that, in a sense our algorithm can be thought of as a (randomized) generalized
greedy algorithm.

Finally, we note that our algorithm can be made deterministic. We provide a derandomization of the randomized
algorithm with minimal additional complexity. Indeed, our motivation for providing this derandomization is primarily
theoretical in nature.
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C. Organization

The paper is organized as follows. In section II, we introduce the basic notation and the model. In section III,
we introduce the polynomially growing graph in detail. We provide examples of such graphs. In section IV, we
present our main result. We describe our randomized PTAS for maximum weight independent set for polynomially
growing graphs. Finally, we provide a derandomization of this algorithm in section V. Discussion and future works
are described in section VI.

II. NOTATIONS AND MODEL

Let G = (V,E) be an undirected network graph with |V | = n. Let N (v) = {u ∈ V : (u, v) ∈ E} denote the
set of all neighbors of v ∈ V . The time is assumed to be slotted, and let τ ∈ Z+ denote the time. Each node
v ∈ V is capable of wireless transmission at the unit rate to any of its neighbors. We ignore the power control
for simplicity, but as a reader may notice, it can be easily included in the model. At each node, packets (of unit
size) arrive according to an external arrival process. Let Ā(τ) = [Āv(τ)] denote the cumulative arrival process until
time τ ∈ Z+, i.e. Āv(τ) be the total number of packets arrived at node v in the time interval [0, τ ]. We assume
Ā(τ) = 0. Let Av(τ) = Āv(τ)− Āv(τ − 1) be the number of packets arriving at node v in time slot τ . We assume
that at most one packet can arrive at a node v in each time slot, i.e. Av(τ) ∈ {0, 1}. Finally, we assume that Av(·)
are Bernoulli i.i.d. random variables with Pr(Av(τ) = 1) = λv. Let λ = [λv] denote the arrival rate vector.

For simplicity and ease of explanation, we assume that network is single-hop, i.e. data arriving at a node v is
to be sent to one of its neighbors. However, as explained in [24], for multi-hop network, the scheduling algorithm
choosing the maximum weight independent set with weights being “difference of queue-sizes” is throughput optimal.
Hence our result can be applied to the multi-hop network. Let Qv(τ) denote the queue-size at node v at time τ with
Q(τ) = [Qv(τ)]. We assume the system starts empty, i.e. Q(0) = 0. Let D̄(τ) = [D̄v(τ)] denotes the cumulative
departure process from Q(τ) and D(τ) = [Dv(τ)] denote the number of departures in time slot τ . Then,

Q(τ) = Q(0) + Ā(τ)− D̄(τ) = Ā(τ)− D̄(τ)

= Q(τ − 1) + A(τ)−D(τ). (1)

Departure at each time happens according to the scheduling algorithm which needs to satisfy interference constraint
that no two neighboring nodes transmit data in the same time slot. To this end, let I denote the set of all independent
set of G. A subset I of nodes of G is called an independent set of G if no two neighboring nodes of G belongs to
I . Then at each time, the scheduling algorithm schedules nodes of an independent set I ∈ I to transmit packets.
In what follows, we will denote independent set I as vector I = [Iv] with Iv ∈ {0, 1} and Iv = 1 indicates that
node v is in I .

Definition 1: We say that a system is stable for given λ under the particular scheduling policy if

lim sup
τ→∞

E[Qv(τ)] < ∞, ∀ v ∈ V.

From [24], it is clear that the set of all λ for which there exists a scheduling policy so that the system is stable
is given by Λ = Co(I)o, where Co(I) is the convex hull of I in Rn, and So indicates the interior of a set S in
Rn. Hence, we call Λ the throughput region of the system, and such λ’s are called feasible arrival rate vectors.

Given a feasible arrival rate vector λ ∈ Λ, define ελ > 0 by

ελ = sup {α > 0 | λ

1− α
∈ Λ}.

The ‘maximum weight independent set’ (MWIS) I∗(τ) at time τ with respect to the weight vector Q(τ − 1) is
defined by

I∗(τ) = arg max
I∈I

〈I,Q(τ − 1)〉,

with notation 〈A,B〉 =
∑

v∈V AvBv.

Definition 2: An independent set I(τ) ∈ I is called an ε-approximation MWIS at time τ if it satisfies that

〈I, Q(τ − 1)〉 ≥ (1− ε)〈I∗(τ), Q(τ − 1)〉.
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In [18], it was shown that the system under an ελ-approximation MWIS scheduling algorithm is stable for λ.
As discussed before, finding ε-approximation MWIS for general network graph is computationally hard [4], [25].

We present an algorithm that computes an ε-approximation MWIS for any polynomially growing graphs, which
runs in time O(n) for any constants ε > 0. Our algorithm can be implemented in a distributed manner with O(1)
message exchanges per node to compute an ε-approximation MWIS schedule at each time τ .

A. Relation to other models

The above model ignores the multi-hop setup. However, we have done so to keep the exposition simple. The
scheduling algorithm of interest with the independent set interference constraint remains the same as ε-approximation
MWIS with weights being some-what different. To explain this, we give two well-known scenarios as follows.

1. Multi-hop queuing network. As considered in [24], for given network G, let S be set of data-flows with arrival
rate λs for flow s ∈ S. Let fs, ds denote source and destination node respectively for a flow s ∈ S. The routing is
assumed to be pre-determined in the network. If s passes through v ∈ V , then let h(v, s) ∈ V denote its next hop
unless v = ds, in which case its data departs from the system. Let Qvs(τ) denote the queue-size of flow s at node
v at time τ . Define

Wvs(τ) =
{

Qvs(τ)−Qh(v,s)s(τ) if v 6= ds

0 if v = ds.

Now define the weight at node v at time τ by

Wv(τ) = max
s∈S

Wvs(τ),

and W (τ) = [Wv(τ)]. Then by the argument in [24], the ε-approximation MWIS scheduling algorithm for
appropriate constant ε > 0 makes the system stable for any feasible arrival rate vector.

2. Joint resource allocation & scheduling. In [12], it is well explained that the problem of congestion control and
scheduling decomposes into weakly coupled two sub-problems: (i) the congestion control, and (ii) the scheduling.
We describe the link-level scheduling problem. We urge an interested reader to go through [12] for details. The
setup of the problem is the same as that in the example 1 described above with a difference that the routing is not
pre-determined. In this case, the coupling of congestion control and scheduling happens via Lagrange multipliers

q(τ) = [qe(τ)]e∈E .

With the interference model of this paper, the scheduling problem boils down to the selection of MWIS I∗(τ) with
respect to the weight

W (τ − 1) = [Wv(τ − 1)],

where
Wv(τ − 1) = max

e:e=(u,v)∈E
qe(τ − 1).

In this paper, we will restrict our discussion to the single-hop model described earlier. However, it should be
clear that our algorithms can be applied to more general setups.

B. Technical preliminaries

Here we present some useful technical preliminaries. Consider a discrete time Markov chain on countable state
space S = NM for some finite integer M . Let X(τ) denote the random state of Markov chain at time τ ∈ Z+. Let
X(0) = 0 (In fact, it can be any finite state). Let L : S → [0,∞) and f : S → [0,∞) be any non-negative valued
functions with L(0) = 0. Then the following is well-known [15].

Proposition 1: Let a Markov chain be aperiodic and irreducible. Let there exists a closed and bounded set C ⊂ S
such that the Markov chain satisfies the following condition: ∀ τ ∈ Z+,

E[L(X(τ + 1))|X(τ)] ≤ L(X(τ))− f(X(τ)) + B · 1{X(τ)∈C},

with B > 0 a constant, and supx∈C L(x) < ∞. Then,
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(a) The Markov chain is recurrent with a unique stationary distribution π = [π(x)]x∈S such that

π(f) =
∑

x∈S

π(x)f(x) < ∞.

(b) Further,
lim

τ→∞E[f(X(τ)] → π(f).

Similar result (also known as Foster’s criteria) is used in most of the previous works to prove stability of the system,
and to obtain a bound on average queue-sizes.

III. POLYNOMIALLY GROWING GRAPH

In this section, we define the class of polynomially growing network graphs and its property.

Definition 3: Let dG be the shortest path distance metric of a given graph G, and let BG(v, r) = {w ∈
V |dG(w, v) < r}. If there are constants C > 0 and ρ > 0 so that for any v ∈ V and r ∈ N,

|BG(v, r)| ≤ C · rρ,

then we say G is polynomially growing with growth rate ρ and corresponding constant C.

Practical network graphs including the following geometric network graphs and doubling dimensional graphs, satisfy
the above property.

Example 1 : Geometric Graph Consider a wireless network with n nodes represented by the vertices V =
{1, . . . , n} placed in a 2-dimensional geographic region given by the

√
n×√n square of area n1 in an arbitrary

manner (not necessarily random). Let E be the set of edges between nodes indicating which pair of nodes can
communicate. Let dE(·, ·) be the Euclidean distance of the Euclidean space. Given a vertex v ∈ V , let BE(v, r) =
{u ∈ V : dE(u, v) < r}. We assume that the wireless network satisfies the following simple assumptions.

1) There is an R > 0 such that no two nodes having distance larger than R can establish a communication edge
with each other2 where R is called the transmission radius.

2) Graph G has bounded density D > 0, i.e. for all v ∈ V, |BE(v,R)|
R2 ≤ D.

A geometric random graph obtained by placing n nodes in the
√

n × √
n square uniformly at random and

connecting two nodes that are within distance R = Θ(
√

log n) of each other satisfies the previous assumptions
with high probability.

Lemma 2: Any geometric graphs satisfying the above two assumptions are polynomially growing with growth
rate 2.

Proof: Let G be a geometric graph with a transmission radius R and a bounded density D. First, note that
in the Euclidean space, for any r ≥ R, BE(v, r) can be covered by Θ

((
r
R

)2
)

many balls of radius R. Hence,
together with the definition of the bounded density D, there is a constant D′ > 0 so that for all v ∈ V and r ≥ R,

|BE(v, r)|
r2

≤ D′. (2)

Now, for a given two connected vertices v, w ∈ V of G, let v = v0, v1, v2 . . . , v` = w be a shortest path in G.
By the definition of the transmission radius, for all i = 0, 1 . . . , (`− 1),

dE(vi, vi+1) ≤ R.

1Placing the nodes in the specified square is for simple presentation. The same result holds when the nodes are placed in any Euclidean
rectangle, and when the nodes are place in any region of k-dimensional Euclidean space.

2It does not imply that nodes within distance R must communicate.
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By the triangular inequality in the Euclidean metric,

dE(v, w) ≤
∑̀

i=0

dE(vi, vi+1) ≤ R · `.

So we obtain
dE(v, w) ≤ R` = R · dG(v, w).

Hence, for any v ∈ V and r ∈ N,
BG(v, r) ⊂ BE(v, Rr).

From (2),
|BG(v, r)| ≤ |BE(v,Rr)| ≤ (

D′R2
)
r2,

which shows that the growth rate of G is 2.

Example 2 : Doubling dimensional graph A graph is said to have a doubling dimension ϕ > 0 if any ball of radius
2r (w.r.t. the shortest path metric) in G can be covered by at most 2ϕ many balls of radius r for any r ∈ N. A graph
with a constant doubling dimension is called a doubling dimensional graph. The notion of doubling dimensional
graphs was first introduced in [1], [8], [5]. It is easy to check that a grid graph Zd has doubling dimension d.
Clearly, any graph with n nodes has doubling dimension at most O(log2 n). The network graph structure arising in
practice, such as that in wireless network or peer-to-peer network is likely to have a constant doubling dimension.
The following Lemma shows that any doubling dimensional graph is polynomially growing.

Lemma 3: A graph with a constant doubling dimension ϕ is polynomially growing with growth rate ϕ.
Proof: First, we will show that for any x ∈ V and any t ∈ Z+,

|BG(x, 2t)| ≤ 2tϕ. (3)

The proof of (3) is by induction on t ∈ Z+. For the base case, consider t = 0. Now, BG(x, 20) is essentially the
set of all points which are at distance less than 1 from x by the definition. Since it is metric with distance being
integer, this means that BG(x, 1) = {x}. Hence, |B(x, 1)| = 1 ≤ 20×ρ(M) for all x ∈ X .

Now suppose that the claim of Lemma is true for all t ≤ k and all x ∈ X . Consider t = k + 1 and any x ∈ X .
By definition of the doubling dimension, there exists ` ≤ 2ϕ balls of radius 2k, say BG(yj , 2k) with yj ∈ X for
1 ≤ j ≤ `, such that

BG(x, 2k+1) ⊂ ∪`
j=1BG(yj , 2k).

Therefore,

|BG(x, 2k+1)| ≤
∑̀

j=1

|BG(yj , 2k)|.

By inductive hypothesis, for 1 ≤ j ≤ `,
|BG(yj , 2k)| ≤ 2kϕ.

Since we have ` ≤ 2ϕ, we obtain
|BG(x, 2k+1)| ≤ ` 2kϕ ≤ 2(k+1)ϕ.

This completes the proof of inductive step, and that of (3).
Now, for any r ∈ N, and any x ∈ V , let 2t ≤ r < 2t+1 for t ∈ Z+. From (3), we obtain that

|BG(x, r)| ≤ |BG(x, 2t+1)| ≤ 2(t+1)ϕ = 2ϕ · (2t)ϕ ≤ 2ϕ · rϕ, (4)

which shows the Lemma.

Property of polynomially growing graphs The following Lemma shows that any subgraph of a polynomially
growing graph is also a polynomially growing graph.

Lemma 4: If G is polynomially growing with growth rate ρ, any subgraph Ĝ = (V̂ , Ê) of G obtained by
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removing some edges and vertices of G is also polynomially growing with growth rate at most ρ.
Proof: For any vertex v, w ∈ V̂ , note that

dĜ(v, w) ≥ dG(v, w),

since any path in Ĝ from v to w is also a path in G. Hence, for any v ∈ V̂ and r ∈ N,

BĜ(v, r) ⊂ BG(v, r).

Hence,
|BĜ(v, r)| ≤ |BG(v, r)| ≤ rρ,

which shows the Lemma from the definition 3.

For example, any subgraph of a grid graph is a polynomially growing graph.

IV. ε-APPROXIMATION OF MWIS FOR POLYNOMIALLY GROWING GRAPHS

Recall that the problem we want to solve is as follows. Given a polynomially growing graph G = (V, E) with
constant growth rate ρ, and with nonnegative node weights w = [wi] ∈ Rn

+. Let ε > 0 be a give constant, and let
MWIS be defined as

x∗ = argmaxx∈Iw
T x.

We want to find an independent set x̂ = (xi) ∈ {0, 1}n such that

wT x̂ ≥ (1− ε)wT x∗,

which we call an ε-approximation of MWIS. In this section, we present a randomized algorithm that computes an
ε-approximation of MWIS in expectation for any graph with polynomial growth ρ, which runs in time O(n) for
any constant ε > 0 and ρ > 0. The algorithm consists of the following two steps.

1) Obtain a graph decomposition of G into small components by removing some vertices of G.
2) Produce a global solution by merging the local solutions of each connected components.
In section IV-A, we will present a randomized graph decomposition for the first step, and in section IV-B, we

present how to obtain a global solution from this randomized decomposition and show that the global solution
achieves a good approximation in expectation. Then in section V, we establish a derandomization of this algorithm.

A. Step 1: Randomized Graph Decomposition Algorithm

First, given constants ε > 0 and ∆ ∈ N, we define a notion (ε,∆)-decomposition of a graph G = (V, E).

Definition 4: We call a random subset of vertices B ⊂ V as (ε,∆)-decomposition of G if the followings hold:
• (a) For any v ∈ V , Pr(v ∈ B) ≤ ε.
• (b) Let S1, . . . , S` be the connected components of graph G′ = (V ′, E′) where V ′ = V \B and E′ = {(u, v) ∈

E : u, v ∈ V ′}. Then, max1≤k≤` |Sk| ≤ ∆ with probability 1.

Note that the (ε,∆)-decomposition B forms the union of boundary vertices of each connected components. Now
we describe our graph decomposition algorithm for any ε > 0 and an operational parameter K, which will depend
on ε and the growth rate ρ and the corresponding constant C of the graph. We will show that our algorithm will
output (ε, ∆)-decomposition where ∆ will depend on ε and K.

Given ε and K, define a random variable Q over {1, . . . ,K} as

Pr[Q = i] =

{
ε(1− ε)i−1 if 1 ≤ i < K

(1− ε)K−1 if i = K
.

The Decomposition Algorithm (ε,K) described next essentially does the following. The algorithm performs
iteratively. Initially, all vertices are colored white. If there is any white vertex, choose any of them arbitrarily. Let
u be the chosen vertex. Draw an independent random number Q as per distribution Q. Select all white vertices
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that are at distance Q from u in B and color them blue; color all white vertices at distance < Q from u (including
u itself) as red. Repeat this process until no more white vertices are left. Output B (i.e. blue nodes).

Precise description of the algorithm is as follows. We will set

K = K(ε, ρ, C) =
8ρ

ε
log

(
8ρ

ε

)
+

4
ε

log C +
4
ε

log
1
ε

+ 2.

This definition is exploited in the proof of Lemma 5.

Decomposition Algorithm (ε,K)

(1) Initially, set W = V , B = ∅ and R = ∅.
(2) Repeat the following till W 6= ∅:

(a) Choose an element u ∈ W uniformly at random.
(b) Draw a random number Q independently according to the distribution Q.
(c) Update

(i) B ← B ∪ {w|dG(u,w) = Q and w ∈ W},
(ii) R ← R∪ {w|dG(u,w) < Q and w ∈ W},

(iii) W ←W ∩ (B ∪R)c.
(3) Output B.

Lemma 5: Given graph G with growth rate ρ = ρ(G) and the corresponding constant C, and ε ∈ (0, 1), the
output of the Decomposition algorithm(ε,K) becomes a (2ε, CKρ)-decomposition of G.

Proof: To prove that the random output set B ⊂ V of the algorithm with parameters (ε,K(ε, ρ)) we need to
establish properties (a) and (b) of Definition 4.

Proof of (a). To prove (a), we state and prove the following Claim.

Claim 6: Consider metric space G = (V,dG) with |V | = n. Let B ⊂ V be the random set that is output of
Decomposition algorithm with parameter (ε,K) applied to G. Then, for any v ∈ V ,

Pr[v ∈ B] ≤ ε + PK |BG(v, K)|,
where BG(v,K) is the ball of radius K in G with respect to the dG, and PK = (1− ε)K−1.

Proof of Claim 6: The proof is by induction on the number of points n over which the metric space is defined.
When n = 1, the algorithm chooses only point as u0 in the initial iteration and hence it can not be part of the
output set B. That is, for this only point, say v,

Pr[v ∈ B] = 0 ≤ ε + PK |B(v, K)|.
Thus, we have verified the base case for induction (n = 1).

As induction hypothesis, suppose that the Claim 6 is true for any metric space on n points with n < N for some
N ≥ 2. As the induction step, we wish to establish that for a metric space G = (V,dG) with |V | = N , the Claim
6 is true. For this, consider any point v ∈ V . Now consider the first iteration of the Decomposition algorithm
applied to G. The algorithm picks u0 ∈ V uniformly at random in the first iteration. Given v, depending on the
choice of u0 we consider four different cases (or events). We will show that in these four cases,

Pr[v ∈ B] ≤ ε + PK |BG(v,K)|
holds.

Case 1. This case corresponds to event E1 where the chosen random u0 is equal to point v of our interest. By
definition of the algorithm, under the event E1, v will never be part of output set B. That is,

Pr[v ∈ B|E1] = 0 ≤ ε + PK |B(v, K)|.
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Case 2. Now, suppose u0 is such that v 6= u0 and dG(u0, v) < K. Call this event E2. Further, depending on
choice of random number Q0, define the following events

E21 = {dG(u0, v) < Q0}, E22 = {dG(u0, v) = Q0}, and E23 = {dG(u0, v) > Q0}.
By definition of the algorithm, when E21 happens, v is selected as part of R1 and hence v can never be a part of
output B. When E22 happens, v is selected as part of B1 and hence it is definitely a part of output set B. When
E23 happens, v is neither selected in set R1 nor selected in set B1. It is left as an element of the set W1. This
new set W1 has points less than N . The original metric dG is still the metric on the points3 of W1. By definition,
the algorithm only cares about (W1,dG) in the future and it is not affected by its decisions in past. Therefore, we
can invoke induction hypothesis which implies that if event E23 happens then the probability of v ∈ B is bounded
above by ε + PK |B(v, K)|. Finally, let us relate the Pr[E21|E2] with Pr[E22|E2]. Suppose dG(u0, v) = ` < K.
By definition of probability distribution of Q, we have

Pr[E22|E2] = ε(1− ε)`−1, (5)

Pr[E21|E2] = (1− ε)K−1 +
K−1∑

j=`+1

ε(1− ε)j−1

= (1− ε)`. (6)

That is,
Pr[E22|E2] =

ε

1− ε
Pr[E21|E2].

Let q
4
= Pr[E21|E2]. Then,

Pr[v ∈ B|E2] = Pr[v ∈ B|E21 ∩ E2] Pr[E21|E2] + Pr[v ∈ B|E22 ∩ E2] Pr[E22|E2]

+ Pr[v ∈ B|E23 ∩ E2] Pr[E23|E2]

= 0× q + 1× εq

1− ε
+ (ε + PK |B(v, K)|)

(
1− q

1− ε

)

= ε + PK |B(v,K)|+ q

1− ε
(ε− ε− PK |B(v, K)|)

= ε + PK |B(v,K)| − qPK |B(v,K)|
1− ε

≤ ε + PK |B(v,K)|. (7)

Case 3. Now, suppose u0 6= v is such that dG(u0, v) = K. We will call this event E3. Further, define the event
E31 = {Q0 = K}. Due to the independence of selection of Q0, Pr[E31|E3] = PK . Under the event E31 ∩ E3,
v ∈ B with probability 1. Therefore,

Pr[v ∈ B|E3] = Pr[v ∈ B|E31 ∩ E3] Pr[E31|E3] + Pr[v ∈ B|Ec
31 ∩ E3] Pr[Ec

31|E3]

= 1× PK + Pr[v ∈ B|Ec
31 ∩ E3](1− PK). (8)

Under the event Ec
31∩E3, we have v ∈ W1, and the remaining metric space (W1,dG). This metric space has < N

points. Further, the ball of radius K around v with respect to this new metric space has at most |B(v, K)|−1 points
(this ball is with respect to the original metric space G on N points). Now we can invoke induction hypothesis for
this new metric space (because of similar justification as in the previous case) to obtain

Pr[v ∈ B|Ec
31 ∩ E3] ≤ ε + PK(|B(v, K)| − 1). (9)

3Note the following subtle but crucial point. We are not changing the metric dG after we remove points from original set of points as
part of the Decomposition algorithm.
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From (8) and (9), we have

Pr[v ∈ B|E3] ≤ PK + (1− PK)(ε + PK(|B(v, K)| − 1))

= ε(1− PK) + PK |B(v, K)|+ P 2
K(1− |B(v, K)|)

≤ ε + PK |B(v,K)|. (10)

Case 4. Finally, let E4 be the event that dG(u0, v) > K. Then, at the end of the first iteration of the algorithm,
we again have the remaining metric space (W1,dG) such that |W1| < N . Hence, as before, by induction hypothesis
we have

Pr[v ∈ B|E4] ≤ ε + PK |B(v, K)|.
Now, the four cases are exhaustive and disjoint. That is, ∪4

i=1Ei is the universe. Based on the above discussion,
we obtain the following.

Pr[v ∈ B] =
4∑

i=1

Pr[v ∈ B|Ei] Pr[Ei]

≤
(

4
max
i=1

Pr[v ∈ B|Ei]
)(

4∑

i=1

Pr[Ei]

)

≤ ε + PK |B(v, K)|. (11)

This completes the proof of Claim 6.
Now, we will use Claim 6 to complete the proof of (a). The definition of growth rate implies that,

|B(v, K)| ≤ C ·Kρ.

From the definition PK = (1− ε)K−1, we have

PK |B(v,K)| ≤ C(1− ε)K−1Kρ.

Therefore, to show (a) of Definition 4, it is sufficient to show that our definition of K satisfies the following
Lemma.

Lemma 7: We have that
C(1− ε)K−1Kρ ≤ ε.

Proof of Lemma 7:
We will show the following equivalent inequality.

(K − 1) log(1− ε)−1 ≥ ρ log K + log C + log
1
ε
. (12)

First, note that for all ε ∈ (0, 1),
log(1− ε)−1 ≥ log(1 + ε) ≥ ε

2
.

Hence to prove (12), it is sufficient to show that

K ≥ 2ρ

ε
log K +

2
ε

log C +
2
ε

log
1
ε

+ 1. (13)

Recall that
K = K(ε, ρ) =

8ρ

ε
log

(
8ρ

ε

)
+

4
ε

log C +
4
ε

log
1
ε

+ 2.

From the definition of K, we will show that
K

2
≥ 2ρ

ε
log K
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and
K

2
≥ 2

ε
log C +

2
ε

log
1
ε

+ 1,

which will prove (13).
The following is trivial.

K

2
≥ 2

ε
log C +

2
ε

log
1
ε

+ 1. (14)

Now, let K̂ = 8ρ
ε log

(
8ρ
ε

)
. Then

K̂

2
=

4ρ

ε
log

(
8ρ

ε

)
≥ 2ρ

ε

(
log

(
8ρ

ε

)
+ log log

(
8ρ

ε

))
=

2ρ

ε
log K̂.

I.e., K̂
2 − 2ρ

ε log K̂ ≥ 0. Since the function φ(x) = x
2 − 2ρ

ε log x is an increasing function of x when x ≥ 4ρ
ε ,

and from the fact that K ≥ K̂ ≥ 4ρ
ε , we have

K

2
≥ 2ρ

ε
log K. (15)

From (14) and (15), we have (13), which completes the proof of Lemma 7.

Proof of (b). First we give some notations. Define Rt = Rt −Rt−1, Bt = Bt − Bt−1 and

∂Rt = {v ∈ V : v /∈ Rt and ∃ v′ ∈ Rt s.t. dG(v, v′) = 1}.
The followings are straightforward observations implied by the Decomposition algorithm: for any t ≥ 0,

(i) Rt ∩Rt−1 = ∅,
(ii) Bt ∩ Bt−1 = ∅,
(iii) Rt ⊂ B(ut−1, Qt−1),
(iv) Bt ⊂ B(ut−1, Qt−1 + 1)−B(ut−1, Qt−1).

Now, we state and prove a crucial claim for proving (b).

Claim 8: For all t ≥ 0, ∂Rt ⊂ Bt.

Proof: We prove the Claim 8 by induction. Initially, ∂R0 = B0 = ∅ and hence the claim is trivial. At the end
of the first iteration, by the definition of the algorithm,

R1 = R1 = B(u0, Q0), and B1 = B1 = B(u0, Q0 + 1)−B(u0, Q0).

Therefore, by definition, ∂R1 = B1. Thus, the base case of induction is verified. Now, as the hypothesis for induction,
suppose that ∂Rt ⊂ Bt for all t ≤ `, for some ` ≥ 1. As induction step, we will establish that ∂R`+1 ⊂ B`+1.

Suppose to the contrary, that ∂R`+1 6⊂ B`+1. That is, there exists v ∈ ∂R`+1 such that v 6∈ B`. By definition of
the algorithm, we have

R`+1 = B(u`, Q`)− (R` ∪ B`).

Therefore,
∂R`+1 ⊂ (B(u`, Q` + 1)−B(u`, Q`)) ∪R` ∪ B`.

Again, by the definition of the algorithm we have

B`+1 = B(u`, Q` + 1)−B(u`, Q`)−R` − B`.

Therefore, v ∈ B`+1 or v ∈ R`∪B`. Recall that by the definition of algorithm B`∩R` = ∅. Since we have assumed
that v /∈ B`+1, it must be that v ∈ R`. That is, there exists `′ ≤ ` such that v ∈ R`′ . Now since v ∈ ∂R`+1 by
assumption, it must be that there exists v′ ∈ R`+1 such that dG(v, v′) = 1. Since by definition R`+1 ∩ R`′ = ∅,
we have v′ ∈ ∂R`′ . By induction hypothesis, this implies that v′ ∈ B`′ ⊂ B`. That is, B` ∩ R`+1 6= ∅, which is
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a contradiction to the definition of our algorithm. That is, our assumption that ∂R`+1 6⊂ B`+1 is false. Thus, we
have established the inductive step. This completes the induction argument and proof of the Claim 8.

Now when the algorithm terminates (which must happen within n iterations), say the output set is BT and V −BT =
RT for some T . As noted above, RT is a union of disjoint sets R1, . . . , RT . We want to show that Ri, Rj are
disconnected for any 1 ≤ i < j ≤ T using Claim 8. Suppose to the contrary that they are connected. That is, there
exists v ∈ Ri and v′ ∈ Rj such that dG(v, v′) = 1. Since Ri ∩ Rj = ∅, it must be that v′ ∈ ∂Ri, v ∈ ∂Rj . From
Claim 8 and fact that Bt ⊂ Bt+1 for all t, we have that Ri ∩ B 6= ∅, Rj ∩ B 6= ∅. This is contrary to the definition
of the algorithm. Thus, we have established that R1, . . . , RT are disconnected components whose union is V −BT .
By definition, each of Ri ⊂ B(ui−1,K). Thus, we have established that V −BT is made of connected components,
each of which is contained inside balls of radius K with respect to dG. From the definition of the growth rate of
a graph, this completes the proof of (b) and that of Lemma 5.

B. Step 2: Approximate MWIS

Now, the following randomized algorithm outputs a solution which is an ε-approximation of MWIS in expectation
for any graph whenever its graph decomposition subroutine is an (ε,∆)-decomposition for some constant ∆ > 0.
Its running time depends on ∆, and it is O(n) for any graphs with constant growth ratio ρ, and constant ε.

MWIS Approximation (ε,K)

(1) For the given graph G, use the Decomposition algorithm with parameters (ε,K) to a obtain decomposition
of G.
(a) Let B be the output of the decomposition algorithm.
(b) V − B is divided into connected components with vertex sets R1, . . . ,RL (L is some integer).
(c) Let G1 = (R1, E1), . . . , GL = (RL, EL) be the corresponding disjoint subgraphs of G.
(d) Let I(G1), . . . , I(GL) be set of independent sets of G1, . . . , GL respectively.

(2) For ` = 1, . . . , L find
x∗(G`) ∈ arg max

{
wTx : x ∈ I(G`)

}
.

(a) The above computation can be done by dynamic programming in O(2|R`|) operations for graph G`.
(3) Output x̂ = ∪L

`=1x
∗(G`) as an approximate maximum weight independent set of G.

Here we give some definition before we state our Lemma. Given a graph with growth rate ρ, and a constant
δ ∈ (0, 1), let

ε(δ) =
δ

2
and K(δ) =

16ρ
δ

log
(

16ρ

δ

)
+

8
δ

log C +
8
δ

log
2
δ

+ 2.

Lemma 9: Let δ ∈ (0, 1) be a fixed constant. If the growth rate ρ is a constant, MWIS Approximation with
parameters (ε(δ),K(δ)) takes O(n) time and it generates independent set with weight at least (1 − δ)wTx∗ in
expectation.

Proof: First, we state and prove a Lemma that evaluates the performance of the MWIS Approximation for
any graph.

Lemma 10: Given weighted graph G, ε and K, the output x̂ of the MWIS Approximation has the following
property:

E
[
wT x̂

] ≥ wTx∗
[
1− ε− PK

(
max
v∈V

|B(v, K)|
)]

.

Proof: Let the Decomposition algorithm applied to G produce a random subset B ⊂ V as its output and
V −B be divided into connected components, R1, . . . ,RL (as per Lemma 5). As described in the Decomposition
algorithm, we have induced (disconnected) subgraphs G` = (R`, E`), 1 ≤ ` ≤ L. The output of the MWIS



13

Approximation is
x̂ = ∪L

`=1x
∗(G`),

where x∗(G`) is the solution of maximum weight independent set in the subgraph G`. In the above expression,
the ∪ operation of x∗(G`)’s means the standard union of sets. Note that x∗(G`) are disjoint sets since G` are
disconnected graphs. Therefore,

wT x̂ =
L∑

`=1

wTx∗(G`). (16)

Now consider any maximum weight independent set x∗, i.e. x∗ ∈ arg max
{
wTx : x ∈ I(G)

}
. The x∗ corresponds

to a subset of vertices V of G. The intersection of x∗ and R` induces an independent set in G`. Let

x∗` = x∗ ∩R`.

Since x∗(G`) is a maximum weight independent set in G`, we have

wTx∗(G`) ≥ wTx∗` . (17)

Finally, denote x∗B = x∗ ∩ B. Since V = B ∪ (∪L
`=1R`

)
and all sets B,R1, . . . ,RL are disjoint, we have

wTx∗ = wTx∗B +
L∑

`=1

wTx∗` . (18)

From (16)-(18), we obtain
wT x̂ ≥ wTx∗ −wTx∗B.

Therefore, with respect to the randomness in the Decomposition algorithm (using Lemma 5), we have

E
[
wT x̂

] ≥ wTx∗ −
∑
v∈x∗

wv Pr[v ∈ B] ≥ wTx∗ −
(∑

v∈x∗
wv

(
ε + PK

(
max
v∈V

|B(v, K)|
)))

= wTx∗ −
(

ε + PK

(
max
v∈V

|B(v,K)|
))(∑

v∈x∗
wv

)

= wTx∗
[
1− ε− PK

(
max
v∈V

|B(v, K)|
)]

. (19)

This completes the proof of Lemma 10.

From Lemma 10, we obtain that our algorithm outputs a random independent set x such that

E
[
wT x̂

] ≥ wTx∗(1− φ),

where φ = ε + PK (maxv∈V |B(v, K)|) .

For a graph G with growth ratio ρ and corresponding constant C, from the definition K = K(δ) = 16ρ
δ log

(
16ρ
δ

)
+

8
δ log C + 8

δ log 2
δ + 2, and Lemma 7, we have

φ = ε + PK

(
max
v∈V

|B(v, K)|
)
≤ 2ε.

Hence φ ≤ 2ε = δ, which shows that our algorithm with parameter (ε(δ), K(δ)) generates independent set with
average weight at least (1− δ)wTx∗.

To show that our algorithm runs in O(n) time, note that by Definition 3 and Lemma 5, (CK)ρ is an upper bound
on the size of each connected component obtained by the Decomposition algorithm. Then the running time for
each connected component is at most O

(
2(CK)ρ)

. Since K is a constant when ρ, C and δ are constants, and the
total running time of the MWIS Approximation is O

(
n2(CK)ρ)

= O(n). This completes the proof of Lemma 9.

Here we note that use of the standard Markov’s inequality will imply that by running MWIS Approximation
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for O(log n) many times and taking the best solution, we can convert the average guarantee of the approximation
to the high probability guarantee.

V. DERANDOMIZATION

The MWIS Approximation presented so far is a randomized algorithm and provides performance guarantee in
expectation. The randomness in the algorithm stems from the Decomposition algorithm. Therefore, to obtain a
deterministic algorithm, we will de-randomized the decomposition algorithm. Precisely, given ε > 0 and a graph
G = (V, E) with constant growth ratio ρ, we will deterministically construct subsets B1, . . . ,Bm of V , where m
is poly(n), and assign a distribution µ on these subsets so that when a random subset, say B, is chosen from
B1, . . . ,Bm at random according to µ, the B satisfies properties (a) and (b) of Definition 4. Then we can apply
Lemma 9 to this probability distribution µ, and we obtain that the output of MWIS Approximation with respect to µ
provides ε-approximation of MWIS in expectation. Hence, we know that there is at least one Bi among B1, . . . ,Bm,
so that when we compute MWIS Approximation with this graph decomposition Bi, the output independent set
has weight at least (1−ε)wTx∗. Hence, by computing MWIS Approximation for each of B1, . . . ,Bm one by one
by and taking the best solution, i.e. an independent set with highest weight, we obtain ε-approximation of MWIS
with probability 1 in poly(n) time.

A. Construction of Derandomization

In this section, we explain the construction of desired Bi’s and then µ. To this end, first we introduce the following
definition.

Definition 5: For a given graph G = (V, E), and r ∈ N, we say a subset Y of V is an r-net of G if Y satisfies
1) for every y1, y2 ∈ Y with y1 6= y2, dG(y1, y2) ≥ r,
2) for every x ∈ V , there is y ∈ Y such that dG(x, y) < r.

It can be easily check that one can construct an r-net of a graph G = (V, E) in a greedy manner.
Now note that in our Decomposition Algorithm, there are two random choices: (i) selection of center points

ut, and (ii) selection of the random radius Qt ∈ {1, · · · ,K} for ut. It can be checked that in the proof of Lemma
5 we never use the randomness of (i), i.e. any choice of ut will make the Lemma remain true. So the main issue
to tackle here is the choice of Qt so that

1) the resulting support of the output sets B according this random distribution µ is poly(n), and
2) Lemma 5 is satisfied.
For this, we essentially reduce the overall randomness by coupling choice of random radius for far away vertices

in V . Such approach is likely to work as one may observe that in our Decomposition Algorithm, if two vertices
are farther from each other then 4K and they are chosen as centers, then their choice of radius does not affect each
other for their immediate neighborhood selection. Next, we formalize this intuition.

Remind that given a constant ε > 0 and a graph G with growth rate ρ, K is defined as

K = K(ε, ρ, C) =
8ρ

ε
log

(
8ρ

ε

)
+

4
ε

log C +
4
ε

log
1
ε

+ 2,

and probability distribution Q over {1, . . . , K} is defined as as

Pr[Q = i] =

{
ε(1− ε)i−1 if 1 ≤ i < K

(1− ε)K−1 if i = K
.

First, divide V into disjoint set of vertices V1, . . . , V` so that each Vi becomes a 4K-net of G. We can do this
process in O

(
n2

)
time by choosing V1, . . . V` one by one (in the original metric space dG). In the next section,

we will show that ` ≤ (4K)ρ for any partition of V into 4K-nets. Then we fix an ordering O of vertices V so
that we choose all the vertices in V1 first, then choose all the vertices of V2, and so on.

Now, consider Q̄ = (Q1, . . . , Q`) ∈ {1, . . . , K}`. We will define a decomposition B(Q̄) for each Q̄. They are
the decompositions we wanted to obtain. Here, Qi will do the role of radius for all the vertices of Vi in the process
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of Decomposition Algorithm. We define the probability distribution µ on those (Q1, . . . , Q`) ∈ {1, . . . ,K}` as
follows.

Pr[Q1 = i1, . . . , Q` = i`] ∝
∏̀

j=1

Pr(Q = ij).

Now, for each Q̄ = (Q1, . . . , Q`) ∈ {1, . . . , K}`, we will obtain a corresponding decomposition B(Q̄) by running
the following modified version of the Decomposition Algorithm.

Modified Decomposition Algorithm (ε, K, Q̄)

(1) Initially, set W = V , B = ∅ and R = ∅.
(2) Repeat the following till W 6= ∅:

(a) Choose the smallest element u ∈ W by the order O.
(b) If u ∈ Vi, let Q = Qi.
(c) Update

(i) B ← B ∪ {w|dG(u,w) = Q and w ∈ W},
(ii) R ← R∪ {w|dG(u,w) < Q and w ∈ W},

(iii) W ←W ∩ (B ∪R)c.
(3) Output B(Q̄).

B. Correctness of Derandomization

Now we show that the number of graph decompositions we have obtained is dependent only on ε and ρ.

Lemma 11: We have
` ≤ (4K)ρ,

which implies that the number of graph decompositions obtained by the modified process is K` ≤ K(4K)ρ

, which
is independent of n.

Proof: To prove that ` ≤ (4K)ρ+1, fix any vertex w in V`. Since Vj is a 4K-net of the metric space (V (j−1),dG)
for any 1 ≤ j ≤ `, and w ∈ V` ⊂ V (j−1), from the definition 5 we have

BG(w, 4K) ∩ Vj 6= ∅.
Hence we have

` ≤ |BG(w, 4K)| ≤ (4K)ρ

by the definition of the growth rate.

Now, we claim the following Lemma. It essentially states that if we consider the new probability distribution µ
on the graph decomposition, the Lemma 5 still holds. Therefore, the above discussion will immediately imply that
all our approximation guarantee can be achieved deterministically in poly(n) time.

Lemma 12: Given a graph G with growth rate ρ = ρ(G) and the corresponding constant C, and ε ∈ (0, 1), the
random graph decomposition according to the distribution µ becomes a (2ε, CKρ)-decomposition of G.

Proof: To prove that the random graph decomposition B ⊂ V according to µ becomes a a (2ε, CKρ)-
decomposition, we need to establish properties (a) and (b) of Definition 4.

Proof of (b) is essentially the same as that of Lemma 5(b). Now, to prove (a) we will use argument similar to
that in the proof of Lemma 5(a). Next, we state and prove Claim 13, which will imply the proof of Lemma 12(a)
by Lemma 7.

Claim 13: Consider a metric space G = (V,dG) with |V | = n. Let K > 1 be an integer and B ⊂ V be the
random decomposition chosen randomly among B1,B2 . . . ,Bm according to µ. Then, for any v ∈ V,

Pr[v ∈ B] ≤ ε + PK |BG(v, K)|,
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where BG(v,K) is the ball of radius K with respect to dG, and PK = (1− ε)K−1.

Proof: Let K > 1 be fixed. As per the algorithm description, the output set B is generated according to µ by
choosing centers in the Decomposition Algorithm from sets V1, . . . , V` and using the random radius (Q1, . . . , Q`).
First, we have that the sets Vi ⊂ V are disjoint, V = ∪`

i=1Vi, and for any x, y ∈ Vj , dG(x, y) ≥ 4K. In what
follows, we will call a subset U ⊂ V as 4K-sparse if for x, y ∈ U , d(x, y) ≥ 4K. Thus, all Vi, 1 ≤ i ≤ ` are
4K-sparse. We prove the Claim 13 for any finite metric space (note that the Modified Decomposition Algorithm
can be applied for any finite metric space) by induction over `, the number of disjoint 4K-spare subsets the metric
space G = (V,dG) decomposes itself into.

Base case. Suppose ` = 1. That is, the metric space is such that V , the set of all nodes, is 4K-sparse. Then, as
per algorithm, no vertex will become a part of the output set B since the radius will be at most K, we have that
for any v ∈ V ,

Pr[v ∈ B] = 0 ≤ ε + PK |B(v, K)|.
Thus, we have verified the base case for induction with ` = 1.

Induction hypothesis. Now, suppose that the Claim 13 holds for any metric space that can be decomposed into
` ≤ N 4K-sparse sets, for some N ≥ 1.
Induction step. We wish to show that the Claim 13 holds for any metric space that can be decomposed into N + 1
4K-spare sets. To this end, let G = (V,dG) with V = ∪N+1

i=1 Vi, with Vi be 4K-sparse for 1 ≤ i ≤ N + 1.
Now, recall that the Modified Decomposition Algorithm operates by first selecting vertices of V1 as centers

before choosing vertices from any Vi, 1 < i ≤ N +1. Since, the randomly chosen radius Q1 ≤ K and all the vertices
in V1 are at distance 4K, we can essentially assume that all vertices of V1 are chosen as centers simultaneously. At
the end of this step, let B1, R1 and W1 be the resulting sets in the Modified Decomposition Algorithm (see the
pseudo-code in Section V-A). Now consider a fixed vertex v ∈ V , and let u1 be a vertex in V1 that is closest to v
(with arbitrary tie-breaking). Note that since V1 is 4K-sparse, there is at most one w ∈ V1 so that dG(v, w) ≤ K.
Depending on dG(u1, v) we consider the following four different cases (or events).

Case 1. This case corresponds to event E1 where u1 is equal to point v of our interest. By the definition of the
Modified Decomposition Algorithm, under the event E1, v will never be part of output set B. That is,

Pr[v ∈ B|E1] = 0 ≤ ε + PK |B(v, K)|.

Case 2. Now, suppose u1 is such that v 6= u1 and dG(u1, v) < K. Call this event E2. Further, depending on the
choice of random number Q1, define events

E21 = {dG(u1, v) < Q1}, E22 = {dG(u1, v) = Q1}, and E23 = {dG(u1, v) > Q1}.
Description of the Modified Decomposition Algorithm implies that under E21, v is selected as a part of R1.
Hence it can never be a part of B. When E22 happens, v is selected as part of B1 and hence it is definitely a part
of B. When E23 happens, v is neither selected in the set R1 nor selected in the set B1. It is left as an element of
the set W1. Now, the original metric dG is still a metric on points of W1. And for any radius value of Q1, W1

is a subset of ∪N+1
i=2 Vi. That is, W1 is partitioned into N disjoint 4K-sparse subsets. Given Markovian nature of

the Modified Decomposition Algorithm and inductive hypothesis, it follows that conditional on event E23, the
probability that node v ∈ B is bounded above by ε + PK |B(v,K)|. Finally, the argument similar to that in the
proof of Lemma 5 implies

Pr[E22|E2] =
ε

1− ε
Pr[E21|E2].
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Let q
4
= Pr[E21|E2]. Then,

Pr[v ∈ B|E2] = Pr[v ∈ B|E21 ∩ E2] Pr[E21|E2] + Pr[v ∈ B|E22 ∩ E2] Pr[E22|E2]

+ Pr[v ∈ B|E23 ∩ E2] Pr[E23|E2]

= 0× q + 1× εq

1− ε
+ (ε + PK |B(v, K)|)

(
1− q

1− ε

)

= ε + PK |B(v,K)|+ q

1− ε
(ε− ε− PK |B(v, K)|)

= ε + PK |B(v,K)| − qPK |B(v,K)|
1− ε

≤ ε + PK |B(v,K)|. (20)

Case 3. Now, suppose u1 is such that dG(u1, v) = K. Call this event E3. Further, let event E31 = {Q1 = K}.
Due to the definition of µ, Pr[E31|E3] = PK . Under the event E31 ∩ E3, v ∈ B with probability 1. Therefore,

Pr[v ∈ B|E3] = Pr[v ∈ B|E31 ∩ E3] Pr[E31|E3] + Pr[v ∈ B|Ec
31 ∩ E3] Pr[Ec

31|E3]

= 1× PK + Pr[v ∈ B|Ec
31 ∩ E3](1− PK). (21)

Under the event Ec
31 ∩E3, we have v ∈ W1. As before, the remaining metric space (W1,dG) can be divided into

N disjoint 4K-sparse subsets. Therefore, applying induction hypothesis we obtain that

Pr[v ∈ B|Ec
31 ∩ E3] ≤ ε + PK(|B(v, K)| − 1). (22)

From (21) and (22), we have

Pr[v ∈ B|E3] ≤ PK + (1− PK)(ε + PK(|B(v, K)| − 1))

= ε(1− PK) + PK |B(v, K)|+ P 2
K(1− |B(v, K)|)

≤ ε + PK |B(v,K)|. (23)

Case 4. Finally, let E4 be the event that dG(u1, v) > K. Then, clearly v is in W1 at the end of iterations of
choosing all the nodes in V1 as center vertices in the Modified Decomposition Algorithm. Again, invoking the
induction hypothesis as before we obtain

Pr[v ∈ B|E4] ≤ ε + PK |B(v, K)|.
Now, the four cases are exhaustive and disjoint. That is, ∪4

i=1Ei is the universe. Hence, based on the above
discussion, we obtain the following.

Pr[v ∈ B] ≤ ε + PK |B(v, K)|. (24)

This completes the proof of Claim 13.

VI. DISCUSSION

As the main result of this paper, we established that graphs that are polynomially growing are algorithmically
efficient as they allow for designing simple approximation schemes for maximum weight independent set. There
are two natural future directions.

The first direction concerns identification of finer characterization of such efficient graph structure. Our result
suggests that all the inefficient (or hard) network graph structures must be super-polynomially growing. However,
if a network graph is a tree with constant degree, say 3, then it is exponentially (and hence super-polynomially)
growing. But trivially, it has simple efficient algorithm (e.g. Belief Propagation) for solving the maximum weight
independent set exactly ! Naturally, this demands a non-trivial investigation of the super-polynomially growing
network graphs for finding efficient structures.

The second direction is about iterative implementation of our algorithm. Specifically, our algorithm as explained
is two-stage mechanism: first, find a good decomposition and then utilize it to obtain a good solution. Ideally, we
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would like to have a “merged” version of this two stage approach that has message-passing implementation with
in-built randomization.
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