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The Balanced Unicast and Multicast Capacity
Regions of Large Wireless Networks

Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract—We consider the question of determining the scaling
of the ��-dimensional balanced unicast and the ���-dimensional
balanced multicast capacity regions of a wireless network with �

nodes placed uniformly at random in a square region of area �

and communicating over Gaussian fading channels. We identify
this scaling of both the balanced unicast and multicast capacity
regions in terms of ����, out of �� total possible, cuts. These cuts
only depend on the geometry of the locations of the source nodes
and their destination nodes and the traffic demands between them,
and thus can be readily evaluated. Our results are constructive and
provide optimal (in the scaling sense) communication schemes.

Index Terms—Capacity region, capacity scaling, multicast, mul-
ticommodity flow, wireless networks.

I. INTRODUCTION

C HARACTERIZING the capacity region of wireless
networks is a long standing open problem in information

theory. The exact capacity region is, in fact, not known for even
simple networks like a three node relay channel or a four node
interference channel. In this paper, we consider the question of
approximately determining the unicast and multicast capacity
regions of wireless networks by identifying their scaling in
terms of the number of nodes in the network.

A. Related Work

In the last decade, exciting progress has been made towards
approximating the capacity region of wireless networks. We
shall mention a small subset of work related to this paper.

We first consider unicast traffic. The unicast capacity region
of a wireless network with nodes is the set of all simultane-
ously achievable rates between all possible source–destina-
tion pairs. Since finding this unicast capacity region of a wireless
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network exactly seems to be intractable, Gupta and Kumar pro-
posed a simpler but insightful question in [1]. First, instead of
asking for the entire -dimensional unicast capacity region of
a wireless network with nodes, attention was restricted to the
scenario where each node is source exactly once and chooses its
destination uniformly at random from among all the other nodes.
All these source–destination pairs communicate at the same
rate, and the interest is in finding the maximal achievable such
rate. Second, instead of insisting on finding this maximal rate
exactly, they focused on its asymptotic behavior as the number
of nodes grows to infinity.

This setup has indeed turned out to be more amenable to
analysis. In [1], it was shown that under random placement
of nodes in a given region and under certain models of com-
munication motivated by current technology (called protocol
channel model in the following), the per-node rate for random
source–destination pairing with uniform traffic can scale at
most as and this can be achieved (within poly-log-
arithmic factor in ) by a simple scheme based on multihop
communication. Many works since then have broadened the
channel and communication models under which similar results
can be proved (see, for example, [2]–[13]). In particular, under
the Gaussian fading channel model with a power-loss of
for signals sent over a distance of , it was shown in [12] that
in extended wireless networks (i.e., nodes are located in a
region of area ) the largest uniformly achievable per-node
rate under random source–destination pairing scales essentially
like .

Analyzing such random source–destination pairing with uni-
form traffic yields information about the -dimensional unicast
capacity region along one dimension. Hence, the results in [1]
and in [12] mentioned above provide a complete characteriza-
tion of the scaling of this one-dimensional slice of the capacity
region for the protocol and Gaussian fading channel models, re-
spectively. It is, therefore, natural to ask if the scaling of the
entire -dimensional unicast capacity region can be character-
ized. To this end, we describe two related approaches taken in
recent works.

One approach, taken by Madan et al. [14], builds upon the cel-
ebrated works of Leighton and Rao [15] and Linial et al. [16] on
the approximate characterization of the unicast capacity region
of capacitated wireline networks. For such wireline networks,
the scaling of the unicast capacity region is determined (within
a factor) by the minimum weighted cut of the network
graph. As shown in [14], this naturally extends to wireless net-
works under the protocol channel model, providing an approx-
imation of the unicast capacity region in this case.

Another approach, first introduced by Gupta and Kumar [1],
utilizes geometric properties of the wireless network. Specifi-
cally, the notion of the transport capacity of a network, which
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is the rate-distance product summed over all source–destination
pairs, was introduced in [1]. It was shown that in an extended
wireless network with nodes and under the protocol channel
model, the transport capacity can scale at most as . This
bound on the transport capacity provides a hyper-plane which
has the capacity region and origin on the same side. Through
a repeated application of this transport capacity bound at dif-
ferent scales [17], [18] obtained an implicit characterization of
the unicast capacity region under the protocol channel model.

For the Gaussian fading channel model, asymptotic upper
bounds for the transport capacity were obtained in [2] and [3],
and for more general distance weighted sum rates in [19].

So far, we have only considered unicast traffic. We now turn
to multicast traffic. The multicast capacity region of a wireless
network with nodes is the set of all simultaneously achievable
rates between all possible source–multicast-group pairs. In-
stead of considering this multicast capacity region directly, var-
ious authors have analyzed the scaling of restricted traffic pat-
terns under a protocol channel model assumption (see [20]–[24],
among others). For example, in [20], Li et al. obtained a scaling
characterization under a protocol channel model and random
node placement for multicast traffic when each node chooses
a certain number of its destinations uniformly at random. Inde-
pendently, in [21], Shakkottai et al. considered a similar setup
and also obtained the precise scaling when sources and their
multicast destinations are chosen at random. Both these results
assume a protocol channel model and are hence not informa-
tion-theoretic. Furthermore, they provide information about the
scaling of the -dimensional multicast capacity region only
along one particular dimension.

B. Our Contributions

Despite the long list of results, the question of approximately
characterizing the unicast capacity region under the Gaussian
fading channel model remains far from being resolved. In fact,
for Gaussian fading channels, the only traffic pattern that is well
understood is random source–destination pairing with uniform
rate. This is limiting in several aspects. First, by choosing for
each source a destination at random, most source–destination
pairs will be at a distance of the diameter of the network with
high probability, i.e., at distance for an extended net-
work. However, in many wireless networks, some degree of lo-
cality of traffic can be expected. Second, all source–destination
pairs are assumed to be communicating at uniform rate. Again,
in many settings we would expect nodes to be generating traffic
at widely varying rates. Third, each node is source exactly once,
and destination on average once. However, in many scenarios,
the same source node (e.g., a server) might transmit data to many
different destination nodes, or the same destination node might
request data from many different source nodes. All these het-
erogeneities in the traffic demands can result in different scaling
behavior of the performance of the wireless network than what
is obtained for random source–destination pairing with uniform
rate.

As is pointed out in the last section, even less is known about
the multicast capacity region under Gaussian fading. In fact,
the only available results are for the protocol channel model,
and even there only for special traffic patterns resulting from

randomly choosing sources and their multicast groups and as-
suming uniform rate. To the best of our knowledge, no informa-
tion-theoretic results (i.e., assuming Gaussian fading channels)
are available even for special traffic patterns.

We address these issues by analyzing the scaling of a broad
class of traffic, termed balanced traffic in the following, in a
wireless network of randomly placed nodes under a Gaussian
fading channel model. The notion of balanced traffic is a nat-
ural generalization of symmetric traffic, in which the data to be
transmitted from a node to a node is equal to the amount
of data to be transmitted from to . We analyze the scaling of
the set of achievable balanced unicast traffic (the balanced uni-
cast capacity region) and achievable balanced multicast traffic
(the balanced multicast capacity region). The balanced unicast
capacity region provides information about of the di-
mensions of the unicast capacity region; the balanced multicast
capacity region provides information about of the
dimensions of the multicast capacity region.

As a first set of results of this paper, we present an approxi-
mate characterization of the balanced unicast and multicast ca-
pacity regions. We show that both regions can be approximated
by a polytope with less than faces, each corresponding to a
distinct cut (i.e., a subset of nodes) in the wireless network. This
polyhedral characterization provides a succinct approximate de-
scription of the balanced unicast and multicast capacity regions
even for large values of . Moreover, it shows that only out of

possible cuts in the wireless network are asymptotically rel-
evant and reveals the geometric structure of these relevant cuts.

Second, we establish the approximate equivalence of the
wireless network and a wireline tree graph, in the sense that
balanced traffic can be transmitted reliably over the wireless
network if and only if approximately the same traffic can be
routed over the tree graph. This equivalence is the key com-
ponent in the derivation of the approximation result for the
balanced unicast and multicast capacity regions and provides
insight into the structure of large wireless networks.

Third, we propose a novel three-layer communication archi-
tecture that achieves (in the scaling sense) the entire balanced
unicast and multicast capacity regions. The top layer of this
scheme treats the wireless network as the aforementioned tree
graph and routes messages between sources and their destina-
tions—dealing with heterogeneous traffic demands. The middle
layer of this scheme provides this tree abstraction to the top layer
by appropriately distributing and concentrating traffic over the
wireless network—choosing the level of cooperation in the net-
work. The bottom layer implements this distribution and con-
centration of messages in the wireless network—dealing with
interference and noise. The approximate optimality of this three-
layer architecture implies that a separation based approach, in
which routing is performed independently of the physical layer,
is order-optimal. In other words, techniques such as network
coding can provide at most a small (in the scaling sense) multi-
plicative gain for transmission of balanced unicast or multicast
traffic in wireless networks.

C. Organization

The remainder of this paper is organized as follows. Section II
introduces the network model and notation. Section III presents
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our main results. We illustrate these results in Section IV
by analyzing various example scenarios with heterogeneous
unicast and multicast traffic patterns. Section V provides a high
level description of the proposed communication schemes.
Sections VI–VIII contain proofs. Finally, Sections IX and X
contain discussions and concluding remarks.

II. MODELS AND NOTATION

In this section, we discuss network and traffic models, and we
introduce some notational conventions.

A. Network Model

Consider the square region

and let be a set of nodes on .
Each such node represents a wireless device, and the nodes
together form a wireless network. This setting with nodes
on a square of area is referred to as an extended network.
Throughout this paper, we consider this extended network set-
ting. However, all results carry over for dense networks, where

nodes are placed on a square of unit area (see Section IX-E
for the details).

We use the same channel model as in [12]. Namely, the re-
ceived signal at node and time is

for all , where the are the signals
sent by the nodes in . We impose an average power con-
straint of 1 on the signal for every node .
The additive noise terms are independent and identi-
cally distributed (i.i.d.) circularly symmetric complex Gaussian
random variables with mean 0 and variance 1, and

for path-loss exponent , and where is the Euclidean
distance between and . As a function of , we
assume that are i.i.d.1 with uniform distribution on

. As a function of , we either assume that is
stationary and ergodic, which is called fast fading in the fol-
lowing, or we assume is constant, which is called slow
fading in the following. In either case, we assume full channel
state information (CSI) is available at all nodes, i.e., each node
knows all at time . This full CSI assumption is
rather strong, and so is worth commenting on. All the converse
results presented are proved under the full CSI assumption and

1It is worth pointing out that recent results [25] suggest that under certain
assumptions on scattering elements, for � � ��� �� and very large values of �,
the i.i.d. phase assumption does not accurately reflect the physical behavior of
the wireless channel. However, in follow-up work [26], the authors show that
under different assumptions on the scatterers, this assumption is still justified
in the � � ����� regime even for very large values of �. This indicates that
the issue of channel modeling for large networks in the low path-loss regime is
somewhat delicate and requires further investigation.

are, hence, also valid under more realistic assumptions on the
availability of CSI. Moreover, it can be shown that for achiev-
ability only 2-bit quantized CSI is necessary for path-loss expo-
nent and no CSI is necessary for to achieve
the same scaling behavior.

B. Traffic Model

A unicast traffic matrix associates with each
pair the rate at which node wants to
communicate to node . We assume that messages for distinct
source–destination pairs are independent. However, we
allow the same node to be source for multiple destinations, and
the same node to be destination for multiple sources. In other
words, we consider general unicast traffic. The unicast capacity
region of the wireless network is the collection
of achievable unicast traffic matrices, i.e., if and
only if every source–destination pair
can reliably communicate independent messages at rate .

A multicast traffic matrix associates with each
pair the rate at which node
wants to multicast a message to the nodes in . In other words,
all nodes in want to obtain the same message from . We
assume that messages for distinct source–multicast-group pairs

are independent. However, we allow the same node to
be source for several multicast-groups, and the same set of
nodes to be multicast destination for multiple sources. In other
words, we consider general multicast traffic. The multicast ca-
pacity region is the collection of achievable
multicast traffic matrices, i.e., if and only if
every source–multicast-group pair can reliably commu-
nicate independent messages at rate .

The following example illustrates the concept of unicast and
multicast traffic matrices.

Example 1: Assume , and label the nodes as
. Assume further node needs to transmit a message

to node at rate 1 bit per channel use, and an independent
message to node at rate 2 bits per channel use. Node

needs to transmit a message to node at rate 4 bits
per channel use. All the messages are inde-
pendent. This traffic pattern can be described by a unicast traffic
matrix with ,
and otherwise. Note that in this example node is
source for two (independent) messages, and node is desti-
nation for two (again independent) messages. Node in this
example is neither source nor destination for any message and
can be understood as a helper node.

Assume now that node needs to transmit the same mes-
sage to all nodes at a rate of 1 bit per
channel use, and an independent message to only node
2 at rate 2 bits per channel use. Node 2 needs to transmit a
message to both at rate 4 bits per channel use.
All the messages are independent.
This traffic pattern can be described by a multicast traffic ma-
trix with

, and otherwise. Note that in this
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Fig. 1. Square-grids with � � � � �. The grid at level � � � is the area
���� itself. The grid at level � � � is indicated by the dashed lines. The grid at
level � � � by the dashed and the dotted lines. Assume for the sake of example
that the subsquares are numbered from left to right and then from bottom to top
(the precise order of numbering is immaterial). Then, � ��� are all the nodes
� ���� � ��� are the nine nodes in the lower left corner (separated by dashed
lines), and � ��� are the three nodes in the lower left corner (separated by
dotted lines).

example node is source for two (independent) multicast mes-
sages, and node 2 and 3 are destinations for more than one mes-
sage. The message is destined for all the nodes in
the network and can, hence, be understood as a broadcast mes-
sage. The message is only destined for one node and can,
hence, be understood as a private message.

In the following, we will be interested in balanced traffic ma-
trices that satisfy certain symmetry properties. Consider a sym-
metric unicast traffic matrix satisfying for all
node pairs . The notion of a balanced traffic matrix
generalizes this idea of symmetric traffic.

Before we provide a precise definition of balanced traffic,
we need to introduce some notation. Partition into sev-
eral square-grids. The th square-grid divides into
squares, each of sidelength , denoted by .
Let be the nodes in (see Fig. 1). The
square grids in levels with2

will be of particular importance. Note that is chosen such
that

and, hence

while at the same time

as . In other words, the area of the region at
level grows to infinity as , but much slower
than .

2All logarithms are with respect to base 2.

A unicast traffic matrix is -balanced if

(1)

for all and . In other words,
for a balanced unicast traffic matrix the amount of traffic to the
nodes is not much larger than the amount of traffic from
them. In particular, all symmetric traffic matrices, i.e., satisfying

, are 1-balanced. Denote by the
collection of all -balanced unicast traffic matrices for some
fixed . In the following, we refer to traffic matrices

simply as balanced traffic matrices. The bal-
anced unicast capacity region of the wireless
network is the collection of balanced unicast traffic matrices that
are achievable, i.e.,

Note that (1) imposes at most linear inequality constraints,
and, hence, and coincide along at least
of total dimensions.

A multicast traffic matrix is -balanced if

(2)

for all . Thus, for -bal-
anced multicast traffic, the amount of traffic to the nodes
is not much larger than the amount of traffic from them. This
is the natural generalization of the notion of -balanced uni-
cast traffic to the multicast case. Denote by
the collection of all -balanced multicast traffic matrices for
some fixed . As before, we will refer to a multi-
cast traffic matrices simply as balanced mul-
ticast traffic matrices. The balanced multicast capacity region

of the wireless network is the collection of
balanced multicast traffic matrices that are achievable, i.e.,

Equation (2) imposes at most linear inequality constraints,
and, hence, and coincide along at least

of total dimensions.

C. Notational Conventions

Throughout, indicate strictly positive fi-
nite constants independent of and . To simplify notation, we
assume, when necessary, that large real numbers are integers and
omit and operators. For the same reason, we also sup-
press dependence on within proofs whenever this dependence
is clear from the context.

III. MAIN RESULTS

In this section, we present the main results of this paper.
In Section III-A, we provide an approximate (i.e., scaling)
characterization of the entire balanced unicast capacity region
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of the wireless network, and in Section III-B, we pro-
vide a scaling characterization of the entire balanced multicast
capacity region . In Section III-C, we discuss implica-
tions of these results on the behavior of the unicast and multicast
capacity regions for large values of . In Section III-D, we
consider computational aspects.

A. Balanced Unicast Capacity Region

Here, we present a scaling characterization of the complete
balanced unicast capacity region .

Define

(3)

and set

is the collection of all balanced unicast traffic matrices
such that for various cuts in the network, the total

traffic demand (in either one or both directions)

across the cut is not too big. Note that the number of cuts
we need to consider is actually quite small. In fact, there are at
most cuts of the form for ,
and there are cuts of the form for . Hence,

is described by at most cuts.
The next theorem shows that is approximately (in

the scaling sense) equal to the balanced unicast capacity region
of the wireless network.

Theorem 1: Under either fast or slow fading, for any ,
there exist

such that

with probability as .
We point out that Theorem 2 holds only with probability

for different reasons for the fast and slow fading cases.
Under fast fading, the theorem holds only for node placements
that are “regular enough”. The node placement itself is random,
and we show that the required regularity property is satisfied
with high probability as . Under slow fading, the the-
orem holds under the same regularity requirements on the node

Fig. 2. Set �� ��� approximates the balanced unicast capacity region
� ��� of the wireless network in the sense that � ����� ��� (with
� ��� � � ) provides an inner bound to � ��� and � ����� ���
(with � ��� � ����� ����) provides an outer bound to � ���. The figure
shows two dimensions (namely � and � ) of the � -dimensional set
� ���.

placement, but now it also only holds with high probability for
the realization of the fading .

Theorem 2 provides a tight scaling characterization of the en-
tire balanced unicast capacity region of the wireless
network as depicted in Fig. 2. The approximation is within a
factor . This factor can be further sharpened as is dis-
cussed in detail in Section IX-B.

We point out that for large values of path-loss exponent
the restriction to balanced traffic can be removed, yielding a

tight scaling characterization of the entire -dimensional uni-
cast capacity region . See Section IX-D for the details.
For , bounds on achievable rates for traffic that is not
balanced are discussed in Section IX-C.

B. Balanced Multicast Capacity Region

We now present an approximate characterization of the com-
plete balanced multicast capacity region .

Define

(4)

and set

The definition of is similar to the definition of
in (3). is the collection of all balanced multicast traffic
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matrices such that for various cuts in the net-
work, the total traffic demand (in either one or both directions)

across the cut is not too big. Note that, unlike in the definition
of , we count as crossing the cut if and

, i.e., if there is at least one node in the multicast
destination group that lies outside . The number of such
cuts we need to consider is at most , as in the unicast case.

The next theorem shows that is approximately (in
the scaling sense) equal to the balanced multicast capacity re-
gion of the wireless network.

Theorem 2: Under either fast or slow fading, for any ,
there exist

such that

with probability as .
As with Theorem 1, Theorem 2 holds only with probability

for different reasons for the fast and slow fading cases.
Theorem 2 implies that the quantity determines the
scaling of the balanced multicast capacity region . The
approximation is up to a factor as in the unicast case, and
can again be sharpened (see the discussion in Section IX-B).
As in the unicast case, for the restriction of balanced
traffic can be dropped resulting in a scaling characterization of
the entire -dimensional multicast capacity region .
The details can be found in Section IX-D. Similarly, we can
obtain bounds on achievable rates for traffic that is not balanced,
as is discussed in Section IX-C.

C. Implications of Theorems 1 and 2

Theorems 1 and 2 can be applied in two ways. First, the the-
orems can be used to analyze the asymptotic achievability of a
sequence of traffic matrices. Consider the unicast case, and let

be a sequence of balanced unicast traffic matrices
with . Define

i.e., is the largest multiplier such that the scaled
traffic matrix is contained in (and similar for

with respect to ). Then Theorem 1 provides

asymptotic information about the achievability of
in the sense that3

Theorem 2 can be used similarly to analyze sequences of bal-
anced multicast traffic matrices. Several applications of this ap-
proach are explored in Section IV.

Second, Theorems 1 and 2 provide information about the
shape of the balanced unicast and multicast capacity regions

and . Consider again the unicast case. We now
argue that even though the approximation of
is only up to scaling, its shape is largely preserved.

To illustrate this point, consider a rectangle

and let

where

for some , be its approximation. The shape of
is then determined by the ratio between and .

For example, assume . Then

i.e.,

and, hence, the approximation preserves the exponent of
the ratio of sidelengths of . In other words, if the two side-
lengths and differ on exponential scale (i.e., by a
factor for ) then this shape information is preserved
by the approximation .

Let us now return to the balanced unicast capacity region
and its approximation . We consider several

boundary points of and show that their behavior varies
at scale for various values of . From the discussion in the
previous paragraph, this implies that a significant part of the
shape of is preserved by its approximation .
First, let for some scalar depending only
on , and where is the matrix of all ones. If

then the largest achievable value of is
(by applying Theorem 1). Second, let

such that for only one source–des-
tination pair with and , other-
wise. Then , the largest achievable value of , satisfies

3We assume here that the limits exist; otherwise, the same statement holds for
��� ��� and ��� ��� .



NIESEN et al.: BALANCED UNICAST AND MULTICAST CAPACITY REGIONS 2255

. Hence, the boundary points of vary
at least from to , and this variation on
exponential scale is preserved by .

Again, a similar analysis is possible also for the multicast ca-
pacity region, showing that the approximate balanced multicast
capacity region preserves the shape of the balanced
multicast capacity region on exponential scale.

D. Computational Aspects

Since we are interested in large wireless networks, computa-
tional aspects are of importance. In this section, we show that the
approximate characterizations and in Theo-
rems 1 and 2 provide a computationally efficient approximate
description of the balanced unicast and multicast capacity re-
gions and , respectively.

Consider first the unicast case. Note that is a -di-
mensional set, and, hence, its shape could be rather complicated.
In particular, in the special cases where the capacity region is
known, its description is often in terms of cut-set bounds. Since
there are possible subsets of nodes, there are possible
cut-set bounds to be considered. In other words, the description
complexity of is likely to be growing exponentially in

. On the other hand, as was pointed out in Section III-A, the
description of is in terms of only cuts. This implies
that can be computed efficiently (i.e., in polynomial
time in ). Hence, even though the description complexity of

is likely to be of order , the description com-
plexity of its approximation is only of order —an
exponential reduction. In particular, this implies that member-
ship (and, hence, by Theorem 1, also the ap-
proximate achievability of the balanced unicast traffic matrix

) can be computed in polynomial time in the network size
. More precisely, evaluating each of the cuts takes at most

operations, yielding a -time algorithm for approx-
imate testing of membership in .

Consider now the multicast case. is a -dimen-
sional set, i.e., the number of dimensions is exponentially large
in . Nevertheless, its approximation can (as in the
unicast case) be computed by evaluating at most cuts. This
yields a very compact approximate representation of the bal-
anced multicast capacity region (i.e., we represent a
region of exponential size in as an intersection of only lin-
early many halfspaces—one halfspace corresponding to each
cut). Moreover, it implies that membership
can be computed efficiently. More precisely, evaluating each of
the cuts takes at most operations.
Thus, membership (and, hence, by Theorem
2, also the approximate achievability of the balanced multicast
traffic matrix ) can be tested in at most times more
operations than required to just read the problem parameters. In
other words, we have a linear time (in the length of the input)
algorithm for testing membership of a multicast traffic matrix

in and, hence, for approximate testing of mem-
bership in . However, this algorithm is not necessarily
polynomial time in , since just reading the input
itself might take exponential time in .

IV. EXAMPLE SCENARIOS

We next illustrate the above results by determining achievable
rates in a few specific wireless network scenarios with nonuni-
form traffic patterns.

Example 2: Multiple classes of source–destination pairs
There are classes of source–destination pairs for some

fixed . Each source node in class generates traffic at the same
rate for a destination node that is chosen randomly within
distance , for some fixed . Each node ran-
domly picks the class it belongs to. The resulting traffic matrix
is balanced (with ) with high probability, and ap-
plying Theorem 1 shows that , the largest achievable value
of , satisfies

with probability for all , and where

(5)

Hence, for a fixed number of classes , source nodes in each
class can obtain rates as a function of only the source–destina-
tion separation in that class.

Set , and note that is on the order of the expected
number of nodes that are closer to a source than its destination.
Then

Now is precisely the per-node rate that is achievable for
an extended network with nodes under random source–desti-
nation pairing [12]. In other words, the local traffic pattern here
allows us to obtain a rate that is as good as the one achievable
under random source–destination pairing for a much smaller
network.

Example 3: Traffic variation with source–destination sepa-
ration

Assume each node is source for exactly one destination,
chosen uniformly at random from among all the other nodes (as
in the traditional setting). However, instead of all sources gen-
erating traffic at the same rate, source node generates traffic
at a rate that is a function of its separation from destination ,
i.e., the traffic matrix is given by for some
function . In particular, let us consider

if
else

for some fixed and some depending only on . The
traditional setting corresponds to , in which case all
source–destination pairs communicate at uniform rate.

While such traffic is not balanced for small values of , the
results in Section IX-C, extending Theorem 1 to general traffic
that is not balanced, can be used to establish the scaling of ,
the largest achievable value of , as

if
else
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with probability . For , and noting that ,
this recovers the results from [12] for random source–destina-
tion pairing with uniform rate.

Example 4: Sources with multiple destinations
All the example scenarios so far are concerned with traffic in

which each node is source exactly once. Here, we consider more
general traffic patterns. There are classes of source nodes, for
some fixed . Each source node in class has destina-
tion nodes for some fixed and generates independent
traffic at the same rate for each of them (i.e., we still con-
sider unicast traffic). Each of these destination nodes is chosen
uniformly at random among the other nodes. Every node
randomly picks the class it belongs to. Noting that the resulting
traffic matrix is balanced with high probability, Theorem 1 pro-
vides the following scaling of the rates achievable by different
classes:

with probability for all . In other words, for each source
node time sharing between all classes and then (within each
class) between all its destination nodes is order-optimal
in this scenario. However, different sources are operating simul-
taneously.

Example 5: Broadcast
Consider a scenario with every node in the network

broadcasting an independent message to all other nodes at rate
. In other words, we have a multicast traffic matrix of

the form

if
else

for some . Applying the generalization in Section IX-C
of Theorem 2 yields that , the largest achievable ,
satisfies

as .

V. COMMUNICATION SCHEMES

In this section, we provide a high-level description of the
communication schemes used to prove achievability (i.e.,
the inner bound) in Theorems 1 and 2. In Section V-A, we
present a communication scheme for general unicast traffic,
in Section V-B, we show how this scheme can be adapted
for general multicast traffic. Both schemes use as a building
block a communication scheme introduced in prior work for a
particular class of traffic, called uniform permutation traffic. In
such uniform permutation traffic, each node in the network is
source and destination exactly once, and all these source–des-
tination pairs communicate at equal rate. For , the
order-optimal scheme for such uniform permutation traffic
(called hierarchical relaying scheme in the following) enables
global cooperation in the network. For , the order-optimal

Fig. 3. Construction of the tree graph �. We consider the same nodes as in
Fig. 1 with ���� � �. The leaves of � are the nodes � ��� of the wireless
network. They are always at level � � ���� � � (i.e., 3 in this example). At
level � � � � ���� in �, there are � nodes. The tree structure is the one
induced by the grid decomposition �� ���� as shown in Fig. 1. Level 0
contains the root node of �.

scheme is multihop routing. We recall these two schemes for
uniform permutation traffic in Section V-C.

A. Communication Scheme for Unicast Traffic

In this section, we present a scheme to transmit general uni-
cast traffic. This scheme has a tree structure that makes it conve-
nient to work with. This tree structure is crucial in proving the
compact approximation of the balanced unicast capacity region

in Theorem 1.
The communication scheme consists of three layers: A top

or routing layer, a middle or cooperation layer, and a bottom
or physical layer. The routing layer of this scheme treats the
wireless network as a tree graph and routes messages be-
tween sources and their destinations—dealing with heteroge-
neous traffic demands. The cooperation layer of this scheme
provides this tree abstraction to the top layer by appropri-
ately distributing and concentrating traffic over the wireless net-
work—choosing the level of cooperation in the network. The
physical layer implements this distribution and concentration
of messages in the wireless network—dealing with interference
and noise.

Seen from the routing layer, the network consists of a noise-
less capacitated graph . This graph is a tree, whose leaf nodes
are the nodes in the wireless network. The internal nodes
of represent larger clusters of nodes (i.e., subsets of )
in the wireless network. More precisely, each internal node in

represents a set for and
. Consider two sets and let

be the corresponding internal nodes in . Then and are
connected by an edge in if . Similarly,
for and corresponding internal node in , a leaf
node in is connected by an edge to if (re-
call that the leaf nodes of are the nodes in the wireless
network). This construction is shown in Fig. 3. In the routing
layer, messages are sent from each source to its destination by
routing them over . To send information along an edge of ,
the routing layer calls upon the cooperation layer.

The cooperation layer implements the tree abstraction .
This is done by ensuring that whenever a message is located
at a node in , it is evenly distributed over the corresponding
cluster in the wireless network, i.e., every node in the cluster
has access to a distinct part of equal length of the message.
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To send information from a child node to its parent in (i.e.,
towards the root node of ), the message at the cluster in
represented by the child node is distributed evenly among all
nodes in the bigger cluster in represented by the parent
node. More precisely, let be a child node of in , and
let be the corresponding subsets of .
Consider the cooperation layer being called by the routing
layer to send a message from to its parent over . In the
wireless network, we assume each node in has access
to a distinct fraction of the message to be sent.
Each node in splits its message part into four distinct
parts of equal length. It keeps one part for itself and sends the
other three parts to three nodes in . After
each node in has sent its message parts, each node
in now has access to a distinct fraction
of the message. To send information from a parent node to
a child node in (i.e., away from the root node of ), the
message at the cluster in represented by the parent node
is concentrated on the cluster in represented by the child
node. More precisely, consider the same nodes and in
corresponding to and in . Consider the
cooperation layer being called by the routing layer to send a
message from to its child . In the wireless network, we
assume each node in has access to a distinct
fraction of the message to be sent. Each node in sends
its message part to a node in . After each node in

has sent its message part, each node in now
as access to a distinct fraction of the message. To
implement this distribution and concentration of messages, the
cooperation layer calls upon the physical layer.

The physical layer performs the distribution and concentra-
tion of messages. Note that the traffic induced by the coop-
eration layer in the physical layer is very regular, and closely
resembles a uniform permutation traffic (in which each node
in the wireless network is source and destination once and all
these source–destination pairs want to communicate at equal
rate). Hence, we can use either cooperative communication (for

) or multihop communication (for ) for the
transmission of this traffic. See Section V-C for a detailed de-
scription of these two schemes. It is this operation in the phys-
ical layer that determines the edge capacities of the graph as
seen from the routing layer.

The operation of this three-layer architecture is illustrated in
the following example.

Example 6: Consider a single source–destination pair .
The corresponding operation of the three-layer architecture is
depicted in Fig. 4.

In the routing layer, the message is routed over the tree graph
between and (indicated in black in the figure). The middle

plane in the figure shows the induced behavior from using the
second edge along this path (indicated in solid black in the
figure) in the cooperation layer. The bottom plane in the figure
shows (part of) the corresponding actions induced in the phys-
ical layer. Let us now consider the specific operations of the
three layers for the single message between and . Since is
a tree, there is a unique path between and , and the routing
layer sends the message over the edges along this path. Consider

Fig. 4. Example operation of the three-layer architecture under unicast traffic.
The three layers depicted are (from top to bottom in the figure) the routing layer,
the cooperation layer, and the physical layer.

now the first such edge. Using this edge in the routing layer in-
duces the following actions in the cooperation layer. The node

, having access to the entire message, splits that message into
3 distinct parts of equal length. It keeps one part, and sends the
other two parts to the two other nodes in (i.e., lower left
square at level in the hierarchy). In other words, after
the message has traversed the edge between and its parent
node in the routing layer, all nodes in in the coopera-
tion layer have access to a distinct fraction of the original
message. The edges in the routing layer leading up the tree (i.e.,
towards the root node) are implemented in the cooperation layer
in a similar fashion by further distributing the message over the
wireless network. By the time the message reaches the root node
of in the routing layer, the cooperation layer has distributed
the message over the entire network and every node in has
access to a distinct fraction of the original message. Com-
munication down the tree in the routing layer is implemented in
the cooperation layer by concentrating messages over smaller
regions in the wireless network. To physically perform this dis-
tribution and concentration of messages, the cooperation layer
calls upon the physical layer, which uses either hierarchical re-
laying or multihop communication.

B. Communication Scheme for Multicast Traffic

Here, we show that the same communication scheme pre-
sented in the last section for general unicast traffic can also be
used to transmit general multicast traffic. Again it is the tree
structure of the scheme that is critically exploited in the proof
of Theorem 2 providing an approximation for the balanced mul-
ticast capacity region .

We will use the same three-layer architecture as for unicast
traffic presented in Section V-A. To accommodate multicast
traffic, we only modify the operation of the top or routing layer;
the lower layers operate as before.
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Fig. 5. Example operation of the routing layer in the three-layer architecture
under multicast traffic.

We now outline how the routing layer needs to be adapted
for the multicast case. Consider a multicast message that needs
to be transmitted from a source node to its set of
intended destinations . In the routing layer, we want
to route this message from to over . Since is a tree,
the routing part is simple. In fact, between and every
there exists a unique path in . Consider the union of all those
paths. It is easy to see that this union is a subtree of . Indeed,
it is the smallest subtree of that covers . Traffic is
optimally routed over from to by sending it along the
edges of this subtree.

The next example illustrates the operation of the routing layer
under multicast traffic.

Example 7: Consider one source node and the corre-
sponding multicast group as shown in
Fig. 5.

In the routing layer, we find the smallest subgraph
covering (indicated by black lines in Fig. 5). Mes-

sages are sent from the source to its destinations by routing them
along this subgraph. In other words, is the multi-
cast tree along which the message is sent from to . The
cooperation layer and physical layer operate in the same way as
for unicast traffic (see Fig. 4 for an example).

C. Communication Schemes for Uniform Permutation Traffic

Here, we recall communication schemes for uniform permu-
tation traffic on , i.e., each node is source and destination
exactly once and all these pairs communicate at uniform rate.
As pointed out in Sections V-A and V-B, these communication
schemes are used as building blocks in the communication ar-
chitecture for general unicast and multicast traffic.

The structure of the optimal communication scheme de-
pends drastically on the path-loss exponent . For
(small path-loss exponent), cooperative communication on
a global scale is necessary to achieve optimal performance.
For (large path-loss exponent), local communication
between neighboring nodes is sufficient, and traffic is routed
in a multihop fashion from the source to the destination. We
will refer to the order-optimal scheme for as hi-
erarchical relaying scheme, and to the order optimal scheme
for as multihop scheme. For a uniform permutation
traffic on , hierarchical relaying achieves a per-node rate
of ; multihop communication achieves a per-node
rate of . By choosing the appropriate scheme (hier-
archical relaying for , multihop for ), we can

thus achieve a per-node rate of . We provide
a short description of the hierarchical relaying scheme in the
following. The details can be found in [13].

Consider nodes placed independently and uniformly at
random on . Divide into

squarelets of equal size. Call a squarelet dense, if it contains a
number of nodes proportional to its area. For each source–desti-
nation pair, choose such a dense squarelet as a relay, over which
it will transmit information (see Fig. 6).

Consider now one such relay squarelet and the nodes that
are transmitting information over it. If we assume for the mo-
ment that the nodes within the relay squarelets could cooperate,
then between the source nodes and the relay squarelet we would
have a multiple access channel (MAC), where each source node
has one transmit antenna, and the relay squarelet (acting as one
node) has many receive antennas. Between the relay squarelet
and the destination nodes, we would have a broadcast channel
(BC), where each destination node has one receive antenna, and
the relay squarelet (acting again as one node) has many transmit
antennas. The cooperation gain from using this kind of scheme
arises from the use of multiple antennas for this MAC and BC.

To actually enable this kind of cooperation at the relay
squarelet, local communication within the relay squarelets
is necessary. It can be shown that this local communication
problem is actually the same as the original problem, but at a
smaller scale. Indeed, we are now considering a square of size

with equal number of nodes (at least order wise). Hence, we
can use the same scheme recursively to solve this subproblem.
We terminate the recursion after iterations, at which
point we use simple time-division multiple access (TDMA) to
bootstrap the scheme.

Observe that at the final level of the scheme, we have divided
into

squarelets. A sufficient condition for the scheme to succeed is
that all these squarelets are dense (i.e., contain a number of
nodes proportional to their area). However, much weaker con-
ditions are sufficient, as well; see [13].

For any permutation traffic, the per-node rate achievable with
this scheme is at least for any and under fast
fading. Under slow fading the same per-node rate is achievable
for all permutation traffic with probability at least

Moreover, when and for uniform permutation traffic
with a constant fraction of source–destination pairs at distance

(as is the case with high probability if the permutation
traffic is chosen at random), this is asymptotically the best uni-
formly achievable per-node rate.
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Fig. 6. Sketch of one level of the hierarchical relaying scheme. Here,
��� �� �� are three source–destination pairs. Groups of source–destina-
tion pairs relay their traffic over dense squarelets (shaded), which contain a
number of nodes proportional to their area. We time share between the different
relay squarelets. Within each relay squarelet the scheme is used recursively to
enable joint decoding and encoding at the relay.

VI. AUXILIARY LEMMAS

In this section, we provide auxiliary results, which will be
used several times in the following. These results are grouped
into three parts. In Section VI-A, we describe regularity proper-
ties exhibited with high probability by the random node place-
ment. In Section VI-B, we provide auxiliary upper bounds on
the performance of any scheme in terms of cut-set bounds. Fi-
nally, in Section VI-C, we describe auxiliary results on the per-
formance of hierarchical relaying and multihop communication
as described in Section V-C.

A. Regularity Lemmas

Here, we prove several regularity properties that are satisfied
with high probability by a random node placement. Formally,
define to be the collection of all node placements
that satisfy the following conditions:

for all

for

for

for all

where

and in each case . The first condition is that
the minimum distance between node pairs is not too small. The
second condition is that all squares of area 1 contain at most

nodes. The third condition is that all squares of area
contain at least one node. The fourth condition is that

all squares up to level contain a
number of nodes proportional to their area. Note that, since

this holds in particular for nodes up to level . The goal of
this section is to prove that

as .
The first lemma shows that the minimum distance in a random

node placement is at least with high probability.

Lemma 3:

as .
Proof: For , let

for some (depending only on ). Fix a node , then for

(the inequality being due to boundary effects). Moreover, the
events are independent conditioned on , and
thus

From this

Assuming , we have
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and, hence

which converges to zero for .

The next lemma asserts that if is not too large then all
squares for and
in the grid decomposition of contain a number of nodes
that is proportional to their area.

Lemma 4: If satisfies

then

as . In particular, this holds for

and for .
Proof: Let be the event that node lies in for fixed

. Note that

by definition, and that

Hence, using the Chernoff bound

for some positive constant , and we obtain, for

(6)

for some positive constant . By assumption

and, hence

as . Since the are nested as a function of , we
have

which, combined with (6), proves the first part of the lemma.
For the second part, note that for

we have

and, hence, the lemma is valid in this case. The same holds for
since

We are now ready to prove that a random node placement
is in with high probability as (i.e., is fairly

“regular” with high probability).

Lemma 5:

as .
Proof: The first condition

for all

holds with probability by Lemma 3. The second and
third conditions

for

for
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are shown in [12, Lemma 5.1] to hold with probability .
The fourth condition

for all

holds with probability by Lemma 4. Together, this
proves the result.

B. Converse Lemmas

Here, we prove several auxiliary converse results. The first
lemma bounds the maximal achievable sum rate for every indi-
vidual node (i.e., the total traffic for which a fixed node is either
source or destination).

Lemma 6: Under either fast or slow fading, for any ,
there exists such that for all

(7)

(8)

Proof: The argument follows the one in [12, Theorem
3.1]. Denote by the multiple-input multiple-output
(MIMO) capacity between nodes in and nodes in , for

. Consider first (7). By the cut-set bound [27,
Theorem 14.10.1]

is the capacity between and the nodes in ,
i.e.,

with

and where for the first inequality we have used that since ,
we have for all .

Similarly, for (8)

and

The next lemma bounds the maximal achievable sum
rate across the boundary out of the subsquares for

, and .

Lemma 7: Under either fast or slow fading, for any ,
there exists such that for all

, and , we
have

Proof: As before, denote by the MIMO capacity
between nodes in and nodes in . By the cut-set bound [27,
Theorem 14.10.1]

(9)

Let

be the matrix of channel gains between the nodes in and .
Under fast fading

and under slow fading

Denote by the nodes in that are within distance one
of the boundary between and . Using the generalized
Hadamard inequality yields that under either fast or slow fading

(10)

We start by analyzing the first term in the sum in (10). Ap-
plying Hadamard’s inequality again yields

Since , we have

By the same analysis as in Lemma 6, we obtain

for some constant (independent of ). Therefore

(11)
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We now analyze the second term in the sum in (10). The argu-
ments of [13, Lemma 12] (building on [12, Theorem 5.2]) show
that under either fast or slow fading there exists such
that for any

(12)

Moreover, using the same arguments as in [12, Theorem 5.2]
shows that there exists a constant such that for adjacent
squares (i.e., sharing a side)

(13)

Consider now two diagonal squares (i.e., sharing a corner point)
. Using a similar argument and suitably redefining

shows that (13) holds for diagonal squares as well.
Using this, we now compute the summation in (12). Consider

“rings” of squares around . The first such “ring” contains the
(at most) 8 squares neighboring . The next “ring” contains
at most 16 squares. In general, “ring” contains at most
squares. Let

be the squares in “ring” . Then

(14)

By (13)

(15)

Now note that for and , nodes and
are at least at distance . Moreover, since

, each has cardinality at most . Thus

(16)

for some , and where we have used that . Substi-
tuting (15) and (16) into (14) yields

and, hence, by (12)

(17)

Combining (9), (10), (11), and (17) shows that

for every , and under either
fast or slow fading.

The following lemma bounds the maximal achievable sum
rate across the boundary into the subsquares for

, and . Note that this lemma is
only valid for .

Lemma 8: Under either fast or slow fading, for any ,
there exists such that for all

, and , we
have

Proof: By the cut-set bound [27, Theorem 14.10.1]

(18)

Denote by the nodes in that are within distance one of
the boundary between and . Applying the generalized
Hadamard inequality as in Lemma 7, we have under either fast
or slow fading

(19)

for some positive constant .
For the second term in (19), we have by slightly adapting the

upper bound from Theorem 2.1 in [3]
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Now, consider and let be the distance of
from the closest node in . Using and

for some positive constant , and, hence

for some positive constant . Combined with (19) and (18),
this proves Lemma 8.

C. Achievability Lemmas

In this section, we prove auxiliary achievability results. Recall
that a permutation traffic is a traffic pattern in which each node
is source and destination exactly once. Call the corresponding
source–destination pairing a permutation
pairing. The lemma below analyzes the performance achievable
with either hierarchical relaying (for ) or multihop
communication (for ) applied simultaneously to transmit
permutation traffic in several disjoint regions in the network. See
Section V-C for a description of these communication schemes.

Lemma 9: Under fast fading, for any , there
exists such that for all

, and permutation
source–destination pairing on , there exists

such that

The same statement holds with probability as
in the slow fading case.

Consider the source–destination pairing with
as in Lemma 9. This is a permutation pairing, since

each is a permutation pairing on and since the
are disjoint. Lemma 9 states that every source–des-

tination pair in can communicate at a per-node rate of at
least . Note that, due to the locality
of the traffic pattern, this can be considerably better than the

per-node rate achieved by standard hierar-
chical relaying or multihop communication.

Proof: We shall use either hierarchical relaying (for
) or multihop (for ) to communicate within each

square . We operate every fourth of the simultaneously,
and show that the added interference due to this spatial re-use
results only in a constant factor loss in rate.

Consider first and fast fading. The squares at
level have an area of

In order to be able to use hierarchical relaying within each of the
, it is sufficient to show that we can partition each

into

squarelets, each of which contains a number of nodes propor-
tional to the area (see Section V-C). In other words, we partition

into squarelets of size

where we have assumed, without loss of generality, that .
Since , all these squarelets contain a number of nodes
proportional to their area, and, hence, this shows that all

are simultaneously regular enough for hierarchical relaying to
be successful under fast fading. This achieves a per-node rate of

(20)

for any (see Section V-C, or [13, Theorem 1]).
We now show that (20) holds with high probability also under

slow fading. For hierarchical relaying is successful under
slow fading for all permutation traffic on with probability at
least

for some positive constant (see again Section V-C). Hence,
hierarchical relaying is successful for all permutation traffic on

with probability at least

and, hence, hierarchical relaying is successful under slow fading
for all and all permutation traffic on every

with probability at least

as .
We now argue that the additional interference from spatial

re-use results only in a constant loss in rate. This follows from
the same arguments as in the proof of [13, Theorem 1] (with the
appropriate modifications for slow fading as described there).
Intuitively, this is the case since the interference from a square
at distance is attenuated by a factor , which, since , is
summable. Hence, the combined interference has power on the
order of the receiver noise, resulting in only a constant factor
loss in rate.
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Fig. 7. Communication graph � constructed in the proof of Theorem 1. Nodes
on levels � � ��� � � � � ���� � �� have four children each, nodes on level � �
���� have ��� � children each. The total number of leaf nodes is �,
one representing each node in the wireless network � ���. An internal node in
� at level � � ��� � � � � ����� represents the collection of nodes in � ��� for
some �.

For , the argument is similar—instead of hierarchical
relaying we now use multihop communication. For and
under either fast or slow fading, this achieves a per-node rate of

(21)

for any . Combining (20) and (21) yields the
lemma.

VII. PROOF OF THEOREM 1

The proof of Theorem 1 relies on the construction of a capac-
itated (noiseless, wireline) graph and linking its performance
under routing to the performance of the wireless network. This
graph is constructed as follows. is a full tree
(i.e., all its leaf nodes are on the same level). has leaves,
each of them representing an element of . To simplify no-
tation, we assume that , so that the leaves of are
exactly the elements of . Whenever the distinction is
relevant, we use for nodes in and for nodes
in in the following. The internal nodes of corre-
spond to for all ,
with hierarchy induced by the one on . In particular, let
and be internal nodes in and let and be
the corresponding subsets of . Then is a child node of
if .

In the following, we will assume , which holds
with probability as by Lemma 5. With this
assumption, nodes in at level have 4 children each,
nodes in at level have between and

children, and nodes in at level are
the leaves of the tree (see Fig. 7 above and Fig. 3 in Section V-A).

For , denote by the leaf nodes of the subtree of
rooted at . Note that, by construction of the graph

for some and . To understand the relation between
and , we define the representative of
as follows. For a leaf node of , let

For at level , choose such
that

This is possible since by assumption. Finally, for
at level , and with children , let

We now define an edge capacity for each edge
. If is a leaf of and its parent, set

(22)

If is an internal node at level in and its parent, then set

(23)

Having chosen edge capacities on , we can now define the
set of feasible unicast traffic matrices between
leaf nodes of . In other words, if messages at
the leaf nodes of can be routed to their destinations (which
are also leaf nodes) over at rates while respecting the
capacity constraints on the edges of . Define

We first prove the achievability part of Theorem 1. The next
lemma shows that if traffic can be routed over the tree then
approximately the same traffic can be transmitted reliably over
the wireless network.

Lemma 10: Under fast fading, for any , there exists
such that for any

The same statement holds for slow fading with probability
as .
Proof: Assume , i.e., traffic can be routed be-

tween the leaf nodes of at a rate , we need to show that
(i.e., almost the same flow can be reliably

transmitted over the wireless network). We use the three-layer
communication architecture introduced in Section V-A to estab-
lish this result.

Recall the three layers of this architecture: the routing, co-
operation, and physical layers. The layers of this communica-
tion scheme operate as follows. In the routing layer, we treat
the wireless network as the graph and route the messages be-
tween nodes over the edges of . The cooperation layer pro-
vides this tree abstraction to the routing layer by distributing and
concentrating messages over subsets of the wireless networks.
The physical layer implements this distribution and concentra-
tion of messages by dealing with interference and noise.

Consider first the routing layer, and assume that the tree ab-
straction can be implemented in the wireless network with
only a factor loss. Since by assumption, we
then know that the routing layer will be able to reliably transmit
messages at rates over the wireless network. We now
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show that the tree abstraction can indeed be implemented with
a factor loss in the wireless network.

This tree abstraction is provided to the routing layer by the
cooperation layer. We will show that the operation of the co-
operation layer satisfies the following invariance property: If a
message is located at a node in the routing layer, then
the same message is evenly distributed over all nodes in in
the wireless network. In other words, all nodes
contain a distinct part of length of the message.

Consider first a leaf node in , and assume the
routing layer calls upon the cooperation layer to send a message
to its parent in . Note first that is also an element
of , and it has access to the entire message to be sent over .
Since for leaf nodes , this shows that the invariance
property is satisfied at . The message is split at into
parts of equal length, and one part is sent to each node in
over the wireless network. In other words, we distribute the mes-
sage over the wireless network by a factor of . Hence, the
invariance property is also satisfied at .

Consider now an internal node , and assume the
routing layer calls upon the cooperation layer to send a mes-
sage to its parent node . Note that since all traffic in
originates at the leaf nodes of (which are the actual nodes in
the wireless network), a message at had to traverse all levels
below in the tree . We assume that the invariance property
holds up to the level of in the tree, and show that it is then
also satisfied at the level of . By the induction hypothesis, each
node has access to a distinct part of length .
Each such node splits its message part into four distinct parts
of equal length. Node keeps one part for itself, and sends the
other three parts to nodes in . Since , this
can be performed such that each node in obtains exactly
one message part. In other words, we distribute the message by
a factor four over the wireless network, and the invariance prop-
erty is satisfied at .

Operation along edges down the tree (i.e., towards the leaf
nodes) is similar, but instead of distributing messages, we now
concentrate them over the wireless network. To route a message
from a node with internal children to one of
them (say ) in the routing layer, the cooperation layer sends
the message parts from each to a corresponding
node in and combines them there. In other words, we
concentrate the message by a factor four over the wireless net-
work.

To route a message to a leaf node from its
parent in in the routing layer, the cooperation layer sends
the corresponding message parts at each node to over
the wireless network. Thus, again we concentrate the message
over the network, but this time by a factor of . Both these
operations along edges down the tree preserve the invariance
property. This shows that the invariance property is preserved
by all operations induced by the routing layer in the cooperation
layer.

Finally, to actually implement this distribution and concentra-
tion of messages, the cooperation layer calls upon the physical
layer. Note that at the routing layer, all edges of the tree can
be routed over simultaneously. Therefore, the cooperation layer
can potentially call the physical layer to perform distribution and

concentration of messages over all sets simultane-
ously. The function of the physical layer is to schedule all these
operations and to deal with the resulting interference as well as
with channel noise.

This scheduling is done as follows. First, the physical layer
time shares between communication up the tree and communi-
cation down the tree (i.e., between distribution and concentra-
tion of messages). This results in a loss of a factor in rate.
The physical layer further time shares between all the
internal levels of the tree, resulting in a further factor
loss in rate. Hence, the total rate loss by this time sharing is

(24)

Consider now the operations within some level
in the tree (i.e., for edge on this level,

neither nor is a leaf node). We show that the rate at which
the physical layer implements the edge is equal to

, i.e., only a small factor less than the capacity of
the edge in the tree . Note first that the distribution
or concentration of traffic induced by the cooperation layer to
implement one edge at level (i.e., between node levels and

) is restricted to for some . We can thus
partition the edges at level into such that for each

partitions . Time sharing between the four values of
yields an additional loss of a factor in rate. Fix one

such value of , and consider the operations induced by the
cooperation layer in the set corresponding to . We consider
communication up the tree (i.e., distribution of messages), the
analysis for communication down the tree is similar. For a
particular edge with the parent of , each node

has split its message part into four parts, three of
which need to be sent to the nodes in . Moreover,
this assignment of destination nodes in to is
performed such that no node in is destination more
than once. In other word, each node in is source exactly
three times and each node in is destination exactly
once. This can be written as three source–destination pairings

, on . Moreover, each such can
be understood as a subset of a permutation source–destination
pairing. We time share between the three values of (yielding
an additional loss of a factor in rate). Now, for each value
of , Lemma 9 shows that by using either hierarchical relaying
(for ) or multihop communication for , we
can communicate according to at a per-node rate
of

under fast fading, and with probability4 also under slow
fading. Since contains nodes, and accounting for
the loss (24) for time sharing between the levels in and the

4Note that Lemma 9 actually shows that all permutation traffic for every value
of � can be transmitted with high probability under slow fading. In other words,
with high probability all levels of � can be implemented successfully under
slow fading.
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additional loss of factors and for time sharing between
and , the physical layer implements an edge capacity for at

level of

Consider now the operations within level in
the tree (i.e., for edge on this level, is a leaf node). We
show that the rate at which the physical layer implements the
edge is equal to . We again consider only com-
munication up the tree (i.e., distribution of messages in the co-
operation layer), communication down the tree is performed in
a similar manner. The traffic induced by the cooperation layer at
level is within the sets for .
Consider now communication within one , and assume
without loss of generality that in the routing layer every node

needs to send traffic along the edge . In
the physical layer, we need to distribute a fraction
of this traffic from each node to every node in

. This can be expressed as source–des-
tination pairings, and we time share between them. Accounting
for the fact that only of traffic needs to be sent ac-
cording to each pairing and since , this results in a time
sharing loss of at most a factor

Now, using Lemma 9, all these source–destination pairings in
all subsquares can be implemented simultaneously at
a per node rate of

Accounting for the loss (24) for time sharing between the levels
in , the additional factor loss for time sharing within each

, the physical layer implements an edge capacity for at
level of

under either fast or slow fading.
Together, this shows that the physical and cooperation layers

provide the tree abstraction to the routing layer with edge
capacities of only a factor loss. Hence, if messages can be
routed at rates between the leaf nodes of , then messages
can be reliably transmitted over the wireless network at rates

. Hence

Noting that the factor is uniform in , this shows that

We have seen that the unicast capacity region of the
graph under routing is (appropriately scaled) an inner bound
to the unicast capacity region of the wireless network.
Taking the intersection with the set of balanced traffic matrices

yields that the same holds for and .
The next lemma shows that (with

as in the definition of in (1)) is an outer bound to
the approximate unicast capacity region of the wireless
network as defined in (3). Combining Lemmas 5, 10, and 11
below, yields that with high probability

proving the achievability part of Theorem 1.

Lemma 11: For any and any

where is the factor in the definition of in
(1).

Proof: We first relate the total traffic across an edge in
the graph to the total traffic across a cut for some and .

Consider an edge , and assume first that
connects nodes at level and in the tree with .
We slight abuse of notation, set

Note first that by (23) we have

(25)

Moreover, since is a tree, removing the edge from sepa-
rates the tree into two connected components, say .
Consider now the leaf nodes in . By the construction of the
tree structure of , these leaf nodes are either equal to or

for some . Assume without loss of gener-
ality that they are equal to . Then are the leaf nodes in

. Now since traffic is only assumed to be between leaf nodes
of , the total traffic demand between and is equal to

(26)

By the tree structure of , all this traffic has to be routed over
edge .

Consider now an edge connecting a node at level
and , i.e., a leaf node to its parent . Then, by (22)

(27)

The total traffic crossing the edge is equal to

(28)

We now show that

(29)
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Assume , then

for all , and

for all . Since is balanced, this implies that

for . By (25), (26), (27), and (28), we obtain that the
traffic demand across each edge of the graph is less than

times its capacity . Therefore, using that is a tree,
can be routed over , i.e., .

This proves (29).

We now turn to the converse part of Theorem 1. The next
lemma shows that (appropriately scaled) is an outer
bound to the unicast capacity region of the wireless
network. Taking the intersection with the collection of balanced
traffic matrices and combining with Lemma 5, this
shows that with high probability

proving the converse part of Theorem 1.

Lemma 12: Under either fast or slow fading, for any ,
there exists such that for any ,

Proof: Assume . By Lemma 7, we have for any
and

(30)

for some constant not depending on .
Consider now . Lemma 6 shows that

with constant not depending on and, therefore

(31)

Combining (30) and (31) proves that there exists
such that implies ,

proving the lemma.

VIII. PROOF OF THEOREM 2

Consider again the tree graph with leaf nodes
constructed in Section VII. As before, we con-

sider traffic between leaf nodes of . In particular, any mul-
ticast traffic matrix for the wireless network
is also a multicast traffic matrix for the graph . Denote by

the set of feasible (under routing) multicast
traffic matrices between leaf nodes of , and set

The next lemma shows that if multicast traffic can be routed
over then approximately the same multicast traffic can be
transmitted reliably over the wireless network. Taking the in-
tersection with implies that the same result holds also
for balanced traffic.

Lemma 13: Under fast fading, for any , there exists
such that for all

The same statement holds under slow fading with probability
as .

Proof: The proof follows using the same construction as in
Lemma 10.

We now show that, since is a tree graph, is an
inner bound (up to a factor ) to the the multicast capacity
region . The fact that is a tree is critical for this result
to hold.

Lemma 14: For any

where is the factor in the definition of in
(2).

Proof: Assume . Since is a tree, there
is only one way to route multicast traffic from to , namely
along the subtree induced by (i.e., the
smallest subtree of that covers ). Hence, for any
edge , the traffic that needs to be routed over
is equal to

Now, since , there exists such that

(32)

Let be the level of this edge in . We have

if
else

(33)



2268 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 5, MAY 2010

Assume first that and let be such that the removal
of the edge in disconnects the leave nodes in from the
ones in . Then we have

(34)

Assume then that , and assume separates the
leaf node from in . Then

(35)

If , then (32), (33), and (35) imply that
and, therefore, . If then,

since is -balanced, we have

(36)

Combining (32), (33), (34), and (36) shows that
for , as well.

Hence, we have shown that implies
, proving the lemma.

Combining Lemmas 13, and 14, and 5 shows that, with prob-
ability as

proving the inner bound in Theorem 2.
We now turn to the proof of the outer bound to . The

next lemma combined with Lemma 5, and taking the intersec-
tion with , proves the outer bound in Theorem 2.

Lemma 15: Under fast fading, for any , there exists
such that for all

The same statement holds under slow fading with probability
as .

Proof: We say that a unicast traffic matrix is compat-
ible with a multicast traffic matrix if there exists a mapping

such that , for
all , and

for all . In words, is compatible with if we can
create the unicast traffic matrix from by simply dis-

carding the traffic for the pair at all the nodes
.

Note that if and if is compatible with
then . Indeed, we can reliably transmit at rate
by using the communication scheme for and discarding all
the unwanted messages delivered by this scheme. Now consider
a cut with in the wireless network, and choose a
mapping such that

Since , we can apply Lemma 7 to obtain

with . Repeating the same argument for cuts
of the form and and using Lemma 6, shows that

. Noting that the term is uniform in yields that

concluding the proof of the lemma.

IX. DISCUSSION

We discuss several aspects and extensions of the three-layer
architecture introduced in Section V-C and used in the achiev-
ability parts of Theorems 2 and 1. In Section IX-A, we com-
ment on the various tree structures used in the three-layer ar-
chitecture. In Section IX-B we show that for certain values of

the bounds in the theorems can be significantly sharpened. In
Section IX-C, we discuss bounds for traffic that is not balanced.
In Section IX-D, we show that for large values of path-loss ex-
ponent these bounds are tight. Hence, in the large
path-loss regime the requirement of balanced traffic is not nec-
essary, and we obtain a scaling characterization of the entire uni-
cast and multicast capacity regions. In Section IX-E, we point
out how the results discussed so far can be used to obtain the
scaling of the unicast and multicast capacity regions of dense
networks (where nodes are randomly placed on a square of
unit area).

A. Tree Structures

There are two distinct tree structures that are used in the con-
struction of the three-layer communication scheme proposed in
this paper—one explicit and one implicit. These two tree struc-
tures appear in different layers of the communication scheme
and serve different purposes.

The first (explicit) tree structure is given by the tree uti-
lized in the routing layer and implemented in the cooperation
layer. The main purpose of this tree structure is to perform local-
ized load balancing. In fact, the distribution and concentration
of traffic is used to avoid unnecessary bottlenecks. Note that the
tree is used by the scheme for any value of .
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The second (implicit) tree structure occurs in the physical
layer. This tree structure appears only for . In this
regime, the physical layer uses the hierarchical relaying scheme.
It is the hierarchical structure of this scheme that can equiva-
lently be understood as a tree. The purpose of this second tree
structure is to enable distributed multiple-antenna communica-
tion, i.e., to perform cooperative communication.

B. Second-Order Asymptotics

The scaling results in Theorems 1 and 2 are up to a factor
and, hence, preserve information at scale for constant

(see also the discussion in Section III-C). Here, we examine
in more detail the behavior of this factor and show that
in certain situations it can be significantly sharpened.

Note first that the outer bounds in Theorems 1 and 2 hold up
to a factor , i.e., poly-logarithmic in . However, the
inner bounds hold only up to the aforementioned factor.
A closer look at the proofs of the two theorems reveals that the
precise inner bound is of order

where is the factor in the definition of and
[see (1) and (2)]. With a more careful analysis (see [13] for the
details), this can be sharpened to essentially

The exponent in the inner bound has two causes.
The first is the use of hierarchical relaying (for ). The
second is the operation of the physical layer at level

of the tree (i.e., to implement communication between the
leaf nodes of and their parents). Indeed at that level, we are
operating on a square of area

and the loss is essentially inversely proportional to that area.
Now, the reason why can not be chosen to be larger (to
make this loss smaller), is because hierarchical relaying requires
a certain amount of regularity in the node placement, which can
only be guaranteed for large enough areas.

This suggests that for the regime, where multihop com-
munication is used at the physical layer instead of hierarchical
relaying, we might be able to significantly improve the inner
bound. To this end, we have to choose more levels in the tree

, such that at the last level before the tree nodes, we are op-
erating on a square that has an area of order . Changing
the three-layer architecture in this manner, and choosing
appropriately, for the inner bound can be improved to

in . Combined with the poly-logarithmic outer
bound, this yields a approximation of the balanced
unicast and multicast capacity regions for .

C. Nonbalanced Traffic

Theorems 1 and 2 describe the scaling of the balanced unicast
and multicast capacity regions and , respec-
tively. As we have argued, the balanced unicast region

coincides with the unicast capacity region along at least
out of total dimensions, and the balanced multicast

region coincides with the multicast capacity region
along at least out of total dimensions.

However, the proofs of these results provide also bounds for
traffic that is not balanced, i.e., for the remaining dimen-
sions.

Define the following two regions:

and

and differ in that for
only bounds traffic flow out of , whereas
bounds traffic in both directions across (and

similar for and ).
The analysis in Sections VII and VIII shows that

with probability as . In other words, we obtain
an inner and an outer bound on the capacity regions
and . These bounds coincide in the scaling sense for
balanced traffic, for which we recover Theorems 1 and 2.

D. Large Path-Loss Exponent Regime

The discussion in Section IX-C reveals that in order to obtain
scaling information for traffic that is not balanced, a stronger



2270 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 5, MAY 2010

version of the converse results in Lemma 7 is needed. In partic-
ular, Lemma 7 bounds the sum-rate

for . The required stronger version of the lemma
would also need to bound sum rates in the other direction, i.e.,

For large path-loss exponents , such a stronger version
of Lemma 7 holds (see Lemma 8). With this, we obtain that for

with probability as . In other words, in the high
path-loss exponent regime and char-
acterize the scaling of the entire unicast and multicast capacity
regions, respectively.

E. Dense Networks

So far, we have only discussed extended networks, i.e.,
nodes are located on a square of area . We now briefly sketch
how these results can be recast for dense networks, in which
nodes are located on a square of unit area.

Note first that by rescaling power by a factor , a dense
network with any path-loss exponent can essentially be trans-
formed into an equivalent extended network with path-loss ex-
ponent . In particular, any scheme for extended networks with
path-loss exponent yields a scheme with same performance
for dense networks with any path-loss exponent (see also [12,
Section V-A]). To optimize the resulting scheme for the dense
network, we start with the scheme for extended networks corre-
sponding to close to 2. Hence an inner bound for the unicast
and multicast capacity regions for dense networks with path-loss
exponent can be obtained from the ones for extended networks
by taking a limit as . Moreover, an application of Lemma
6 yields a matching (in the scaling sense) outer bound.

The resulting approximate balanced capacity regions
and have particularly simple shapes in this

limit. In fact, the only constraints in (3) and (4) that can be tight
are at level . Moreover, as in Section IX-D, it can be
shown that the restriction of balanced traffic is not necessary
for dense networks. This results in the following approximate
capacity regions for dense networks:

for unicast, and

for multicast. We obtain that for dense networks, for any

with probability as .

X. CONCLUSION

In this paper, we have obtained an explicit information-theo-
retic characterization of the scaling of the -dimensional bal-
anced unicast and -dimensional balanced multicast capacity
regions of a wireless network with randomly placed nodes and
assuming a Gaussian fading channel model. These regions span
at least and dimensions of and ,
respectively, and, hence, determine the scaling of the unicast ca-
pacity region along at least out of dimensions and the
scaling of the multicast capacity region along at least
out of dimensions. The characterization is in terms of
weighted cuts, which are based on the geometry of the locations
of the source nodes and their destination nodes and on the traffic
demands between them, and thus can be readily evaluated.

This characterization is obtained by establishing that the uni-
cast and multicast capacity regions of a capacitated (wireline,
noiseless) tree graph under routing have essentially the same
scaling as that of the original network. The leaf nodes of this
tree graph correspond to the nodes in the wireless network, and
internal nodes of the tree graph correspond to hierarchically
growing sets of nodes.

This equivalence suggests a three-layer communication ar-
chitecture for achieving the entire balanced unicast and multi-
cast capacity regions (in the scaling sense). The top or routing
layer establishes paths from each of the source nodes to its des-
tination (for unicast) or set of destinations (for multicast) over
the tree graph. The middle or cooperation layer provides this tree
abstraction to the routing layer by distributing the traffic among
the corresponding set of nodes as a message travels up the tree
graph, and by concentrating the traffic on to the corresponding
set of nodes as a message travels down the tree. The bottom or
physical layer implements this distribution and concentration of
traffic over the wireless network. This implementation depends
on the path-loss exponent: For low path loss, , hi-
erarchical relaying is used, while for high path loss ,
multihop communication is used.
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This scheme also establishes that a separation based ap-
proach, in which the routing layer works essentially inde-
pendently of the physical layer, can achieve nearly the entire
balanced unicast and multicast capacity regions in the scaling
sense. Thus, for balanced traffic, such techniques as network
coding can provide at most a small increase in the scaling.

ACKNOWLEDGMENT

The authors would like to thank D. Tse, G. Wornell, and
L. Zheng for helpful discussions, and the anonymous reviewers
for their help in improving the presentation of this paper.

REFERENCES

[1] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[2] L.-L. Xie and P. R. Kumar, “A network information theory for wireless
communication: Scaling laws and optimal operation,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 748–767, May 2004.
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