
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011 891

Reduction of Variation-Induced Energy Overhead in
Multi-Core Processors

Nigel Drego, Member, IEEE, Anantha Chandrakasan, Fellow, IEEE, Duane Boning, Fellow, IEEE,
and Devavrat Shah, Member, IEEE

Abstract—Core-to-core variability in future many-core chip
multi-processors (CMPs) negatively impacts energy. Under-
performing cores necessitate increasing the system voltage to
maintain homogeneous core performance, introducing an energy
overhead. Multiple supply voltages can be used to mitigate the
impact of delay variation in CMPs. In this paper, we carefully
analyze the use of a local search algorithm to pick near-optimal
supply voltages while meeting a fixed performance target. With
two system voltages, we prove our algorithm selects the global op-
timum and in the more general multiple voltage case we develop
quantitative bounds. Using a custom simulation methodology on a
real processor core, we show that two system voltages provide the
most incremental benefit, reducing the energy overhead relative
to a single voltage by 59–75% and total energy by 6–16%.
Additionally, the worst 5–15% of cores in such systems necessitate
increasingly larger amounts of incremental energy for a constant
incremental performance gain. Therefore, turning off or disabling
these cores is beneficial to a joint performance-energy metric.

Index Terms—Delay measurement, digital circuits, spatial
correlation, variation.

I. Introduction

THE tradeoffs between mitigating performance variability
and other key product metrics are increasingly complex.

In general, most proposed and implemented variation miti-
gation techniques involve tradeoffs between die area, design
complexity, power, cost and yield, making evaluation of any
technique a difficult, multi-dimensional problem. In the con-
text of multi-core processors, mitigating variation becomes
non-trivial in scope and complexity. Nevertheless, effective
management of variation at this level is critical, as high-
performance multi-core processors, in which power and vari-
ation are intricately linked, are expected to scale to many tens
if not hundreds or thousands of cores per die. In such systems,
core-to-core frequency variations will arise due to underlying
process variation.

Manuscript received February 19, 2010; revised August 26, 2010 and
November 30, 2010; accepted December 17, 2010. Date of current version
May 18, 2011. This paper was recommended by Associate Editor S. Vrudhula.

N. Drego is with PDF Solutions, San Jose, CA 95110 USA (e-mail:
ndrego@mtl.mit.edu).

A. Chandrakasan, D. Boning, and D. Shah are with the Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: anantha@mtl.mit.edu;
boning@mtl.mit.edu; devavrat@mit.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2102431

Discussions with computer architects reveal that both archi-
tects and operating system designers value operating frequency
homogeneity at the system level unless the cost of ensuring
it is too high. If this is the case, solutions such as factored
operating systems, where each core runs an OS servlet and
shields software from underlying core differences [1], and
self-aware software capable of detecting a core’s power and
performance state through a variety of hardware sensors,
have been proposed. However, the value of homogeneity is
believed to be greater than software solutions, if core-to-core
performance variation lies in the range of 20–50%.

To ensure homogenous core frequencies, a number of tech-
niques might be employed, including increasing device sizes,
error detection and correction (e.g., error-correcting codes used
in SRAMs, razor flip-flops [2]), asynchronous architectures,
lowering clock frequencies, increasing the system voltage level
[Fig. 1(b)] and providing each core its own voltage [Fig. 1(d)].
However, all have tradeoffs that must be considered.

The above list is by no means exhaustive, but any of these
solutions includes significant undesirable components, most
often in the form of increased power dissipation. Bowman
et al. showed that 31–53% additional power/energy is neces-
sary to overcome the impact of process variation at the 50
nm technology node, if voltage scaling is used to maintain
performance over the nominal case of no variation [3]. In
justifying the push to thousand-core processors, Borkar ac-
knowledges that fine-grain power management is necessary to
fit these processors within the desired power envelopes [4].
For design and power delivery simplicity, Borkar suggests
using two voltage supplies such that a core operates at either a
frequency, f , or f/2 and uses the lower voltage when operating
at f/2.

This paper undertakes reduction in the energy required to
cope with variability in massively parallel multi-core pro-
cessors by introducing additional, optimally-chosen, power-
supply voltages. We begin in Section II by evaluating related
work in the field. In Section III we mathematically define
the concept of “variation-induced energy overhead,” formulate
the problem to be solved, and provide an algorithm capable
of efficiently solving this problem. We next describe our
simulation methodology, in Section V, to efficiently simulate
energy savings on a hypothetical one-thousand core processor.
Section VI demonstrates reduction in the energy overhead
of this processor by 59–75% and further shows that turning
off some number (5–15%) of the worst performing cores

0278-0070/$26.00 c© 2011 IEEE

892 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

Fig. 1. Block diagram of a CMP with each core able to select from N voltages and example core voltages, with normalized energies, to meet a performance
constraint. (a) CMP block diagram. (b) N = 1, E = 1.23. (c) N = 2, E = 1.083. (d) N = Ncore, E = 1. (e) Voltage scale.

benefits a joint performance-energy metric. Finally, we address
practical considerations and future enhancements to this paper
in Section VII and conclude in Section VIII.

II. Related Work

Most prior work in this area has focused on various aspects
of power reduction under latency constraints through static
voltage scheduling at the gate level [5], [6], [7], [8], [9], [10].
Dynamic voltage scheduling has also been studied heavily as
evidenced by the works of [11], [12], [13]. However, none of
these works consider process variation in their formulations.
Most recently, Liang et al. used voltage interpolation at the
gate or pipeline level to mitigate process variability [14]. Volt-
age interpolation at this level has the potential to considerably
reduce energy consumption, even more so than at the core
level, but requires many power-multiplexers (as many as one
per gate) and selection of the best combination of power-mux
settings from possibly hundreds of combinations.

Marculescu et al. included process variability in the context
of heterogeneous blocks in an embedded application that
together must meet some latency constraint [15]. Each block
is a voltage/frequency island and the optimal voltages and
frequencies for islands are solved for. This is not readily
applied to the problem of homogeneous cores in a CMP. A
similar approach is taken by Stefano et al. in [16] in dividing
a single core, pipelined design into multiple voltage islands to
mitigate process variation.

Humenay et al. explored the impact of variation on core-
to-core frequencies and showed that adaptive voltage scaling
can aid in reducing core-to-core frequency scaling but only
consider the case of each core having its own unique fre-
quency [17]. Donald et al. also explored core-to-core variation
in frequency and proposed allowing the system to turn off
cores if the additional power consumed by the core is higher
than a proposed metric [18]. In addition to adding system
power-supply voltages, we also investigate turning off or
disabling cores in Section VI-C, based on a joint performance-
energy metric.

III. Mitigation Strategy: Multiple Power-Supply

Voltages

We tackle the combined power and variability problem
in generic multi-core processors with the introduction of
one or more additional power-supply voltages to the system
[Fig. 1(c)]. Specifically, we go beyond Borkar’s suggestion of

two system voltages, as we focus on efficient selection of the
optimal value of a vector of power-supply voltages whereby
each core of a chip multi-processor (CMP) is assigned a single
voltage from within the vector in order to minimize total
chip energy while meeting performance (frequency) and yield
constraints. This vector is unique to an individual CMP and
is computed during test after each core has been characterized
to determine the core distribution for that CMP.

Given the near certainty with which we can expect variation
to impact large multi-core processors, we will define the
“variation-induced energy overhead” as the energy required
over and above that when an ideal mitigation solution, such as
individual core voltages, is used (Eideal). Mathematically, this
can be defined as E−Eideal

Eideal
. Simulations on a RAW processor

core [19] ported to the 45 nm technology node show this can
be 20% or more, depending on the amount of variation, if
a single system voltage is simply scaled upward to account
for the worst performing core. Though not as pessimistic
as predicted by Bowman, this magnitude of power/energy
overhead is large enough to warrant more efficient solutions.

In this section, we formulate an analytic approach and
provide an efficient iterative algorithm to find good power-
supply vector values. When the vector is composed of only
two voltages (N = 2), we prove there is only a single optimum,
and we provide an efficient mathematical formulation for
finding the optimum. When the vector contains more than two
voltages (N > 2), the algorithm utilizes the N = 2 case to
find local optima. Quantitative bounds on the performance are
also formulated, and we qualitatively show that our algorithm
behaves according to the derived bounds.

A. Problem Formulation

Energy in a multicore processor is computed as the sum
of the individual core energies plus any shared resources, as
shown in (1), where NCore is the total number of cores on chip.
The individual energy/operation of each core is shown in (2),
where Ci is the effective switched capacitance in the core and
T is the cycle time required to complete an operation

E =
NCore∑
i=1

Ei + Eshared (1)

Ei = Edyni
+ Eleaki

= CiV
2
DD + Ileaki

VDDT. (2)

The minimum cycle-time achievable by a core is a function of
power-supply voltage and can be expressed as in (3), where
K and VT are parameters determined by the critical path in

DREGO et al.: REDUCTION OF VARIATION-INDUCED ENERGY OVERHEAD IN MULTI-CORE PROCESSORS 893

Fig. 2. Variation in core leakage currents reduces to << 1% with even
moderate core size.

the design and are subject to variation. α is a technology-
dependent parameter

T =
KVDD

(VDD − VT)α
. (3)

Before continuing with further formulation of the problem,
we list some assumptions. Specifically, we assume a high-
performance CMP, leading to the following assumptions.

1) Eshared is the energy of shared caches, I/O and other pe-
ripheral circuit blocks surrounding the processor cores.
Many, if not all, of these blocks have their own power-
supplies separate from the processor cores. As a result,
modifications in how the cores are powered do not, to
first order, affect this component and will be omitted in
the following analysis.

2) For simplicity, we treat Ci as a constant. While the
workload may vary from core to core, the total ca-
pacitance in a core is the sum of millions or more
individual capacitances. When accounting for aggregate
variation, summation typically reduces variation in Ci

due to averaging of random variation.
3) Similarly, due to the large number of transistors per core,

the variance in leakage current (Ileaki
) per core is small

and can be treated as a constant across all cores. Fig. 2
illustrates this, showing that the relative variation in core
leakage currents is inversely proportional to the square
root of the number of transistors in the core.

However, Eleaki
does have a strong dependence on voltage

and this must be captured as different voltages are used for
different cores. Rather than modeling Ileaki

with the typi-

cal exponential function (Ileaki
= Ioe

VDD−VT
nVth), which would

complicate the ensuing math, we use the simpler assumption
that the leakage energy is a constant proportion of the total
energy [20]: Eleaki

≈ βEdyni
, where β is constant across all

cores—consistent with the above assumption that the leakage
current variance is small. Modeling leakage energy in this
manner amounts to a linearization of the exponential model,
so Ileak ∝ VDD ⇒ Eleak ∝ V 2

DD. Since the optimal voltages for
each core do not deviate much more than 50–100 mV from the
nominal voltage, this linearization is acceptable. Furthermore,

with technology improvements and innovation in power-saving
techniques, leakage energy as a fraction of total energy has
reduced from 30% to 10–15% in state-of-the-art multi-core
processors [21], [22], [23], [24]. Simulations of individual
gates and paths with the 45 nm PTM models used in this work
(Section V) show β values as high as 7% for the frequencies
of interest.

With these assumptions, (2) is now simplified to

Ei = Edyni
+ βEdyni

= (1 + β) CV 2
DD. (4)

Our goal is to minimize E subject to both yield and
performance constraints. In particular, we wish to minimize
E such that some fraction of the cores, 0 ≤ yo ≤ 1, in a CMP
achieve a certain minimum frequency (maximum delay) of
operation, fmin. Mathematically, for any CMP, independent of
other CMPs, we wish to achieve the following minimization:

minimize E

subject to y = yo

where the core yield, y, is defined as follows. A core is
labeled “acceptable” if its frequency of operation for a given
voltage, fi(V), is greater than or equal to the constraint, fmin.
Otherwise, it is unacceptable

Ai
def
=

{
1, if fi(V) ≥ fmin

0, otherwise.
(5)

The summation of Ai over all cores gives the number of
acceptable cores

NAcc =
NCore∑
i=1

Ai. (6)

And finally, the core yield, y, of an individual CMP is the
number of acceptable cores divided by the total number of
cores, which must be equal to the yield constraint

y =
NAcc

NCore
= yo. (7)

These constraints can be achieved by allowing each core
to select its own minimum power-supply voltage, denoted by
Vi,min, so that fi(Vi,min) = fmin, as shown in Fig. 1(d). This
is the case where we have as many supply voltages as we
have cores, N = NCore. However, this solution introduces the
substantial overhead of having an on-chip DC-DC converter
for each core. Instead, we can use a smaller number of power-
supply voltages (N << NCore), as shown in Fig. 1(c), and
attempt to minimize the energy in such a case.

B. Incorporating Process Variation

We will now describe how process variation is accounted
for in this problem formulation. As defined above, Vi,min is the
minimum voltage required for core i such that all cores operate
at the desired frequency, fmin, and provide a homogeneous
view at the system level (fi = fmin, ∀i). Core-to-core frequency
variation, a symptom of underlying process variation, will
result in a distribution of Vi,min’s, represented by f (Vmin) as
illustrated in Fig. 3 (grey region in background, left axis),
which describes the probability that a core requires Vmin to
operate at the desired frequency. The cumulative distribution

894 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

Fig. 3. Example Vmin distribution and discretization for 1K-core RAW processor based CMP. The variability-induced energy overhead is drastically reduced
as more system voltages are added.

function (CDF), F (Vmin), is the fraction of cores that can
successfully use Vmin. As such, using only N voltages and
combined with the assumptions mentioned above, the total
energy we wish to minimize is

EN = (1 + β) CNCoreV
2
1 F (V1)

+ (1 + β) CNCore

N∑
i=2

V 2
i

[
F (Vi) − F (Vi−1)

]
(8)

where the first term accounts for the energy of all cores
that can successfully use V1 and the term under summation
accounts for the energy of cores that can successfully use Vi

since F (Vi) − F (Vi−1) is the fraction of cores using Vi.
The equation above amounts to a discretization of the

second moment of the distribution, because as N → ∞, and
the voltages are spaced infinitesimally close to each other,
EN reduces to Eideal = (1 + β) CNCore

∫
V 2f (V)dV . As we

do not have an infinite number of voltages, we depict this
in Fig. 3 with the solid black curve representing Eideal for
N = NCore, the cumulative energy1 that would be required
if every core were assigned its associated Vi,min. By using
fewer than NCore voltages, the energy curve is discretized, with
voltage placements (computed using the algorithm presented
in the following section) at the positions indicated by the
dashed lines. This is similar to approximating a continuous
integral by partitioning the interval and using Reimann sums
of finite subintervals (distance between dashed lines of the
same color). However, in this case the Eideal curve is a lower
bound, as each core must be provided a voltage greater than
or equal to its minimum required voltage. Performing this
discretization, we see that using only one voltage (red upper-
pointing triangle) results in the greatest overhead (nearly 17%
in this example), or worst approximation of the Eideal curve.
Increasing the number of voltages results in successively better
approximations, and with ten voltages (light blue squares), the
energy overhead is tiny.

1(1 + β), C and NCore are normalized out due to normalizing all energies to
the case of Eideal.

Using both (8) and Fig. 3, we see that to meet a core
yield constraint, y = yo, we should pick VN such that it
satisfies VN = F−1(yo), where F−1(y) is the inverse cumulative
distribution function. In this paper, we use a Gaussian distri-
bution function and its associated CDF due to relative ease of
analysis compared to other distribution functions. Furthermore,
despite NCore < ∞, we use a continuous rather than discrete
distribution, as the ensuing math is made more tractable. Both
approximations introduce only small error, as will be shown
in Section VI-A.

C. Energy Minimization

Although Fig. 3 included voltage placements that minimized
total energy for the given number of voltages being used, we
did not discuss how a particular vector of voltages is chosen.
To choose a vector of voltages that minimizes energy, we
use a very simple, but highly efficient iterative algorithm. We
first present the algorithm and then qualitatively discuss the
performance of the algorithm.

1) Minimum-Energy Voltage Selection Algorithm: When
choosing a vector, V ∗, of N voltages (V1 < V2 < ... < VN−1 <

VN), VN is chosen to meet a core yield constraint as discussed
above, so we need only choose the other N − 1 voltages.
We use the minimum-energy voltage selection (MEVS) algo-
rithm shown in Algorithm 1—effectively a local hill-climbing
approach. The algorithm begins with all N voltages spaced
uniformly, and iteratively solves for the optimal Vi given that
all other Vj, j
= i are equal to their previous values, until none
of the Vi’s change by more than ε (1–5 mV) from one iteration
to the next. Solving for a single Vi while keeping all others
constant [Vi = FindOptimal(V ∗, i)] is equivalent to solving the
simpler case of two voltages (N = 2), detailed next.

With only two voltages in the system, (8) reduces to

E2 = (1 + β) CNCore
(
V 2

1 F (V1) + V 2
2 [F (V2) − F (V1)]

)
. (9)

V2 is picked a priori to meet the core yield constraint as
discussed in the previous section, so the problem is reduced to
optimally choosing V1, which may only take values 0 ≤ V1 <

DREGO et al.: REDUCTION OF VARIATION-INDUCED ENERGY OVERHEAD IN MULTI-CORE PROCESSORS 895

Algorithm 1: MEVS algorithm

V ∗ = distribute Vi’s uniformly;
Initialize V ∗

old to 0;
while

(
Vi − Vi,old > ε

) ∀i do
V ∗

old = V ∗;
foreach Voltage Vi do

/* Solve for local optimal Vi

holding all Vj
=i constant */
Vi = FindOptimal(V ∗, i);

end
end

Fig. 4. Example of a single optimal set of system voltages to reduce energy
per operation for N = 2.

V2. There is only one optimal choice for V1 and the proof of
this is shown in Appendix A. This single optimum is also seen
in Fig. 4 where the total energy is plotted versus V1. When
V1 is smaller than min(Vi,min) all cores must use V2 to meet
the performance constraint and hence the energy is maximum.
However, as V1 increases, more cores utilize V1 rather than
V2 and the energy decreases. As V1 continues increasing, the
cumulative energy of the cores utilizing V1 grows faster than
the decrease in energy resulting from switching from V2 to
V1, resulting in a minimum energy point.

Since there is no closed-form for the Normal CDF, it is
written in terms of the error function, expressed as a Maclaurin
series

F (x) =
1

2

[
1 + erf

(
x − µ

σ
√

2

)]
(10)

erf (z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)
(11)

F (x) =
1

2

⎡
⎢⎣1 +

2√
π

∞∑
n=0

(−1)n
(

x−µ

σ
√

2

)2n+1

n!(2n + 1)

⎤
⎥⎦ . (12)

We substitute (12) into (9) using a finite number of terms
from the Maclaurin series (in practice, three or four terms
achieves good accuracy). The derivative of the resulting poly-
nomial is taken, resulting in another polynomial. The roots of
the latter are determined using the roots function in MATLAB.

All but one root are invalid, lying outside the range of interest
or being complex.

In the multiple voltage case, (8) is used but only a single
voltage is solved for at a time, and the derivative with respect
to that voltage is used; all other terms are constant. While (8)
is non-convex in general, we have empirically observed that
there is only a single global optimum. We have also observed
that though the proposed algorithm finds local optima, they
are exactly (or very close to) the global optimum (see Fig. 9).

2) Algorithm Performance: Since we are unable to prove
global optimality in the general case, we attempt to bound the
energy overhead. This overhead is the difference between the
“ideal” energy when each core has its own voltage (13) and
the energy when we have discretized (13) using N < NCore

voltages (14)

Eideal =
∫ ∞

−∞
V 2f (V)dV (13)

Ediscrete =
N∑
i=1

Vi∫
Vi−1

V 2
i f (V)dV. (14)

The bounds on the overhead, and thus algorithm performance,
are determined by how the N voltages are distributed. In
the simple case of uniform intervals between the voltages,
the overhead can be bounded by O(σ

N

√
µ2 + σ2) (not shown

here due to space constraints). However, with more intelligent
spacings, the bounds can be tightened to O(µσ

N
) as shown

in Appendix B. Intuitively, the spacings chosen are such
that the size of each interval balances out the voltage cost
[V 2 in (13)] across all intervals. One could also attempt to
balance the entire energy over all of the intervals (i.e., balance
V 2f (V)dV). However, since the ratio f (µ)

f (µ+σ) is constant (or the
area underneath f (V) remains constant despite changes in σ),
this will only change the value of the constants in the bound.

As seen in Fig. 5, the actual performance of the algorithm
closely fits the derived bounds. In the case of Fig. 5(a), the fit
is quadratic rather than linear as was derived. Conceptually,
this makes sense as we did not handle mean shifts in the
derivation in Appendix B. If the mean shifts, both Eideal and
Ediscrete increase in a quadratic fashion due to the V 2 term,
and so the bound should also include a µ2 term as the actual
performance indicates.

IV. Analytic Energy Reduction

The power of the MEVS algorithm is in both the analytic
formulation and the computational efficiency it offers. These
characteristics allow for a fully analytic characterization of the
energy overhead and the potential energy reduction based only
on variation statistics (µ and σ). With an analytic framework
in place, the “variability-induced energy overhead” can be
characterized. In Fig. 6(a), the energy overhead for +3σ core
yield is plotted versus the magnitude of variation present in the
Vmin distribution (σ

µ
) and the number of voltages in the system

(N).2 The linear dependence on σ is again noticed: focusing on

2For this analysis µ = 1.0 V as this is the nominal voltage found in most
state-of-the-art systems.

896 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

Fig. 5. Actual algorithm performance matches the derived bounds. The derivation is found in Appendix B (stars = simulation data points, dashed line = fit
line). (a) Overhead versus µ. (b) Overhead versus σ. (c) Overhead versus N.

N = 1, it is apparent that even for a modest amount of variation
(∼5%) the energy overhead is significant, approaching 30%.
Given 90 nm test-chip measurements from our prior work [25]
and the roughly linear dependence between delay and power-
supply voltage observed in those measurements, at the 90 nm
node within-die variation results in σ

µ
≈ 1% and consequently

a 5% energy overhead. While fairly manageable at the 90 nm
node, the magnitude of variation typically increases and as
the number of cores increases, the core yield constraint will
increase to perhaps 4σ or 5σ, resulting in much larger energy
overheads; the effects of changing the core yield constraints
are discussed and quantified below.

Looking at Fig. 6(b), we notice that the amount of reduc-
tion in energy overhead is constant with the magnitude of
variation. However, since the magnitude of the overhead is
linearly increasing with the magnitude of variation, the energy
reduction relative to the total energy will also increase linearly
with variation. Furthermore, the addition of only a single new
power-supply voltage (N = 2) provides the largest incremental
energy savings no matter the magnitude of variation, with
asymptotic energy reduction afterward.

V. Simulation Methodology

To test the MEVS algorithm and demonstrate the energy
savings of using multiple system voltages in a real design,
we use the RAW core, developed at MIT, as it is specifically
developed for multicore applications [19]. However, the 64-
core RAW processor is implemented in a mature 0.18 µm
technology node, requiring that the core be ported to a more
leading-edge process before simulations could be carried out.
This involves re-synthesis in Synopsys Design Compiler with a
non-optimized predictive 45 nm technology (PTM [26]) using
FreePDK45, in combination with Nangate’s OpenCell standard
cell library [27]. As neither the FreePDK45 nor Nangate’s
standard cell library includes a memory compiler, SRAMs
are not implemented or included in any of the subsequent
simulations; however, this is consistent with all of the above
analysis where SRAMs are also excluded. Although not op-
timal, processor register files are synthesized using available
standard cell flip-flops.

Static timing analysis using Synopsys PrimeTime is then
performed to choose 20 independent critical paths for detailed

further analysis, as depicted in Fig. 5. The number of paths
is limited to 20 as Borkar et al. showed that beyond 14
critical paths the frequency distribution does not materially
change [28]. Furthermore, repeated paths (such as bits of
busses) are eliminated, minimizing the likelihood of significant
circuit-level correlation between the chosen paths. A 1K-point
Monte Carlo voltage-sweep analysis is done in HSPICE for
each critical path, in order to analyze the effects of within-die
random variation on each path. Sweeps for a single critical
path are shown in Fig. 8(a) with the associated probability
distribution in Fig. 8(b), showing increased delay variability as
VDD decreases. Within-die systematic variation is not modeled,
as our previous work in [25] indicated that random variation
dominates in regular, arrayed structures.

Each of the 1K voltage-sweeps for each path is fit to the
delay model in (3), and variation in the delay model parameters
(K and VT) is characterized. In particular, for each voltage
sweep of each path, the appropriate values of K and VT

are determined by achieving the best fit3 to (3). Doing this
for all 1000 sweeps results in a distribution of K and VT

for each path. The statistics of each distribution as well as
any cross-correlation between K and VT (generally low) are
subsequently computed and saved for further simulation. For
this process, the fit values of K and VT had between 2–4% σ

µ

variation for each path.
Once this characterization is complete, the statistics of the

K and VT distributions are used to model 10K one-thousand
core CMPs using (3). Analytic modeling allowed efficient
simulation of many more paths, ten million in this case, than
would otherwise be achievable using time-domain simulation.
For each core, i, random values for K and VT are generated
from the above distributions and used to generate the delay
versus VDD curves for each critical path, j, 1 ≤ j ≤ 20, as
shown in (15). The curves for each CMP are also subjected
to the same zero-mean, normally distributed mean (µ) shift,
denoted by D0(VDD), to simulate die-to-die variation

Di(VDD) = D0(VDD) + max∀j

(
Ki,jVDD(

VDD − VTi,j

)α

)
. (15)

3The common minimum mean square error methodology is used for fitting
non-linear data.

DREGO et al.: REDUCTION OF VARIATION-INDUCED ENERGY OVERHEAD IN MULTI-CORE PROCESSORS 897

Fig. 6. Analytic computation of Eoverhead and reduction of Eoverhead when using additional voltages selected by the MEVS algorithm. (a) Eoverhead. (b)
Reduction in Eoverhead.

Fig. 7. Simulation methodology to efficiently evaluate MEVS algorithm and
resultant energy savings.

The max of these curves for a given VDD plus the die offset
gives the delay versus voltage curve for core i. This is used
to determine the minimum supply voltage, Vi,min, required
to meet a user-defined delay constraint, d [i.e., find Vi,min

such that Di(Vi,min) = d]. The collection of Vi,min∀i results
in the f (Vmin) distribution for each CMP to which the MEVS
algorithm is applied.

VI. Results and Analysis

The above simulation methodology, applied on 10K samples
of a one-thousand core multicore processor based on the RAW
core, allowed efficient evaluation of the energy savings as a
result of adding voltages to the system.

A. Effect of Approximations

To understand how the approximations mentioned above
affect optimal voltage selection and the resultant energy re-
duction, we compared a subset of the 10K voltage vectors
selected by the MEVS algorithm to the actual optimal vector
in each case. Since finding the actual optimal vector requires
exhaustive search over a large multi-dimensional space, time
and computational constraints limited this comparison to no
more than six voltages.

First, Fig. 3 shows an example Vmin distribution in a single
CMP. Despite not matching any common distribution, the
bulk (80%) of the distribution can be approximated with
the Gaussian distribution, resulting in only small error. More
importantly, Fig. 9 shows that the MEVS-selected vector
is very close to the globally optimal vector despite using:
1) a Gaussian distribution as an approximation to the actual
distribution; 2) the truncated Maclaurin series approximation
for the Gaussian CDF; 3) continuous rather than discrete math;
and 4) slightly larger ε as N increases to aid in convergence
time.4

Even with six voltages in the system, the average vector
distance from optimal is 10 mV, within the ripple of any
power-supply voltage (typically no less than 10 mV). As
the number of voltages increase, an increase in the distance
from optimal is expected simply due to adding the error of
each voltage. However, even in the worst-case of a 25 mV
distance, this implies that the five additional voltages are on
average no more than 5 mV away from their optimal values.
More importantly, these small distances from the optimal

4Using many voltages in a system would likely not be practical, and for
N ≤ 5 keeping ε small (∼1 mV) has no effect on convergence time.

898 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

Fig. 8. 1K-point Monte-Carlo voltage sweeps for a single critical path. (a) Critical path delay versus VDD. (b) Probability distribution of critical path delay
versus VDD.

Fig. 9. Vector distance and energy difference between MEVS-selected and globally optimal vectors.

values result in energy differences between the MEVS-selected
vectors and the globally optimal vector of much less than 1%.

B. Energy Reduction

With the effect of approximations shown to be small, we
next analyze energy reduction in the RAW core as a result of
using multiple voltages. Fig. 10(a) plots both the total energy
reduction (energy difference between using a single voltage
and multiple voltages), as well as the reduction in the amount
of variability-induced energy overhead (energy over and above
each core having its own voltage Vi,min) for a 1000-core CMP.
By adding just a single additional voltage (N = 2), anywhere
between 59–75% of the variability-induced energy overhead is
eliminated, resulting in a total energy savings of 6–16%, with
an average savings of 9%. These results are in-line with the
analytic results above, and are expected from observed vari-
ability in the delay and Vmin distributions of ∼3%. The large
range of energy savings noticed is due primarily to die-to-die
variation, which results in mean shifts of the Vmin distribution
as opposed to greater magnitudes of within-die variation.

The addition of more voltages does increase the energy
savings but at diminishing returns: with five voltages, roughly
90% of the energy overhead is eliminated, and it would take

995 additional voltages to reach Eideal. Since the absolute
energy savings are dependent on the magnitude of variation,
as CMPs are scaled to smaller processes where variation is
expected to increase, the energy overhead of using only a
single voltage for all cores will also increase, as seen in
Fig. 6(a). Use of our voltage selection algorithm will result
in larger absolute energy savings as the relative magnitude of
variation (σ

µ
) increases.

To understand the energy reduction on CMPs with fewer
cores, we undertook an identical Monte Carlo analysis for
a 100-core CMP. The results of this analysis, shown in
Fig. 10(b), are that the mean energy reduction and reduction
in energy overhead are reduced. Total energy reduction is
approximately half that of the 1000-core CMP but energy
overhead is reduced only by a few percent, indicating there
is naturally a smaller variation-induced overhead in the 100-
core CMP. This is expected, as a CMP with fewer cores will
typically have a smaller range in core-to-core variation than a
chip with more cores.

C. Effect of Core Yield-Constraint Choice

In the above analysis, the core yield constraint was such
that the last voltage in the system, VN , had to accom-

DREGO et al.: REDUCTION OF VARIATION-INDUCED ENERGY OVERHEAD IN MULTI-CORE PROCESSORS 899

Fig. 10. Energy reduction for 1000 and 100 core CMPs as a function of number of system voltages. (a) 1000 cores. (b) 1000 cores.

modate the worst-performing core, or stated differently, all
cores had to function at the required frequency. However, in
such a massively parallel system, having a 100% core yield
may not always be necessary, nor may it be efficient from
a performance-energy perspective. To quantitatively analyze
this, an appropriate metric is required. Since performance and
energy are both individually important, a metric that includes
both is used: for this analysis, our metric is the ratio of the total
performance of the system to the total energy in the system.

The total performance in the system is proportional to
the product of clock frequency (f), number of instructions
completed per clock (IPC), and number of operational (or
yielding) cores (yo × NCore). The total energy in the system is
given by (8) multiplied by the core yield, yo, and the frequency,
f . Since two system voltages provide the most incremental
benefit, this analysis is only performed for N = 2, and so (9)
is used in place of (8) resulting in

Tot. Perf.

Tot. Energy
=

yoNCoreIPCf

yoE2f
(16)

Tot. Perf.

Tot. Energy
=

IPC

C
(
V 2

1 F (V1) + V 2
2 [F (V2) − F (V1)]

) . (17)

Although it would seem that (17) has no dependence on
number of yielding cores, recall that there is an implicit
dependence, as V2 is selected a priori such that it meets the
core yield constraint (V2 = F−1(yo)), and so there is still a
dependence on core yield. Furthermore, for the purposes of
this analysis we assume that both IPC and C are constant (or
do not change significantly per core), and are simply scaling
factors that can be removed from the analysis.

The analysis shows that the combined performance-energy
metric is roughly constant, as seen in Fig. 11(a). This is
expected, as both performance and energy scale linearly with
the number of operating cores (yoNCore). However, there is a
slight decreasing trend as the energy does not strictly scale
linearly with core yield, reflecting the necessary increase in
both V1 and V2 to support additional poor-performing cores.
As the core yield constraint increases to roughly 85–90%, the
increase in V2 accelerates due to the exponential nature of the
tails of the distribution as seen in Fig. 11(b), resulting in faster

decreases in the performance-energy metric as shown in the
inset of Fig. 11(a).

Looking at the incremental change in performance relative
to the incremental change in energy with increasing core yield
constraint, the right axis (green plot) of Fig. 11(a) shows that
the change is relatively constant until yo ≥ 85%, where it
sharply decreases. Intuitively, this means that for a constant
increase in energy, a constant increase in performance is
achieved until yo ≥ 85%, at which point the incremental
increase in energy required for the same incremental gain in
performance becomes increasingly large. This result suggests
that there may be an upper-bound on practical core yield
constraints unless total computational throughput is of the
essence; a similar conclusion was reached in [18] by turning
off power-hungry cores.

Another way to arrive at the same conclusion is to explore
the energy overhead as a function of the desired core yield.
Fig. 12(a) shows an analytic computation of Eoverhead as a
function of the core yield for a fixed amount of variation in
the Vmin distribution5 (σ

µ
= 3% in this case, according to the

observed variation in the RAW core). The energy overhead
increases exponentially with the desired core yield constraint,
and so reducing the core yield constraint by a few percent can
have a large impact on energy. Nevertheless, even if the core
yield constraint is reduced to 90%, Eoverhead ≈ 8−10%, which
is still significant enough to warrant adding voltages to the
system. Fig. 12(b) shows that a single additional voltage (N =
2) still provides the most incremental reduction in Eoverhead;
however, the benefit is somewhat reduced as the core yield
constraint is decreased.

VII. Practical Considerations

Modern microprocessors have many power/performance
modes and other design constraints that must be considered
when attempting to implement a multiple voltage system. The

5The number of voltages is intentionally limited to N ≤ 3 for both plots in
Fig. 12, as the MEVS algorithm has difficulty assigning voltages due to the
limited distance between minimum and maximum Vmin, especially as the core
yield constraint is reduced. In this regime, the Maclaurin approximation is not
sufficient to properly model the very narrow minimum (i.e., the derivatives
change too rapidly in the vicinity of the minimum).

900 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

Fig. 11. Joint performance-energy metric versus core yield. (a) Performance-energy metric. (b) Required V1, V2.

Fig. 12. Analytic computation of Eoverhead and reduction of Eoverhead versus core yield constraint. Reducing the yield constraint can drastically reduce
Eoverhead. (a) Eoverhead. (b) Reduction in Eoverhead.

following are salient aspects of physical systems, with a brief
analysis of how each affects the framework and results above.

A. Partitioning of Cores

The above analysis assumes that the physical layout allows
each core to select the best voltage from the supplied vector of
optimal voltages. For the purposes of analytic demonstration
of the greatest possible energy reduction, this is appropriate.
However, such a layout would result in substantial area and
routing resource overhead. A more practical layout requiring
reduced overhead might group cores together, sharing a
common voltage amongst the group. This will necessarily
reduce the energy reduction potential as each group will be
limited by the worst-case core in that group. To understand
how this affects the energy reduction we have rerun the
Monte-Carlo simulation for 1000-core processors where the
cores have been partitioned into groups of 4, 8, 16, and 32.
For simplicity, the MEVS algorithm is executed just as before

but each group is now assigned a voltage from the optimal
vector that is closest to, but greater than, the voltage required
for the worst core in that partition.

Assigning voltages to groups of cores has the effect of
decreasing the energy reduction potential, as shown in Fig. 13.
With increasing partition size there is increasing variance be-
tween the best and worst cores in each partition. Consequently,
assigning only a single voltage to the partition has diminishing
returns as the partition size grows.

Though this method of choosing voltages for groups of
cores may no longer be optimal, it nevertheless provides in-
sight into the dependence of energy reduction on partition size.
Refactoring the algorithm to explicitly include partitions—
perhaps by using the MEVS algorithm for each group on its
own and then globally selecting a vector of voltages—should
be a subject of future work.

Another partitioning strategy is to ensure each voltage has
an equal number of cores (P = NCore

N
). In such a strategy, the

DREGO et al.: REDUCTION OF VARIATION-INDUCED ENERGY OVERHEAD IN MULTI-CORE PROCESSORS 901

Fig. 13. Partitioning the cores into groups of 4, 8, 16 and 32 cores each results in substantial decreases in energy reduction. The worst core in each group
will limit the potential energy reduction for that group of cores. Similarly, requiring that each partition contain an equal number (P = NCore

N
) of cores results

in reduced energy savings, e.g. 10% for P = 1, N = 2 versus 7% mean Etotal reduction for P = NCore
N

, N=2. Note the y-axis scale change on the right figure.
(a) Reduction in Eoverhead versus partition size. (b) Reduction in energy versus partition size.

voltage for each partition is determined by sorting all cores
from minimum to maximum, dividing them into partitions of
size NCore

N
, and setting Vi = max(Vi,min) where the max is taken

over all cores in that partition. As shown on the curve labeled
P = NCore

N
in Fig. 13, this strategy suffers due to limiting the

number of cores assigned to each voltage. Doing so necessarily
causes cores to use higher voltages than would be necessary
in the optimal case, especially in the tails.

In practice, it is likely easier to have regions of the die
where a subset of voltages can be selected by each core in the
region. This would limit the distance current has to travel from
the chip boundary (e.g. C4 bumps) to each core. Appropriately
selecting the correct voltage values for each region in such a
scheme should be a subject of future work.

B. Leakage and Temperature

The analytic framework above utilizes a simplified linear
leakage model resulting in modifications only to the constants
in the equations in Section III; in our comparison framework,
these constants drop out, resulting in no impact of leakage
on the results. Due to the decreasing values of β in recent
commercial multi-core processors, such a model is sufficient
to illustrate the energy reduction potential of multiple core
voltages. However, a future analysis could include the impact
of temperature as suggested below.

The power dissipation associated with adjusting voltages
impacts the local temperature on the die. Leakage energy can
be significantly affected as the leakage current is exponentially
dependent on threshold voltage (VT) and the thermal voltage
(Vth = kT

q
), both of which are temperature dependent.

Humenay et al. showed that if voltage-scaling alone is used
to compensate for the impacts of variation, increases in both
leakage and temperature necessitate either more expensive
cooling solutions or thermal throttling, leading to dynamic
performance asymmetries [17]. Compared to this worst-case of
scaling a single voltage system, adding voltages significantly

reduces active power as demonstrated above, but also has
a more marked impact on leakage power above than when
considering DIBL alone: local temperatures will also decrease
due to decreased active power dissipation resulting in lower
leakage power as well. To quantify this, it is necessary to
incorporate the thermal impedances of the package and cooling
solution into leakage models which fit into the revised energy
calculation above. This can then be used to better select
the optimal voltages based on temperature as well as duty
cycles.

C. Impact of Memory Subsystems

Up to this point, we have implicitly ignored the impact of
memory subsystems, as many techniques have been applied to
reduce their active power, including putting large portions of
the cache into sleep modes. For example, the Intel Dual Core
Xeon processor features 18 MB of L2 and L3 caches, but only
0.08% of the caches are actively powered for a given cache
access. The large caches utilized on this processor allows
the cache to be organized into many smaller arrays and sub-
arrays, which can individually be put into sleep states. This
results in 0.75 W/MB average power for the caches, leading
to the caches contributing less than 10% of the overall power
budget [29].

However, in massively parallel multicore systems, each core
will likely have much smaller caches, in which a larger fraction
of the cache will be actively powered for a cache access.
More significantly, leakage of the many un-accessed lines
in the active portion of the cache will result in an increase
of the fraction of total power associated with the memory
subsystems. In the case that there are additional globally-
shared caches, these memory systems will increase the shared
energy component relative to the total energy [see (1)]. Though
this must be incorporated, caches are typically operated on
separate power-supplies from the computational cores and will
likely not affect the optimization of the core power-supply

902 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

voltages. The shared energy may affect how many and which
cores are turned off; some preliminary work evaluating this
has been done in [18], in which a core is turned off if the
incremental power required to operate it is greater than the
power of the shared blocks, amortized over all operating cores,
if that core were not turned on.

D. Power Transistors and Routing Resources

Lastly, each voltage requires global routing resources for
power distribution, but this can be mitigated in the case of
two voltages to a large degree by reducing the width and
density of each voltage’s power grid since power will be
divided roughly equally over the voltages. More importantly,
power-multiplexing transistors are required. These transistors
are necessarily large to handle the relatively large currents
necessary to power each core. However, they can also be
used to power-gate the entire core, as Intel has done in
their most recent Nehalem architecture to eliminate leakage
power [30].

VIII. Conclusion

Future massively parallel multi-core architectures are highly
susceptible to process variation in highly scaled processes.
While maintaining core performance homogeneity may not
be critical long-term, software and system design in the short-
term to mid-term necessitate identical behavior across cores.
Ensuring this using typical variation mitigation solutions is
often expensive and complex across many dimensions. We
proposed using a small number of additional system voltages
and have presented an efficient algorithm for optimal selection
of a vector of voltages to reduce variation-induced energy
overhead. When two voltages are used, our algorithm is
provably optimal and in the more general case we showed
that it selects very close to optimal vectors. We demonstrated
analytically and through simulation that a single additional
voltage provides the most incremental benefit. Simulations of
a hypothetical one-thousand core processor based on the RAW
core showed reduction of energy overhead by 59–90% for 2–
10 voltages, corresponding to 6–21% total energy reduction.
Furthermore, turning off or disabling the worst performing
cores on a CMP is beneficial to a simple joint performance-
energy metric.

Acknowledgment

The authors acknowledge the support of the Focus Center
for Circuit and System Solutions, one of five research centers
funded under the Focus Center Research Program, a Semi-
conductor Research Corporation Program. They would also
like to thank N. Verma, Y. Ramadass, and K. Balakrishnan
for valuable discussions in formulating the problem as well as
the Computer Architecture Group, led by Prof. A. Agarwal,
at the Massachusetts Institute of Technology, Cambridge, for
discussion and direction related to future multi-core processors
and help in porting the RAW core to a 45 nm process.

Appendix A

PROOF OF OPTIMALITY FOR N = 2

Theorem 1: There exists only one solution to the N = 2
case and that solution must lie in 0 ≤ V1 < V2.

Proof: We take the derivative of (9) with respect to V1

and set it equal to 0, giving

f (V1)

F (V1)
=

2V1

V 2
2 − V 2

1

. (18)

The LHS of (18) is shown to be a positive, strictly decreasing
function by Pechtl in [31]. Pechtl also showed that it is
asymptotic to −V1 as V1 → −∞ and goes to 0 as V1 → ∞.
On the right side of (18), the numerator is strictly increasing
and the denominator is strictly decreasing over 0 ≤ V1 < V2,
starting at V 2

2 when V1 = 0 and reaching 0 at V1 = V2.
Thus, the LHS is monotonically decreasing while the RHS is
monotonically increasing, so there is at most one intersection
point, and it must be located within the range of interest since
the RHS ranges from 0 (at V1 = 0) to ∞ (at V1 = V2).

Appendix B

BOUNDS ON MEVS ALGORITHM

Let the N voltages be distributed with intervals of δk :=
g(k). We define g(x) to be the “continuous” form of g(k) and
G(x) =

∫ x

0 g(y)dy. We also define Vk = VL +
∑k

j=1 δj . Over any
one interval, the energy cost in the discretized case is given
by

Eint =

Vk+1∫
Vk

V 2
k+1f (V)dV. (19)

Similarly, in the ideal, continuous case it is (13) over a single
interval

Eint =

Vk+1∫
Vk

V 2f (V)dV. (20)

Subtracting the two and using a change of variables (V =
Vk + t, => dv = dt), we get

Eoverhead,int =

δk∫
0

[
2Vk(δk − t) + δ2

k − t2
]
f (Vk + t)dt. (21)

However, in the limit of large N and small δk, δ2
k − t2 is small

enough to be ignored (this introduces an error on the order of
O(1

N2) which is smaller than the overall overhead, see below)
and f (Vk + t) ≈ f (Vk). So, (21) reduces to

Eoverhead,int ≤ δ2
kVkf (Vk). (22)

The total overhead is then the summation of the individual
interval overheads

Eoverhead,TOT ≤
N∑

k=1

δ2
kVkf (Vk). (23)

DREGO et al.: REDUCTION OF VARIATION-INDUCED ENERGY OVERHEAD IN MULTI-CORE PROCESSORS 903

We choose g(k) such that the size of each interval results in
the voltage “cost,” V 2, from (13) being balanced across all
intervals. Choosing g(k) as in (24) will achieve this

g(k) ∝ 1

VL +
k−1∑
j=1

g(j)

=
1

Vk−1
. (24)

In the continuous case, this becomes

dG(x)

dx
=

C

VL + G(x)
(25)

where C is a normalization constant. To be self-consistent, we

also require that
N∑

k=1
g(k) = |VU − VL| in the discrete case and

G(N) = |VU − VL| in the continuous case.
Integrating (25) we get

G(x) =
√

V 2
L + 2Cx − VL (26)

and using the boundary conditions, C can be computed to be

C =
1

2N

(
V 2

U − V 2
L

)
. (27)

We can also make the following approximation:

δk := g(k) G(k) − G(k − 1) G′(k) (28)

 C

VL + G(k)
(29)

which gives C = G′(k) [VL + G(k)].
Since δk G′(k), we can reformulate (23) as follows:

Eoverhead,TOT =
N∑

k=1

G′(k)2 (VL + G(k)) f (VL + G(k)) (30)

and using (28) this becomes

Eoverhead,TOT = C

[
N∑

k=1

G′(k)f (VL + G(k))

]
(31)

which, in the limit of large N, is a Riemann integral

Eoverhead,TOT C

VU∫
VL

f (V)dV. (32)

Since the integral in the above equation is simply F (VU) −
F (VL) < 1, we can say

Eoverhead,TOT ≤ C =
1

2N
(V 2

U − V 2
L) (33)

≤ 1

2N
(VU − VL)(VU + VL). (34)

Finally, in general VU − VL ∝ σ and VU + VL ∝ µ, so
Eoverhead,TOT ≤ O

(
µσ

2N

)
.

References

[1] D. Wentzlaff and A. Agarwal, “The case for a factored operating system
(FOS),” Comput. Sci. Artif. Intell. Lab., Massachusetts Instit. Technol.,
Cambridge, Tech. Rep. MIT-CSAIL-TR-2008-060, 2008.

[2] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga,
S. Das, and D. Bull, “Razor I I: In situ error detection and correction
for P V T and S E R tolerance,” in Proc. IEEE ISSCC, Feb. 2008, pp.
400–622.

[3] K. Bowman, X. Tang, J. Eble, and J. Meindl, “Impact of extrinsic and
intrinsic parameter variations on CMOS system on a chip performance,”
in Proc. IEEE Int. ASIC/SoC Conf., Sep. 1999, pp. 267–271.

[4] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.
DAC, 2007, pp. 746–749.

[5] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” in Proc.
ISLPED, 1995, pp. 9–14.

[6] K. Usami and M. Horowitz, “Clustered voltage scaling technique for
low-power design,” in Proc. ISLPED, Apr. 1995, pp. 3–8.

[7] J.-M. Chang and M. Pedram, “Energy minimization using multiple
supply voltages,” IEEE Trans. Very Large Scale Integr., vol. 5, no. 4,
pp. 436–443, Dec. 1997.

[8] M. C. Johnson and K. Roy, “Optimal selection of supply voltages
and level conversions during data path scheduling under resource
constraints,” in Proc. ICCD, 1996, pp. 72–77.

[9] C. Yeh, M.-C. Chang, S.-C. Chang, and W.-B. Jone, “Gate-level design
exploiting dual supply voltages for power-driven applications,” in Proc.
DAC, 1999, pp. 68–71.

[10] C. Chen and M. Sarrafzadeh, “Provably good algorithm for low power
consumption with dual supply voltages,” in Proc. ICCAD, 1999, pp.
76–79.

[11] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynam-
ically variable voltage processors,” in Proc. ISLPED, Aug. 1998, pp.
197–202.

[12] G. Qu, “What is the limit of energy saving by dynamic voltage scaling,”
in Proc. ICCAD, 2001, pp. 560–563.

[13] S. Hua and G. Qu, “Approaching the maximum energy saving on
embedded systems with multiple voltages,” in Proc. ICCAD, 2003, p. 26.

[14] X. Liang, G.-Y. Wei, and D. Brooks, “ReVIVaL: A variation-tolerant
architecture using voltage interpolation and variable latency,” SIGARCH
Comput. Archit. News, vol. 36, no. 3, pp. 191–202, 2008.

[15] D. Marculescu and S. Garg, “Process-driven variability analysis
of single and multiple voltage-frequency island latency-constrained
systems,” IEEE Trans. Comput.-Aided Design, vol. 27, no. 5, pp.
893–905, May 2008.

[16] B. Stefano, D. Bertozzi, L. Benini, and E. Macii, “Process variation
tolerant pipeline design through a placement-aware multiple voltage
island design style,” in Proc. DATE, 2008, pp. 967–972.

[17] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process variations on
multicore performance symmetry,” in Proc. DATE, Apr. 2007, pp. 1–6.

[18] J. Donald and M. Martonosi, “Power efficiency for variation-tolerant
multicore processors,” in Proc. ISLPED, 2006, pp. 304–309.

[19] M. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, and J. Kim, “Evaluation of
the RAW microprocessor: An exposed-wire-delay architecture for ILP
and streams,” in Proc. ISCA, Jun. 2004, pp. 2–13.

[20] L. Chang, D. Frank, R. Montoye, S. Koester, B. Ji, P. Coteus, R. Den-
nard, and W. Haensch, “Practical strategies for power-efficient comput-
ing technologies,” Proc. IEEE, vol. 98, no. 2, pp. 215–236, Feb. 2010.

[21] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, B. Cherkauer,
J. Stinson, J. Benoit, R. Varada, J. Leung, R. D. Limaye, and S. Vora,
“A 65-nm dual-core multithreaded Xeon processor with 16 MB L3
cache,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 17–25, Jan. 2007.

[22] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachandran, and
D. Greenhill, “Implementation of an 8-core, 64-thread, power-efficient
SPARC server on a chip,” IEEE J. Solid-State Circuits, vol. 43, no. 1,
pp. 6–20, Jan. 2008.

[23] G. Konstadinidis, M. Tremblay, S. Chaudhry, M. Rashid, P. Lai,
Y. Otaguro, Y. Orginos, S. Parampalli, M. Steigerwald, S. Gundala,
R. Pyapali, L. Rarick, I. Elkin, Y. Ge, and I. Parulkar, “Architecture
and physical implementation of a third generation 65 nm, 16 core,
32 thread chip-multithreading SPARC processor,” IEEE J. Solid-State
Circuits, vol. 44, no. 1, pp. 7–17, Jan. 2009.

[24] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada,
M. Ratta, S. Kottapalli, and S. Vora, “A 45 nm 8-core enterprise Xeon
processor,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 7–14, Jan.
2010.

904 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 6, JUNE 2011

[25] N. Drego, A. Chandrakasan, and D. Boning, “An all-digital, highly
scalable architecture for measurement of spatial variation in digital
circuits,” in Proc. IEEE ASSCC, Nov. 2008, pp. 640–651.

[26] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New paradigm
of predictive MOSFET and interconnect modeling for early circuit
design,” in Proc. CICC, 2000, pp. 201–204.

[27] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis,
P. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: An open-source variation-aware design kit,” in Proc. IEEE
Int. Conf. Microelectron. Syst. Educ., 2007, pp. 173–174.

[28] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in
Proc. DAC, 2003, pp. 338–342.

[29] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen,
S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava,
“The 65-nm 16-MB shared on-die L3 cache for the dual-core Intel
Xeon processor 7100 series,” IEEE J. Solid-State Circuits, vol. 42,
no. 4, pp. 846–852, Apr. 2007.

[30] S. Gunther and R. Singhal, “Next generation Intel microarchitecture
(nehalem) family: Architectural insights and power management,” in
Proc. Intel Developer Forum, Aug. 2008.

[31] A. Pechtl, “A note on the derivative of the normal distribution’s
logarithm,” Arch. Math., vol. 70, no. 1, pp. 83–88, Jan. 1998.

Nigel Drego (M’03) received the B.S. degree in
computer engineering from the University of Cal-
ifornia, Irvine, in 2001, and the M.S. and Ph.D.
degrees in electrical engineering from the Mas-
sachusetts Institute of Technology, Cambridge, in
2003 and 2009, respectively.

From 2003 to 2005, he was a Design Engineer
with Intel Corporation, Santa Clara, CA, where he
was involved in the design of a high-performance
microprocessor. He is currently a Senior Research
and Development Engineer with PDF Solutions, San

Jose, CA, where his research involves development of new test structures for
state-of-the-art process technologies.

Anantha Chandrakasan (M’95–SM’01–F’04) re-
ceived the B.S., M.S., and Ph.D. degrees in elec-
trical engineering and computer sciences from the
University of California, Berkeley, in 1989, 1990,
and 1994, respectively.

Since September 1994, he has been with the
Massachusetts Institute of Technology (MIT), Cam-
bridge, where he is currently the Joseph F. and
Nancy P. Keithley Professor of electrical engineer-
ing. He is the Director of MIT Microsystems Tech-
nology Laboratories, Cambridge. He is a co-author

of Low Power Digital CMOS Design (Dordrecht, The Netherlands: Kluwer,
1995), Digital Integrated Circuits (Pearson Prentice-Hall, 2003, 2nd ed.),
and Sub-Threshold Design for Ultra-Low Power Systems (Berlin, Germany:
Springer, 2006). He is a co-editor of Low Power CMOS Design (Piscataway,
NJ: IEEE Press, 1998), Design of High-Performance Microprocessor Circuits
(Piscataway, NJ: IEEE Press, 2000), and Leakage in Nanometer CMOS
Technologies (Berlin, Germany: Springer, 2005). His current research interests
include low-power digital integrated circuit designs, wireless microsensors,
ultrawideband radios, and emerging technologies.

Dr. Chandrakasan has been a co-recipient of several awards, including the
1993 IEEE Communications Society’s Best Tutorial Paper Award, the IEEE
Electron Devices Society’s 1997 Paul Rappaport Award for the Best Paper
in an EDS publication during 1997, the 1999 DAC Design Contest Award,
the 2004 DAC/ISSCC Student Design Contest Award, and the ISSCC 2007
Beatrice Winner Award for Editorial Excellence. He served as a Technical
Program Co-Chair for the 1997 International Symposium on Low Power
Electronics and Design, VLSI Design’98, and the 1998 IEEE Workshop on
Signal Processing Systems. He was the Signal Processing Sub-Committee
Chair for ISSCC 1999–2001, the Program Vice-Chair for ISSCC 2002,
the Program Chair for ISSCC 2003, and the Technology Directions Sub-
Committee Chair for ISSCC 2004–2007. He was an Associate Editor for the
IEEE Journal of Solid-State Circuits from 1998 to 2001. He served on
the SSCS AdCom from 2000 to 2007 and was the Meetings Committee Chair
from 2004 to 2007. He was the Conference Chair for ISSCC 2010.

Duane Boning (S’90–M’91–SM’00–F’05) received
the B.S., M.S., and Ph.D. degrees from the Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge.

Currently, he is a Professor of electrical engi-
neering and computer science and the Associate
Head for electrical engineering with the Department
of Electrical Engineering and Computer Science,
MIT. From 1991 to 1993, he was a Technical Staff
Member with Texas Instruments, Dallas. He served
as the Associate Director for MIT Microsystems

Technology Laboratories, Cambridge, from 1998 to 2004. His current re-
search interests include variation modeling, control, and environmental issues
in semiconductor and microelectromechanical systems manufacturing with
emphasis on chemical–mechanical polishing and plasma etch, and computer-
aided design tools for statistical process, device, and circuit design. He
has written over 120 papers and conference presentations in these areas of
research.

Dr. Boning is the Editor-in-Chief of the IEEE Transactions on

Semiconductor Manufacturing.

Devavrat Shah (M’04) received the B.Tech. degree
from the Indian Institute of Technology Bombay,
Mumbai, India, and the Ph.D. degree from Stanford
University, Stanford, CA, in 1999 and 2004, respec-
tively.

He is currently a Jamieson Career Development
Associate Professor with the Department of Elec-
trical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge. He
is a member of the Laboratory for Information and
Decision Systems and Operations Research Center.

His current research interests include theory of large complex networks, in-
cluding network algorithms, stochastic networks, network information theory,
and large scale statistical inference.

Dr. Shah has received a number of best paper awards from networking,
machine learning, and operations management conferences. He received the
2005 George B. Dantzig Best Dissertation Award from INFORMS and the
First ACM SIGMETRICS Rising Star Award 2008 for his work on network
scheduling algorithms. He was recently awarded the 2010 Erlang Prize
from INFORMS given to a young researcher for outstanding contributions
to applied probability. He is currently an Associate Editor of Operations
Research.

