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Abstract—Grossglauser and Tse (2001) introduced a mobile random net-
work model where each node moves independently on a unit disk according
to a stationary uniform distribution and showed that a throughput of (1)
is achievable. E1 Gamal, Mammen, Prabhakar, and Shah (2004) showed
that the delay associated with this throughput scales as O (n log n), when
each node moves according to an independent random walk. In a later
work, Diggavi, Grossglauser, and Tse (2002) considered a random network
on a sphere with a restricted mobility model, where each node moves
along a randomly chosen great circle on the unit sphere. They showed
that even with this one-dimensional restriction on mobility, constant
throughput scaling is achievable. Thus, this particular mobility restriction
does not affect the throughput scaling. This raises the question whether
this mobility restriction affects the delay scaling. This correspondence
studies the delay scaling at ©(1) throughput for a random network with
restricted mobility. First, a variant of the scheme presented by Diggavi,
Grossglauser, and Tse (2002) is presented and it is shown to achieve O(1)
throughput using different (and perhaps simpler) techniques. The exact
order of delay scaling for this scheme is determined, somewhat surpris-
ingly, to be of ©O(nlog n), which is the same as that without the mobility
restriction. Thus, this particular mobility restriction does not affect either
the maximal throughput scaling or the corresponding delay scaling of the
network. This happens because under this 1-D restriction, each node is
in the proximity of every other node in essentially the same manner as
without this restriction.

Index Terms—Constant throughput scaling, delay, random walk mo-
bility, random wireless networks, scaling laws.

I. INTRODUCTION

Gupta and Kumar [5] introduced a random network model for
studying throughput scaling in a fixed wireless network (that is, when
the nodes do not move). They defined a random network to consist of n
nodes where each node is distributed uniformly and independently on
the unit sphere in R*. The network has 7 /2 distinct source-destination
pairs formed at random. Each node can transmit at 1" bits-per-second
provided that the interference is sufficiently small. They showed that
in such a random network the throughput scales as ©(1//nlogn)
per source—destination (S-D) pair.

Grossglauser and Tse [6] showed that by allowing the nodes to move,
the throughput scaling changes dramatically. Indeed, if node motion is
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independent across nodes and has a uniform stationary distribution, a
constant throughput scaling (©(1)) per S-D pair is feasible. This raised
the question: what kind of mobility is necessary for achieving constant
throughput scaling? Diggavi, Grossglauser and Tse [2] considered a
restricted mobility model where each node is allowed to move along
a randomly chosen great circle on the unit sphere with a uniform sta-
tionary distribution along the great circle. They showed that a constant
throughput per S-D pair is feasible even with this restricted mobility
model. Thus they established that node motion with a stationary distri-
bution on the entire network area is not necessary for achieving con-
stant throughput scaling.

El Gamal, Mammen, Prabhakar and Shah [3] (see [4] for complete
details) determined the throughput-delay trade-off for both fixed and
mobile wireless networks. In particular, it was shown that for mobile
networks at throughput of ©(1), the delay is ©(n logn). For mobile
networks, the mobility model consisted of each node moving indepen-
dently according to a symmetric random walk on a y/n X +/r grid on
the unit torus.

The constant throughput scaling result of [2] for a network with
restricted mobility raises the question whether the high throughput
in spite of restricted mobility is at the expense of increased delay.
Motivated by this question, we study the delay scaling for constant
throughput scaling in a network with restricted mobility. Somewhat
surprisingly, we find that delay scaling is not affected by this mobility
restriction either. That is, delay scales as ©(nlogn), which is the
same as the delay scaling when mobility is not restricted. This corre-
spondence is a consolidation of the preliminary work presented in [8].

This seemingly surprising result can be explained as follows. Since
there are » nodes in a network of constant area, the neighborhood of
each node is ©(1/n). Based on this, let us say that two nodes meet or
are neighbors when they are within a distance of © (1//n). The fol-
lowing condition ensures constant throughput scaling in the mobile net-
work models presented in [2], [6] and this correspondence: for ©(1/n)
fraction of the time, each node is a neighbor of every other node with
only ©(1) other nodes in its neighborhood. This ensures that the total
network throughput is ©(n) and that it is distributed evenly among the
n/2 S-D pairs, so that the throughput is ©(1). Delay is determined
by the first and second moments of the intermeeting time of the nodes.
In the case of unrestricted mobility, the intermeeting time of any two
nodes is equivalent to the intervisit time to state (0, 0) for a 2-D random
walk on a v/n x y/n grid. In the restricted mobility case also the in-
termeeting time turns out to be equivalent to the intervisit time to state
(0,0) for a slightly different random walk. However, the first two mo-
ments are still of the same order and hence the queueing delay is the
same, leading to the same delay scaling. As a result, even with this
particular mobility restriction, the maximal throughput scaling and the
corresponding delay scaling remain unchanged.

The rest of this correspondence is organized as follows. In Section II,
we introduce the random mobile network model, some definitions and
notation. In Section III, we present a scheme using random relaying and
show that it achieves constant throughput scaling. In Section IV, we
show that the delay for this scheme is ©(n log n) using results which
are proved in Section V. The proof of delay of @(nlogn) consists of
analyzing a queue at arelay node in two parts. The first part presented in
Section IV identifies an independent and identically distributed (i.i.d.)
component that is embedded in the arrival and service processes of
the queue. The second part breaks the dependence between the arrival
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and departure processes by introducing a virtual Bernoulli server. The
queueing analysis that follows is carried out in Section V.

II. MODELS AND DEFINITIONS

In this section, we present the network model, and the definitions
of the performance metrics—throughput and delay. We begin by re-
minding the reader of the order notation: 1) f(n) = O(g(n)) means
that there exists a constant ¢ and integer IV such that f(n) < cg(n) for
n > N.2) f(n) = o(g(n)) means that lim,, ... f(n)/g(n) = 0.3)
£(n) = Qlg(n)) means that g(n) = O(f(n)). 4) f(n) = w(g(n))
means that g(n) = o(f(n)).5) f(n) = ©(f(n)) means that f(n) =
O(g(n)); g(n) = O(f(n)).

Now let us recall what is meant by the uniform distribution of great
circles on a sphere. Let S? denote the surface of a sphere in R® with
unit area. For = € 57, let 2’ € S” be the diametrically opposite point
of z. Let G(x) denote the great circle obtained by the intersection of
S5? with the plane passing through the center of S? and perpendicular
to the line zz'. Let = be called the pole of G(z). If the pole of a great
circle is chosen according to a uniform distribution on S then the great
circle is said to have a uniform distribution.

Definition 1: (Natural Random Walk): A natural random walk on a
discrete torus of size m is the process S(t) € {0,...,m — 1}, ¢t =
0,1,..., such that S(0) is uniformly distributed over {0,...,m — 1}
and S(t + 1) is equally likely to be any element of {S(¢),S(t) —
1 mod m, S(t) + 1 mod m}.

This differs from a simple random walk, where S(t + 1) is equally
likely to be any element of {S(¢) — 1 mod m, S(¢) + 1 mod m}. In
this correspondence, we are interested only in scaling results, which,
as we show later, depend on the first two moments of various hitting
times for two-dimensional random walks. It is easy to see that if a
random variable T is a hitting time for the simple random walk then
the corresponding hitting time for the natural random walk is given by
T+ ZLI G where G, Ga, . .. are i.i.d. Geometric random variables
with parameter 1/3 that are independent of 7. As a result it can be
easily verified that the moments of hitting times of the simple and the
natural random walk are of the same order. Hence we use the terms
simple and natural random walks interchangeably.

Definition 2: (Random Network): The random network consists of
n nodes that are split into n/2 distinct source-destination (S-D) pairs
at random. Time is slotted for transmission. Associated with each node
is a great circle of S? chosen independently according to a uniform
distribution.

The great circle of each node has \/n equidistant lattice points num-
bered from 0 to \/n — 1 placed on it arbitrarily resulting in a one-di-
mensional discrete torus of size /7. Each node moves according to a
natural random walk on these lattice points on its great circle. Fig. 1
shows a realization of the random network model. Note that since the
sphere has unit area, its radius is 1/2+/7. Hence, each great circle has
perimeter /7 because of which the distance between two adjacent lat-
tice points is /7 /n.

Let the distance on the sphere between nodes ¢ and j be denoted
by d(i,j). We assume the Relaxed Protocol model [3] similar to the
Protocol model in [5] for successful transmission.

Definition 3 (Relaxed Protocol Model): A transmission from node
i to node j is successful if for any other simultaneously transmitting
node k

d(k.j) > (1+ A)d(i. )
for some A > 0. If a transmission is successful then communication
occurs at a constant rate of W bits-per-second. For simplicity, we as-

sume that time-slots are of unit length so that when a successful trans-
mission occurs a packet of size W is communicated.
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Fig. 1. A realization of the random network model. Only the lattice points on
the great circles of nodes ¢ and # are shown. The intersection of their great circles
is z;;. The shaded circle is C;; and ¢ and j become neighbors when they are at
the two dark lattice points.

In the other commonly used model (e.g., [S], [6], [2]), known as the
Physical model, a transmission is successful if the signal-to-interfer-
ence and noise ratio (SINR) at the receiver is greater than some con-
stant.

The differences between this model and the model in [2] are: 1) the
relaxed protocol model is used instead of the physical model, and 2)
each node is assumed to move according to a natural random walk in-
stead of just a stationary, ergodic motion with uniform stationary dis-
tribution on the great circle. However, this model has the same 1-D
mobility restriction. Further, the proofs clearly show that the assump-
tion of mobility according to a natural random walk is not necessary for
achieving constant throughput scaling and is used only for computing
delay.

Definition 4 (scheme): A scheme 1l for a random network is a se-
quence of communication policies, (II,, ), where policy II,, determines
how communication occurs in a network of n nodes.

We allow randomness in a scheme.

Definition 5 (Throughput of a Scheme): Let B, (i,t) be the
number of bits of S-D pair i, 1 < ¢ < n/2, transferred in ¢ time-slots
under policy II,,. Scheme 1I is said to have throughput T11(n) if 3 a
sequence of sets Arr(n) such that

Auln) = { min limtinf %Buﬂ (i,t) > Tu(n)}
2 — 00

1<i<n/:

and P (An(n))—1 as n—oo. Since randomness is allowed in a
scheme, Dji,, (¢, %) is a random variable that depends on realizations
of the scheme and the network. Further, P (Ar(n)) denotes the
probability of Ar(n) over the joint probability space that captures
randomness in the scheme as well as the network realization. We say
that event A occurs with high probability (whp) if P(A)—1 as n—oc.

Definition 6 (Delay of a Scheme): The delay of a packet is the time
it takes for the packet to reach its destination after it leaves the source.
Let Dﬁn (j) denote the delay of packet j of S-D pair ¢ under policy
II,,, then the sample mean of delay for S-D pair ¢ under II,, is

k

_ 1 .
Dy, = limsup % D, (4).
k—oco R

7=l
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The average delay over all S-D pairs for a particular realization of the
random network is then

The delay for a scheme II is the expectation of the average delay over
all S-D pairs, i.e.
9 2/2

Du(n) = E[Dn,] = = ; B [Di, ]

Now observe that some realizations of the random network may re-
sult in the configuration of nodes being such that it is not possible to
achieve constant throughput scaling. Hence we first define a typical
configuration which captures the fact that the distribution of great cir-
cles is sufficiently uniform everywhere on the sphere. We need some
notation to introduce this definition.

Let G; denote the great circle of node ¢ € {1,...,n}. For any two
nodes i # j, G; and G are not identical with probability 1 under
the random network model. Two distinct great circles must intersect in
exactly two points. For each pair ¢ # j, select one of the two distinct
intersection points of GG; and G'; uniformly at random and call it z;;.
Let C;; denote the disk on the sphere centered at z;; with radius (2 +
A)y/7 /n. See Fig. 1 for an illustration.

Definition 7 (Typical Configuration): A configuration (i.e., realiza-
tion of the random network) is said to be typical if the number of great
circles passing through each C;; is © (/n).

Definition 8 (Neighbor): We say that nodes i and j are neighbors at
time ¢ if both nodes ¢ and j are at the lattice points of their respective
great circles that are closest to z;;. In Fig. 1, the lattice points for nodes
i and j that are closest to z;; have been darkened. Under the random
walk model, it is possible that in some time-slot, a node may not have
any neighbors.

In this correspondence, we use ¢1, ¢z, . .
not depend on n.

. to denote constants that do

III. SCHEME WITH CONSTANT THROUGHPUT SCALING

In this section, we present Scheme II and show that it achieves con-
stant throughput scaling. In the Section III-A its delay scaling will be
analyzed. Before presenting the scheme, we prove a property of the
random network model which makes the scheme feasible.

Lemma 1: Configurations are typical whp.

Proof: Consider any two nodes ¢ and j. First note that the prob-
ability that G; and (; coincide is zero. Also any two distinct great
circles necessarily intersect at exactly two points. By definition, C;;
has area ¢1 /n (for some positive constant ¢4 ) since it has radius (2 +
A/ /n.

Let I, k = 1,....n, k # i,j, be an indicator random variable
for the event that the great circle of node k, G, passes through C;;.
By definition, I} are i.i.d. Bernoulli random variables with parameter
p, where p = c¢2/+/n where ¢» is a positive constant. This is because
a great circle passes through a disk of radius R if and only if its pole
lies in an equatorial band of width 2 R. The probability of this event is
O(R) as the position of pole is uniformly distributed over the sphere.

Thus, the total number of great circles passing through C;; is given
by a random variable X = >, I with

EX]=(n—-1)ca/v/n =0 (Vn).
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An application of the well-known Chernoff bound for the sum of i.i.d.
Bernoulli random variable (e.g., see [9]), yields

P{IX - E[X]| > SE[X]} < 2exp(—6" E[X]/2)
1

n3

_ [2(log2 + 3logn)
for 6 = —E[X] . D

The choice of § in (1) shows that X = O(E[X]) = O (y/n) with
probability at least 1 — 1/n>. Hence by the union bound over all 7 (n —
1)/2 possible C;; fori,j = 1,...,n, we obtain that with probability
at least 1 — 1/n, the number of great circles passing through each C;;

is © (1/n). O

A. The Scheme

The operation of Scheme II depends on whether the configuration is
typical or not. If the configuration is not typical, direct transmission is
used between the S-D pairs along with time-division multiplexing. That
is, the sources transmit to their destinations once in 2/n time-slots in
a round-robin fashion. If the configuration is typical then Policy ¥,, as
described below is used. Policy Xy, is a variant of the policies presented
in [2] and [6].

Policy ¥,

1) Each time-slot is divided into two subslots—A and B.

2) Subslot A

a) Each source node independently becomes active with
probability pa > 0.

b) If an active node has one or more neighbors then with
probability 0 < a < 1, it chooses one at random and a packet
intended for its destination is transmitted to this randomly chosen
neighbor, which acts as a relay node.

Subslot B

a) Each node independently becomes active with probability

pa > 0.

b) If an active node has one or more neighbors that are destination
nodes, it chooses one at random. The active node, which acts as a
relay, transmits a packet intended for this destination node, if it
has any, in first-in—first-out (FIFO) order.

3

~

In policy X, , each node acts as a relay for all the other n/2 — 1 S-D
pairs. A packet reaches from its source to its destination as shown in
Fig. 2. A source node S transmits its packet to a random relay node R,
which may also happen to be the destination itself. The random relay
node then moves around carrying the packet. Finally, when it becomes
aneighbor of the destination D, the packet is transmitted to D. A relay
node may receive several packets from a source before it gets a chance
to transmit to the destination. To handle this, each relay node maintains
a separate queue for each of the other n/2 — 1 S-D pairs.

The actual mechanism is slightly more complicated. Since each node
decides to transmit at random, it is possible that two nearby nodes
transmit simultaneously so that transmission is not successful under
the Protocol model. In order to analyze the throughput of Scheme II,
we first state a result about the probability of successful transmission
between two nodes when they are neighbors under policy ¥,,.

Lemma 2: Under policy ¥,,, the following hold in a typical config-
uration.
a) In subslot A, if nodes S and R are neighbors of each other, S
transmits a packet to R successfully with a strictly positive prob-
ability, independent of n.
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Fig.2. Source node S transmits its packet to a random relay node R. The packet
is carried by R, until its transmission to the destination node D when R and D
become neighbors. The dotted great circles correspond to other nodes which can
act as relays.

b) In subslot B, if nodes R and D are neighbors of each other, R
transmits a packet to D successfully with a strictly positive prob-
ability, independent of n.

Proof: We shall only prove for the case of subslot A since the
proof for the other part is similar. Consider a subslot A in which S and
R are neighbors. Let E; be the event that S becomes active and E2 be
the event that S chooses R as a random relay and no other source node
in Csr becomes active. If both events F;1 and E5 occur, S transmits to
R and the transmission is successful under the Relaxed Protocol model.
Thus

P(S transmits to R successfully) = P(E; N E5)

=P(E)P(E2|E). (D)

From the description of Policy ¥, it is clear that P(E) = apa,
which is a strictly positive constant. Next we compute P(E;|E ) and
show that it is lower bounded by a strictly positive constant, indepen-
dent of n, which will imply the statement of the lemma.

Given that S is active, the probability of successful transmission to R
depends on how many other nodes are present in Csr since these nodes
could interfere, i.e., transmit simultaneously so that the transmission
from S to R is not successful under the Relaxed Protocol model.

Since we have a typical configuration, the number of distinct great
circles of source nodes that intersect Csr is ©(y/n), that is, between
c3+/n and c4+4/n for some constants cs, c4. Moreover each great circle
has ©(1) lattice points that are in Csr. For a natural random walk on
a discrete torus of size /7, the probability of being at any particular
position is 1/4/n. Hence the probability that any of the © (/n) source
nodes whose great circles intersect Csr is present in Csr is ©(1/4/n),
that is, between c54/n and cs/+/n for some constants cs, cs. Due to
the independent movement of all nodes, we obtain that for a typical
configuration, the probability of %k nodes being present in Csr is at
least

cay/n es \" 1_ 6 c“ﬁ*kN(t)ut'.s)kexp(—catce)
k vn NG - k!

for large enough n. If Csr has k nodes not including S and R then
S certainly has no more than & + 1 neighbors. In this situation, R is
chosen by S with probability at least 1/(k + 1). Further there are at

1111

most k& other source nodes and the probability that no other node in
Csr becomes active is at least (1 — pA)k. Thus

(1—pa)t

P(E2|Ey) > i (cse5)” exp(—cacs) 1
2|E1) 2 2 - .

n—2

SN _ k
> exp(—cascs) Z —(Ld%(l I)A))
k=0

(k+ 1)1

It is easy to see that for 0 < pa < 1, the term on the right-hand side
is lower bounded by a strictly positive constant. Hence, P(E3|E,) is
strictly positive. This completes the proof of the lemma. O

Theorem 1: Scheme I achieves T'(n) = ©(1).
Proof: Consider a typical configuration so that policy X, is used.
Fix a source node S and a relay node R. Let A(#) be the number of bits
transmitted from S to R in subslot A of time-slot ¢. If S transmits to
R successfully in subslot A of time-slot ¢, A(¢¥) = W/2 otherwise
A(t) = 0.
First we determine E[A(t)]. Let Fy be the event that S and R are
neighbors and F» be the event that S transmits to R successfully. Then

FlA() = S PR N R = U PIRIPIRIFY.  O)

From Lemma 2 (a), P{F:|F1} > ¢ > 0. Due to the independent
motion of nodes S and R according to natural random walks, the joint
description of their positions is a two-dimensional (2-D) random walk
on a discrete torus of size \/n X 1/n. It is easy to see that the stationary
distribution for this process is the uniform distribution on n joint posi-
tions. Since S and R become neighbors when they are in one particular
joint position out of these n joint positions, it follows that the prob-
ability of S and R being neighbors is 1/n, i.e.P(F1) = 1/n. Hence
from (3) it follows that E[A(t)] = ©(1/n).

Now the positions of nodes S and R form an irreducible, finite state
Markov chain and A(¥) is a bounded, nonnegative function of the state
of this Markov chain at time . Therefore by the ergodicity of such a
Markov chain, the long-term throughput between S and R is

.
Jim. % > A(t) = E[A(H)] = ©(1/n).

t=1

Thus the throughput between a source node S and any other node in
subslot A is ©(1/n). Similarly, it can be shown that the throughput
between any node and a destination node D in subslot Bisalso @(1/n).
The value of 0 < « < 1 guarantees that the arrival rate of packets
belonging to every S—D pair at any relay node is strictly less than the
service rate. This ensures the stability of the queues formed at the relay
nodes, which in turn implies that the throughput between each S-D pair
is simply the sum of the throughputs between S and the other n» — 1
nodes in subslot A. Hence the throughput of each S-D pair is ©(1).

We have shown that in a typical configuration, Scheme II provides
O(1) throughput between all S-D pairs. From Lemma 1, configura-
tions are typical whp. Hence it follows that Scheme II has throughput
T(n) =06(1). d

Note that for the unrestricted mobility models in [6] and [4], it is pos-
sible to prove a stronger result that each S—D pair has ©(1) throughput
for any n with probability 1 instead of probability approaching 1 as n
tends to infinity, as in the present case.

IV. DELAY OF SCHEME @

Under Scheme 11, if the configuration is not typical, direct transmis-
sion is used, in which case the delay for each packet is 1. Since the
delay of a scheme is defined to be the expectation over all configura-
tions of the average delay, the delay for Scheme 1I is determined by the
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expected delay over typical configurations. So we shall assume that the
configuration is typical.

Consider a particular S-D pair. Packets from S reach D either di-
rectly by a single hop in subslot A or through any of the other n —
2 nodes, which act as relays. Since the nodes perform independent
random walks, only ©(1/n) of the packets belonging to any S-D pair
reach their destination in a single hop. Thus, most of the packets reach
their destination via a relay node, in which case the delay is two time-
slots for two hops plus the mobile-delay, which is the time spent by the
packet at the relay node.

Each relay node maintains a separate queue for each of the S-D
pairs. Fix a relay node, R, and consider the queue for the S-D pair
under consideration. The mobile-delay mentioned above is the delay
at this relay-queue.To compute the average delay for this relay-queue,
we need to study the characteristics of its arrival and potential depar-
ture processes.

A. Lower Bound

First we obtain a lower bound on the delay at the relay-queue. Each
node performs a random walk on a 1-D torus of size \/n on its great
circle. We say that an S-D pair intersects node R’s great circle & ver-
tices apart if the lattice points where R can become neighbors of S and
D are k lattice points (vertices) apart on the 1-D discrete torus of R.

Fix an S-D pair and consider a particular relay node R and suppose
that this S-D pair intersects the great circle of R ¢ vertices apart. Sup-
pose that when a packet is transmitted successfully from S to R, D is j
lattice points away from the position where it can become a neighbor of
S. Let T}, be the random time it takes for a random walk on a \/n X /n
torus to hit (0,0) starting from (2, j). The first time R and D meet after
a packet is transmitted from S is distributed as 7;;. Hence the delay
for this packet in reaching D is at least T;;. Of course, the delay can
be much more since the packet may not be successfully transmitted or
even transmitted at all when R and D meet for the first time after the
arrival of the packet. Now, when a packet is transmitted successfully
from S to R, D is equally likely to be in any of its /7 lattice points
since it performs an independent random walk. Hence if the S-D pair
intersects the great circle of R ¢ vertices apart then the expected delay
for packets of this S-D pair relayed through R is lower bounded by
ST Ty
Vi £4j=0 J

Using the Chernoff bound for the sum of i.i.d. Bernoulli random
variable (e.g., see [9]), it can be shown that © (/1) S-D pairs intersect
the great circle of each node ¢ points apart for 0 < i < /n — 1 whp.
Hence the delay of Scheme II, which is the expected delay over all
packets is

1!
Dn)=Q|E|= > T,

n <
ig=1

As shown in [1], E ['17 Z‘/Eﬂ Tij] = O(nlogn). Therefore

1,7=1

D(n) = Q(nlogn). 4)

B. Upper Bound

The rest of this section derives an upper bound which is of the same
order as the lower bound. It is hard to obtain an upper bound on the
delay in the relay-queue since the arrival and service processes are
complicated and dependent. We progressively obtain queues that are
simpler to analyze and upper bound the delay of the previous queue as
follows. We first upper bound the delay in the relay-queue by that in
another queue, Q;, in which the arrival process is simpler. The delay
of Q1 is upper bounded by that in Q», which has a relatively simpler
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service process. However, the arrival and service process are not in-
dependent. The final part consists of introducing a virtual server with
independent and identically distributed (i.i.d.) Geometric service times
to break this dependence. With this overview, we proceed to the details.

Recall that a packet arrives at the relay-queue when 1) S and R are
neighbors, 2) S becomes active (which happens with probability apa ),
3) S chooses R as a random relay, and 4) the transmission from S to
R is successful. Similarly, a packet can depart from the queue when
1’) R and D are neighbors, 2’) R becomes active (which happens with
probability pa ), 3’) R chooses D as the destination node, and 4’) the
transmission is successful. We call such a time-slot a potential depar-
ture instant and the sequence of interpotential-departure times is called
the potential-departure process. Let the potential-departure process of
the relay-queue be called {S;}. The qualifier potential is used since a
departure can occur only if R has a packet for D.

1) Upper Bound on Delay of Relay-Queue by That of Q.1: Con-
sider a queue Q1 in which arrivals happen whenever 1), 2), and 3) are
satisfied, irrespective of whether 4) is satisfied or not. The potential de-
parture process for Q1 is the same as that for the relay-queue. Then it
is clear that the expected delay in @ provides an upper bound on that
in the relay-queue.

Recall that the motion of each node is an independent 1-D random
walk on a discrete torus of size \/n. We will say that two nodes meet
when they become neighbors. Since nodes move independently the
joint position of nodes R and D is a random walk on a /n X /n dis-
crete torus and R and D become neighbors when the 2-D random walk
is in state (0, 0), without loss of generality. Therefore, the intermeeting
time of R and D is distributed like the intervisit time of state (0,0) of
a 2-D random walk. Since this is a Markov chain with n states having
a uniform stationary distribution, we know that the sequence of inter-
meeting times of nodes R and D, denoted by {7,¢ > 0}, is an i.i.d.
process. Further, if 7 is a random variable with the common distribu-
tion then

E[r] = n. 5)

However a potential departure instant does not occur each time R and
D meet. A potential departure instant occurs only if R also becomes
active, chooses D as the random destination and the transmission is
successful. If R and D are not chosen in spite of being in the same cell,
it increases the likelihood of there being many more nodes in the same
cell. Due to the random walk model of the node mobility, if there is a
crowding of nodes in some part of the network then it remains crowded
for some time in the future. Hence due to the Markovian nature of node
mobility, the interpotential-departure times are not independent.

2) Upper Bound on Delay of Q1 by That of Q2: We want to ob-
tain an upper bound on the delay of Q; which has potential-departure
process {51} To do this we will consider a queue, Q», which has the
same arrival process as Q1 but a different departure process {S~i} such
that S,|S,_1,. .. stochastically dominates S;|S;_1..... Then the ex-
pected delay in Q2> would provide an upper bound on the the expected
delay in the relay-queue.

Nodes R and D perform independent random walks on 1-D tori of
size y/n on their great circles as shown in Fig. 2 and R and D meet
when both are at a particular pair of lattice points. This is represented
schematically in Fig. 3, where R performs a vertical 1-D random walk
and D performs a horizontal 1-D random walk. The joint motion of
nodes R and D is equivalent to a random walk on a 2-D torus of size
/1 X 4/n and R and D meet when this 2-D random walk is in state
(0,0). The intermeeting times of nodes R and D correspond to the
i.i.d. process {7:}. Further, let o«; = 71 + --- + 7; fori > 1, ie,
a; is the time-slot in which R and D meet for the ¢th time. In a typ-
ical configuration, we know that the number of other great circles that
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Fig. 3. Schematic representation of the motion of nodes R and D on their re-
spective great circles with ( = /n — 1.
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Fig. 4. The 2’ marks correspond to the times when R and D meet each other.
At some of these meeting instants the R-D transmission can be successful. Such
points have been circled and correspond to E; = 1. The interpotential-service
times are thus the sum of a few of the intermeeting times of R and D.

pass through Crp is © (y/n). Allowing for the worst case, based on
Lemma 1, let there be ¢7\/n = m — 2 other great circles that pass
through Crpp . These can also be thought of as performing independent
random walks on the horizontal 1-D torus. Let nodes R and D be num-
bered 1 and 2 and the other ¢~ \/ﬁ nodes be numbered from 3 to m and
let X(t) = (X (t),..., X (t)) denote the position of these m nodes
on the /n x \/n discrete torus at time ¢.

A constant number of lattice points of the 1-D torus correspond to
Crp and these are shown by the shaded region in Fig. 3 and is referred
toas set 4. Let F; be the indicator for the event that R chooses D and the
transmission is successful in time-slot «v; . That is, E; is the indicator for
the event that «; is a potential departure instant. Let /V; be the number
of other destination nodes in A in time-slot ;. Then P{E; = 1}
depends on N; only. Now, IV; depends on X («;) which depends on
the past given by F'~' = {F,,...,E,_}and 7 = {r,...,7;}.
Thus the potential-departure process is generated by choosing some of
the meeting instants of R and D according to a probability modulated
by NNV;, which is another independent process as shown in Fig. 4.

Above we described how the process {S;} can be generated using
the processes {N;} and {7:}, which in turn were obtained from
{X (%)}, which corresponds to the independent random walks of all
m nodes. Next we shall perturb the process {X (¢)} to obtain {X (¢)}
and the corresponding {7;} and {NV;}. Let Z() be a 1-D horizontal
random walk on a torus of size /7. Let X;(t) = X;(t) + Z(t) be
the position of node ¢, 1 < ¢ < m, where the addition is modulo /7.
Then the intermeeting times of any two nodes are the same as before
since the position of each node is shifted horizontally by the same
amount due to Z(t). As a result the processes 7; and 7; are identical.
Under the modified setup, the lattice point at which R and D meet can
be any element of the set B = {(,0) : 0 < i < y/n — 1} instead
of always being (0,0). The above perturbation was used to obtain
this property which is crucial for the proof technique of Lemma 3.
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Let N; be the number of other destination nodes in the set A + Z(t).
Then, {N,} is identical to {V;}. Thus the process {.S;} can also be
generated (through {£;}) using {N;} and {7} instead of {NV,} and
{7:}. Therefore we shall use X, (t) as the position of node ¢ at time
t instead of X;(¢). Under this perturbed motion, R can be seen as
if it performs a 2-D random walk on the /n X y/n torus while D
and the other m — 2 nodes perform a 1-D random walk on a 1-D
torus of size /n which is subset B of the 2-D torus. Moreover, given

X (o) = (Xs(), X..(a,)), P{E; = 1} is independent of
everythmg else.

Lemma 3: There exists a constant (independent of n) cs > 0 such
that

P (E - 1|Ti,Ei’1) > e > 0.

Proof: The initial position of R, X1 (0) has a uniform distribution
on the \/n X /7 torus. The initial positions of D and nodes 3 to m have

independent uniform distributions on subset B = {(i,0) : 0 < ¢ <
/n = 1} of the /i x /n torus. As aresult X1 (1) = Xo(an) =1

where [ is a random variable with a uniform distribution over B.

Let V = (X3(), ..., X, (;)) be the configuration of the m — 2
nodes other than R and D. Then the conditional probability of a poten-
tial departure given the past can be written as

P (E = 1|r*',EH)

<~ P(E=1V.r BT )P (V. T ET")
_; P(ri, Bi-1)
. ;g E‘ L
ZH{}'HP( P l) Z P(» B 1))
= 111&111—’( = T ,Ez_l)
) 6)

where the last equality holds because E; is independent of everything
else given V.

Given a configuration V', the number of nodes in A + (i — 1,0)
fori = 1,...,+/n torus can be found and this in turn determines the
P (E; = 1|V). Hence, if V; denotes the number of nodes other than
R and D in the set A + (i — 1,0) for¢ = 1,...,/n then we can
equivalently let the configuration be V- = (Vi,...,V ).

Now consider a fixed configuration, V = v = (vy,..., 'v\/;), and
let Z be a random variable which takes value v;,1 < ¢ < +/n with
probability 1/+/7. Let A consist of ¢ (some constant) elements. Then

_sz’fw Ceo(m—2)
_\/ﬁkzl T ﬁ B

Recall that X («;) = I, where I is a random variable with uniform
distribution on B. Further, from the description of Scheme II, if there
are vy destination nodes other than D in Crp then E; = 1 if R chooses
D out of all destination nodes that are its neighbors and the other v
nodes do not transmit. Since Crp contains all neighbors and more,
the number of neighbors can be no more than X; and hence for & =

, /1, we obtain

o(1). 7

- pA(l—pA)U" !
i _ >0 e
1(a;) = (k—1,0)) ——

. (®)
Define a real valued function f R — R where f(z) =
_ z+1 . . . .
%. It is easy to check that f(-) is a convex function.
Hence, by Jensen’s inequality

Elf(Z2)] > f(E[Z]). C)]
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Using (7), (8) and (9), for any configuration V' with corresponding v,
we obtain

P(E; = 1|V = v)

NG
=Y P(E: =1V =0v,Xi(o) = (k= 1,0))
k=1
X P(Xy(a;) = (k—=1,0)|V =)
1 v
= PE, =1V =v, X (a;) = (k—1,0)
L s pa)t
\/ﬁ k=1 Uk + 1
= E[f(Z)]
> f(E[Z])
_ co(m—2)\ a
_f<4ﬁ )_08>o. (10)
Combining (6) and (10) completes the proof of the lemma. O

Recall that the process {.S; } is generated from {7;} and { E;}. Con-
sider an i.i.d. Bernoulli process { E; } with P{E, = 1} = cs. Now we
can construct a process {5, > 1} similar to the process {S;} using
{7} and { E;} instead of { E;}. From Lemma 3 and from the construc-
tion of the processes {S; } and {Sz}, itis easy to verify that S; |§i,h .
stochastically dominates .S;|X;_1,. ... Now consider queue Q. with
the same arrival process as Q; but with potential-departure process
{5'2} Depending on the value of c¢s, the value of « can be chosen so
that the arrival rate is strictly smaller than the potential departure rate
in Q2 so as to ensure stability. The distribution of S\ is the same as
71 + - - + 7, where G is an independent Geometric random variable
with parameter cs. As a result, for any r € N

E[$1] = 0 (E[]). (11
In light of (11), it is easy to see that the delay scaling of queue Q- is
the same as the delay scaling of a queue in which an arrival happens
each time S and R meet with probability 0.5 and a potential departure
occurs each time R and D meet. Since we are interested only in the
delay scaling, henceforth we assume that in Q5, an arrival happens
when S and R meet with probability 0.5 and a potential departure occurs
whenever R and D meet.

At this stage we have upper bounded the delay in the relay-queue by
the delay in Q2. The interarrival times and the interpotential departure
times in Qs are i.i.d. processes. However these two processes are not
independent for the following simple reason: if the S-D pair intersects
the great circle of R, & > 0 vertices apart then R has to travel at least
distance % on the discrete torus after an arrival for a potential departure
to occur.

3) Upper Bound on Delay of Q2: Next, we will bound the delay in
Qs by the sum of the delays through two virtual queues, Q3 and Qa4, in
tandem. Both Q3 and Q4 will be shown to have delay of O(n logn).
This will imply that the delay of Q2 is O(n log n). Queues Q3 and Q4
are constructed as follows. The arrival process of Q3 is the same as
that of Q5. The potential-departure process of Qs is an i.i.d. Bernoulli
process with parameter 2/3n (or potential departure rate %) An ar-
rival occurs at Q4 whenever there is a potential-departure at Qz. If Q3
is nonempty, then the arrival to Q4 is the head-of-line packet trans-
ferred from Qs to Q4 or else a dummy packet is fed to Q4. Thus the
arrival process at Q4 is the same as the potential-service process at Qs.
By construction, the delay of a packet through this tandem of queues,
Qs and Q4, upper bounds the delay experienced by a packet through
Q3. The following lemmas provide upper bounds on the delays in Q3
and Q.. Their proofs are provided in the Section IV-A.
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Lemma 4: Let D3 denote the delay of a packet through queue, Qs,
as defined above. Then

E[Ds] = O(nlogn).

Lemma 5: Let D4 denote the delay of a packet through queue, Q4,
as defined above. Then

E[D4] = O(nlogn).

From the lemmas stated above, the expected delay through Q3 and
Q4 is O(nlogn). Thus the expected delay of the packets of each
S-D pair relayed through each relay R in a typical configuration is
O(nlogn). The delay of scheme is the expectation of the packet delay
averaged over all S-D pairs and all relay nodes. Hence it follows that
the delay of the scheme is O(n log n). Combining this with (4), we
have proved the following.

Theorem 2: The delay of Scheme II is ©(nlogn).

V. REMAINING PROOFS

In this section, we prove Lemmas 4 and 5, which were used to prove
that Scheme II has delay of O(nlogn). Before proving these, we
present Lemma 6 which will be useful for both these proofs.

Recall that each node performs an independent random walk on a
1-D discrete torus of size v/n on its great circle. Let Z be a random
variable which is distributed as the intermeeting time of two distinct
nodes. The following lemma provides the first two moments of Z.

Lemma 5:

[E[Z] =n, E[Z°]=6n"logn).]

Proof: As nodes perform independent random walks, the joint
position of two nodes is a 2-D random walk on the /7 x /7 discrete
torus. Thus the intermeeting time of any two nodes is equivalent to the
first return time to state (0,0) for this random walk on a \/n X \/n
torus. Since we are interested only in determining the exact order of
the moments, we will consider a simple random walk.

Let X(#) = (X1(#),X2(t)) € {0,...,y/n — 1}* be a simple
random walk on the \/n X /7 torus. Then the first return time to state
(0,0) is

T =inf{t > 1: X(t) = (0,0), X(0) = (0,0)}.

Note that X (¢) is a finite-state Markov chain with a uniform equilib-
rium on the n states. For any finite-state Markov chain, the expectation
of the first return time to any state is the reciprocal of the equilibrium
probability of the Markov chain being in that state. Hence, E[T] = n.
Define, Ty = inf{t > 1 : X(¢) = (0,0)}. Observe that T} differs
from T in that T is conditioned on starting at X(0) = (0,0). Let
E¢;, T 1,1y denote the expected time to hit state (k, [) for the first time
starting from state (7, j ). Let E[Ty] denote the expectation of Tj given
that X (0) is distributed according to the uniform stationary probability
distribution 7. Then
V-1
E.[Th] = Z (i, ) Ei, jyT(0,0)
7,7=0
V-1
= > wli.)EinTaw
i,j=0
VR—1y/m-1

= Z Z %ﬂ(i».i)E(i,])T(k,z)

i,j=0 k,I=0

(12)
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=1 A—1

= Z Z m (i, J)m(k, DEG 1 Tir,n (13)
2,7=0 k,l=0

=nlogn (14)

where (12) holds because Z” Eu.hTo,0) = Z” E¢; Tk, for any
0 < k,1 < /n—1 due to symmetry of states corresponding to cells
on the torus. The quantity in (13) is called the average hitting time
parameter and is known to be equal to n log n for the simple random
walk on the 2-D torus (see [1, p. 11 of ch. 5]).

Using Kac’s formula (see [1, Corollary 24, Ch. 2] and (14), we obtain

E[T?] = % =2n"logn + n.
Therefore, we obtain E[Z] = n and E[Z?] = ©(n?logn). d

Equipped with the above lemma, we are now ready to prove Lemma
4.

Proof of Lemma 4: An arrival occurs to Q3 when S and R
meet with probability 0.5. Let {X;} be the sequence of interarrival
times to this queue. Then, X; are i.i.d. with E[X,] = 2E[Z] = 2n
and E[X{] = O(E[Z?]) = ©(n*logn) from Lemma 6. The po-
tential-departure process is an i.i.d. Bernoulli process with parameter
1/1.5n. Let {Y;} be the sequence of service times then Y; is a
Geometric random variable with mean 1.5n. Hence E[Y:] = 1.5n
and E [Yf] = O(n?). By construction, the service process is inde-
pendent of the arrival process and hence Q3 is a GI/GI/1 FCFS queue.
Then, by Kingman’s upper bound [10] on the expected delay for a
GI/GI/1—FCFS queue, the expected delay of Qs is upper bounded as

E[X|+ E[Y?
E[D3] =0 (%)
_ n?logn + n”
o)
=0 (nlogn). (15)
O

A GI/GI/1 queue has i.i.d. interarrival times and i.i.d. service times.
But unlike Q3, Q4 is not a GI/GI/1 queue because the interpotential de-
parture times are i.i.d. and not the service times. As a result, Kingman’s
upper bound cannot be used. Instead we obtain an upper bound by
considering a queue sampled at potential departure instants and by ex-
ploiting the memorylessness of the interarrival times.

Proof of Lemma 5: Consider the service process of Q4, which is
1 at a potential departure instant and O otherwise. This is a stationary,
ergodic process since the interpotential-departure times are i.i.d. with
mean n. The Bernoulli arrival process to Q. is independent of the ser-
vice process with mean interarrival time 1.5n. Since the arrival and
service processes form a jointly stationary and ergodic process with
mean service time strictly less than mean interarrival time, the queue
has a stationary, ergodic distribution with finite expectation as shown
by [7]. Thus Q4 is stable.

Let @t be the number of packets in the queue in time-slot ¢ and let
(); be the number of packets in the queue at potential departure instant
i. Thus the process {(Q; } is obtained by sampling {Q.} at potential de-
parture instants. Let A; 1 be the number of arrivals between potential
departure instants 7 and 7 + 1. Then the evolution of (); is given by

Qiv1 = Qi — Lig,>0p + Aig1. (16)
Comparing the evolution of the process {Q; } with that of {Q; } shows
that {@;} also has a stationary, ergodic distribution. Let Z be the in-
termeeting time of any two nodes as defined earlier. Then since the ar-
rival process is Bernoulli and the interpotential departure times are i.i.d.
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with common distribution that of Z, it is clear the {A;} is a stationary
process. Let (), Q and A be random variables with the common sta-
tionary marginals of {Q:}, {Q.} and { A;}, respectively. Then taking
expectation in (16) under the stationary distribution, we obtain

P(Q > 0)= E[A]. a7)
The arrival process is i.i.d. Bernoulli and hence conditioned on Z, the
distribution of A is Binomial (Z, 2/3n). Since E[Z] = n from Lemma
6, we obtain

=z, (18)

E[A]=E[E[A|Z]]:E{ 4 ] 2

1.5n

Squaring (16), taking expectation, using the independence of (J); and
A;41 and then rearranging terms, we obtain

2(1— BA)E[Q] = P(Q > 0) + E[A%] — 2B[4]P(Q > 0). (19)

Using (17) and (18) in the above, we obtain

_ E[A]+ E[A%] - 2E[A]
HO= =" ey

:g <E[A2] - %) .

Recall that conditioned on Z the distribution of A is Binomial
(Z.2/3n) and hence

(20)

E[4*] = E[B[4*))]

=2 (B2 - Eiz)
=O(logn) @1
where we used Lemma 6. As a result it follows from (20) that
E[Q] = ©(logn) (22)

Next, we bound E[Q)] using F[Q)]. To this end, consider a time-slot
t and let the number of potential departures before time-slot ¢ be I(t).
Thus time-slot ¢ is flanked by potential departures I(¢) and I(¢) + 1.
Then @, < Q1) + Ar¢t)41. Also using the fact that {Qt} is ergodic,
with probability 1, we have

. ol -
E[Q] = lim Tkz:lczk

T—oo
1 I(T)+1
< Jim — Zj (QiZjr1 + Aj1 Zjt)
_ o I A1 1
Tl T T I +1
1(1)+1
X Z (QjZj+1 + Aj1Z511) (23)
7j=1
1 ,
= F7] (E[Q1Z2] + E[A1Z1]) (24)
— 1 (Fripa + i)
n 3n
=0O(logn) (25)

We used the fact that I(T") /T — 1/E[Z] by the elementary renewal
theorem [10] in (23) and the independence of (0; and Z,4:1 in (24).
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Now using Little’s formula, since the arrival rate is 2/3n, we conclude
that

E[D4] = E[AJE[Q] = %O(log n) = O(nlogn). O

VI. CONCLUSION

In this correspondence, we studied the maximal throughput scaling
and the corresponding delay scaling in a random mobile network with
restricted node mobility. In [2], it was shown that a particular mobility
restriction does not affect the throughput scaling. In this correspon-
dence, we showed that it does not affect delay scaling either. In partic-
ular, we show that delay scales as D(n) = O(n log n) for a network of
n nodes, which is the same as the delay scaling without any mobility
restriction. This was understood to be a consequence of the fact that
in spite of an apparent restriction, essentially node mobility remains
unchanged in the sense that: i) each node meets every other node for
O(1/n) fraction of the time with only ©(1) other neighboring nodes;
and ii) the intermeeting time of nodes has mean of O(n) and variance
of O(n?logn).
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CDMA Systems With Correlated Spatial Diversity: A
Generalized Resource Pooling Result

Laura Cottatellucci, Member, IEEE, and
Ralf R. Miiller, Senior Member, IEEE

Abstract—This correspondence analyzes the behavior of code-division
multiple-access (CDMA) systems with correlated spatial diversity. The
users transmit to one or more antenna arrays. The centralized receiver
employs a linear multiuser detector. We derive the performance of a
large system with random spreading sequences and weak assumptions on
the flat-fading channel gains—the fading may be correlated and contain
line-of-sight components. We show that, as the number of users and the
spreading factor grow large with fixed ratio, the performance of the system
is fully characterized by a square matrix with size equal to the number
of receiving antennas and multiuser efficiencies are not identical for all
users. Our general result includes the analysis of CDMA systems with
spatial diversity discussed by Hanly and Tse (’01) for independent channel
gains in case of both micro-diversity and macro-diversity and provides a
rigorous proof for the macro-diversity case missing in their work. We also
show that to any scenario with correlated Rayleigh fading, there exists
a macro-diversity scenario with independent Rayleigh fading which is
characterized by the same signal-to-interference-and-noise ratio (SINR).
Furthermore, sufficient conditions are given which force the multiuser
efficiencies of all users to become identical also in case of statistically
dependent channel gains.

Index Terms—Antenna array, code-division multiple access (CDMA),
correlated channels, large system analysis, line-of-sight components,
multiuser detection, random spreading, resource pooling, spatial diversity.

I. INTRODUCTION

Modeling of spreading matrices in code-division multiple-access
(CDMA) systems by random matrices has been extremely fruitful
from both the theoretical perspective of system analysis, see the
seminal works of [2], [3], and [4], and from the practical point of
view of receiver design, e.g., [5]. In the large system limit, as both the
transmitted signals & and the spreading factor N tend to infinity with
a fixed ratio, certain functions of random matrices show self-averaging
properties. This allows for the description of the system in terms of
few macroscopic system parameters and provides deep insights into
the system behavior. Modeling the spreading matrices as random
matrices, Hanly and Tse [1] analyzed a CDMA system consisting of
users transmitting to a multiuser receiver with spatial diversity. The
spatial diversity can be obtained by multiple antenna elements at a
single base station, or by combining of signals received at multiple
base stations. These two cases of spatial diversity are referred to as
micro-diversity and macro-diversity, respectively. This celebrated
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