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Abstract—We provide a tight approximate characterization of
the n-dimensional product multicommodity flow (PMF) region
for a wireless network of n nodes. Separate characterizations in
terms of the spectral properties of appropriate network graphs
are obtained in both an information-theoretic sense and for a
combinatorial interference model (e.g., Protocol model). These
provide an inner approximation to the n2-dimensional capacity
region. Our results hold for general node distributions, traffic
models, and channel fading models.

We first establish that the random source–destination model as-
sumed in many previous results on capacity scaling laws, is essen-
tially a one-dimensional approximation to the capacity region and
a special case of PMF. We then build on the results for a wireline
network (graph) that relate PMF to its spectral (or cut) proper-
ties. Specifically, for a combinatorial interference model given by a
network graph and a conflict graph, we relate the PMF to the spec-
tral properties of the underlying graphs resulting in simple com-
putational upper and lower bounds. These results show that the
1=
p
n scaling law obtained by Gupta and Kumar for a geometric

random network can be explained in terms of the scaling law of
the conductance of a geometric random graph. For the more in-
teresting random fading model with additive white Gaussian noise
(AWGN), we show that the scaling laws for PMF can again be
tightly characterized by the spectral properties of appropriately
defined graphs—such a characterization for general wireless net-
works has not been available before. As an implication, we obtain
computationally efficient upper and lower bounds on the PMF for
any wireless network with a guaranteed approximation factor.

Index Terms—Capacity region, product multicommodity flow
(PMF), scaling law, wireless network.

I. INTRODUCTION

A. Prior Work

AN important open question in network information theory
is that of characterizing the capacity region of a wireless

network of nodes, i.e., the set of all achievable rates between
the pairs of nodes in terms of the joint statistics of the chan-
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nels between these nodes. This has proved to be a very chal-
lenging question; even the capacity of a relay network composed
of three nodes is not known in complete generality.

Instead of trying to characterize the capacity region for a gen-
eral wireless network, the seminal paper by Gupta and Kumar
[1] concentrated on obtaining the maximum achievable rate for
a particular communication model, geometric random distribu-
tion of nodes, and randomly chosen source–destination pairs.
They showed that the maximum rate for the protocol interfer-
ence model scales as for nodes randomly placed on
a sphere of unit area. This characterization has been followed
by many interesting results for both combinatorial interference
models and the random fading information-theoretic model for
large random networks; these include [2]–[7] for communica-
tion-theoretic models, and [8] for information-theoretic results.
These results are crucially based on the assumption that a large
number of nodes are randomly distributed in a certain region,
and on the inherent symmetry in the random source–destination
pair traffic model. Such scaling laws are interesting because they
provide a simple characterization of the maximum achievable
rate in terms of the number of nodes in the network.

Since the relative locations of wireless nodes play an impor-
tant role in the characterization of the capacity region, the notion
of transport capacity was defined in [1]. A scaling law for the
transport capacity for the protocol interference model was ob-
tained in [1]. Random fading was considered in [7], and infor-
mation-theoretic upper bounds were obtained in [9], [10]. The
transport capacity can be used to obtain an upper bound on the
achievable rate-region for certain rate-tuples, but is not of much
use in determining the feasibility of a certain rate-tuple. More re-
cently, information-theoretic outer bounds to the capacity region
of a wireless network with a finite number of nodes were ob-
tained in [11] for any wireless network using the cut-set bound
[12, Ch. 14]. We note that any achievable scheme can be used
to obtain a set of lower bounds. For example, the results in [13]
provide one set of such bounds. While the above is only a dis-
cussion of a representative set of results in this area (see [14]
for a more detailed summary), we note that there is no result
which provides upper and lower bounds with a guaranteed ap-
proximation factor for a general wireless network with a generic
random fading model. In this paper, we take the first steps to-
wards providing such a tight characterization under very gen-
eral assumptions. In doing so, we make connections between
spectral graph-theoretic results and network information theory.
This results in efficient methods to compute tight upper and
lower bounds.

B. Contribution and Organization

In Section II, we consider the product multicommodity flow
(PMF) as an -dimensional approximation of the -dimen-
sional capacity region. We show that the random souce–desti-
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nation pair traffic model is a special case of PMF and it is essen-
tially a one-dimensional approximation of the capacity region.

In Section III, we study the PMF for an arbitrary topology
and a general combinatorial interference model, of which the
protocol model is a special case. We show that the normalized
cut capacity (equivalently, conductance) of a capacitated net-
work graph induced by the node placement and the interference
model characterizes the PMF within a factor. Using el-
ementary arguments which are independent of the node distri-
bution and the path loss model, we also obtain a scaling law
for delay. We provide simpler rederivation of the (weaker by

factor) lower bound on the maximum flow obtained by
Gupta and Kumar for a randomly chosen permutation flow on
a geometric random graph with a protocol interference model.
For this, we evaluate the scaling law for the conductance of
a geometric random graph which is new and interesting in its
own right. Our derivation illustrates the connections between
the combinatorial properties of geometric random graphs and
the maximum PMF.

In Section IV, we address the question of characterizing the
PMF for a wireless network with Gaussian channels and random
fading. This is substantially more challenging than for the com-
binatorial interference model because there is no obvious un-
derlying network graph that specifies the links which should be
used for data transmission. We construct a capacitated graph
whose cut capacity characterizes (in terms of tight upper and
lower bounds) the PMF in the wireless network. This construc-
tion allows one to use classical network flow arguments to char-
acterize and compute the PMF. We illustrate the generality of
our results by obtaining scaling laws for a geometric random
network.

II. TRAFFIC FLOWS

In this section, we describe the class of PMFs and its rele-
vance. Consider a wireless network of nodes and denote the
node set as . A traffic matrix
is said to be feasible if for each pair of nodes , ,
data can be transmitted from node to node at rate . Note
that whether a traffic matrix is feasible or not depends on
the model for the underlying wireless network, and we shall
describe the precise models for wireless networks in the later
sections.

We denote the capacity region by , i.e., is the set of all
feasible traffic matrices. Ideally, we would like to characterize

. However, this is a hard problem in most cases. Instead, we
characterize an approximation of under general assumptions
on the wireless network. For this, we consider PMF defined as
follows.

Definition 1 (Product Multicommodity Flow (PMF)): Let
node be assigned a weight , for . Then
the PMF corresponding to the weights and a flow rate

is given by the function [15] :

...
...

...
...

The PMF is an -dimensional approximation to the -di-
mensional capacity region with product constraints. An im-
portant special case arises when all the weights are , i.e.,

for . We call such a flow uniform multicommodity
flow (UMF).

Definition 2 (Uniform Multicommodity Flow (UMF)): UMF
with flow rate , denoted by , is an matrix with
diagonal entries equal to , and all nondiagonal entries equal
to .

We denote by the supremum over the flow rates for which
the PMF corresponding to the weights is feasible, i.e.,

is feasible

We abuse notation and denote the corresponding quantity for
UMF as simply .

A. Inner Approximation to

We first show that the maximum UMF is a one-parameter
approximation to the capacity region . Consider the following
parameter defined in terms of the capacity region.

Definition 3 : For any , let

Also, let

Then, we define as follows:

Thus, the quantity is a parametrization of a polyhedral
inner approximation to the capacity region . It is tight in the
sense for any , there is an infeasible traffic matrix in the
set .

Roughly speaking, the following result shows and are
equally good approximations to the capacity region .

Lemma 1: If is feasible, then any such that
is feasible.

Proof: Consider any such that . Suppose
that is feasible. Then there exists a transmission scheme
which supports . We now consider the two-stage routing
scheme of Valiant and Brenber [16] which routes in
each stage. In the first stage, each node sends data to all the re-
maining nodes uniformly, ignoring its actual destination. Thus,
node sends data to any node at rate . In
the second stage, a node, say , on receiving data (from the first
stage) from any source sends it to the appropriate destination.
It is easy to see that due to the uniform spreading of data in the
first stage, each node routes data at rate
to node in the second stage. Thus, the traffic matrices routed in
both the stages are dominated by . That is, the sum
traffic matrix is dominated by . Hence, if is
feasible then is feasible using time sharing be-
tween the schemes corresponding to the two stages above. This
completes the proof of Lemma 1.
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Theorem 1: and are related as

Proof: Note that in general, the capacity region may
not be a closed set.1 We first show that . By defi-
nition of it follows that for any ,
is feasible. Hence, from Lemma 1, any such that

is feasible. Hence, again using the definition
of , .

Now for the other bound, assume that and
. Then, by definition of and ,

is feasible, which is a contradiction. Hence, it follows that
.

Thus, bounds on give bounds on which differ by at most
a factor of . Note that this factor is independent of any network
model. Subsequently, a scaling law for as a function of is
the same as a scaling law for , i.e., as a function
of .

The set of all feasible PMFs clearly provides an -dimen-
sional inner approximation to the capacity region, which is, in
general, -dimensional. Thus, the characterization of the set
of feasible PMFs provides a much better approximation to the
capacity region than that the one-dimensional approximation
given by set of feasible UMF. We next establish the equivalence
of UMF and a traffic model with a randomly chosen permuta-
tion flow.

1) UMF and Random Permutation Flow: In some previous
work (e.g., [1]), the capacity scaling laws were derived for the
case where distinct source–destination pairs are chosen at
random such that each node is a source (destination) for exactly
one destination (source) and such a pairing is done uniformly
at random over all possible such pairings. Thus, the traffic ma-
trix corresponds to a randomly chosen permutation flow which
is defined as follows.

Definition 4 (Permutation Flow): Let denote the set of
permutation matrices in . Then the permutation flow cor-
responding to a permutation and flow rate is
given by .

Many previous works study the scaling of , where is the
supremum over the set of such that when a permutation

is randomly chosen from , the permutation flow
is feasible with probability at least . We now show
that when a permutation flow with flow rate and a randomly
chosen permutation is feasible with a high enough probability,
then the uniform mulicommodity flow can be “almost”
supported when is large enough.

Lemma 2: For chosen uniformly at random, if
is feasible with probability at least , , then there
exists a sequence of feasible rate matrices such that2

as

1We present a formal argument to deal with this only once; similar arguments
are implicit in many results that follow.

2In this paper, the O and 
 notation is always with respect to the number of
nodes n in the network.

where denotes the standard -norm for matrices,3 and
is the uniform multicommodity flow for nodes.

Proof: See Appendix A.

From Lemma 1, if is feasible, then is fea-
sible for all . Thus, using an argument identical to that
in the proof of Theorem 1, a scaling law for is equivalent to a
scaling law for , i.e.,

B. Wireline Networks: PMF Over a Graph

We briefly review the key known results for PMF on graphs
with fixed edge capacities. These results will be useful in our
analysis for PMF for wireless networks.

Consider a directed graph , where an edge
has a capacity . Also, for , we take

. Then for a given , for graph is given by the
solution of the following linear program (LP):

s.t.

where the variables are and
. The first two sets of constraints

are flow conservation constraints and the third set of constraints
model the finite capacity at each edge. The total number of
variables is less than and the total number of constraints
is less than . Hence, the above LP can be solved
in time even if the structure of the problem is not
exploited [17].

The well-known max-flow min-cut characterization for a
single commodity flow naturally gives rise to the following
question. Though the maximum PMF for a given weight
vector can be computed in polynomial time, is there a cor-
responding result that relates and the properties of the
graph? In their seminal paper, Leighton and Rao [18] ob-
tained a characterization of in terms of the weighted
min-cut of graph. We summarize their main result below. Let

denote the number of nodes
for which the corresponding element of is nonzero. Then,
without loss of generality we assume that .

Definition 5: For graph and weight vector , define the
min-cut by

where for all .

3Given a matrix M 2 , the 2-norm of M is kMk = supfkMxk :
x 2 ; kxk = 1g, where kxk is the ` norm of vector x 2 .
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Theorem 2 ([15, Theorem 17]): In any directed graph , the
maximum PMF for weight is related to as follows:

where the constants for the lower bound do not depend on the
graph.

Note that the upper bound follows easily because for a given
PMF , the total flow from to is , which
has to be less than the sum capacity of the links from to .
The above characterization was crucial to the design of subse-
quent approximation algorithms for many NP-hard problems; a
summary of these algorithms can be found in [15]. An important
case of the above result is when for all ,
i.e., the special case of uniform mulitcommodity flow. In this
case, we have

and

As we will see, using such characterizations we are able to
evaluate simple closed-form scaling laws for random networks
and provide computational lower and upper bounds for general
networks. The lower bounds are constructive and the approxi-
mation factor can be easily characterized.

III. COMBINATORIAL INTERFERENCE MODEL

A combinatorial interference model defines constraints such
that simultaneous data transmissions over only certain sets of
links (or edges) can be successful. This is a simplified abstrac-
tion of a wireless network because in reality whether or not mul-
tiple simultaneous data transmissions are successful depends on
the rate of data transmission and the interference power at the
various receivers. We first describe the combinatorial interfer-
ence model formally and illustrate it with example scenarios
where this abstraction is a reasonable one.

A. Model

A combinatorial interference model for a given set of wireless
nodes defines the following two objects.

(a) A directed graph where is the set of di-
rected links (edges) over which data can be transmitted.

(b) For each directed edge , is the set
of edges (directed links) that interfere with a transmission
on link . Data can be successfully transmitted on link
at rate if and only if no transmission on any link in

takes place simultaneously. In general, the rate
for a given power constraint can be different for different
edges. The proof methods and results in this paper extend
easily to this general case. However, for the ease of expo-
sition we will assume 4 for all .

4As long asW (e) is bounded below and above by a constant, scaling laws do
not change even though the bounds for a given number of nodes n will change.

We assume that for every edge , edge ,
i.e., the graph is essentially an undirected graph without the
interference constraints given by the sets ’s. This is a rea-
sonable assumption in many time-division and frequency-divi-
sion systems, where the channels are reciprocal [19]. The inter-
ference sets and may not be identical because
the transmissions which interfere with a signal received at node

may not be the same as transmissions which interfere with a
signal received at node .

The above definitions can be used to induce a dual conflict
graph as follows.

Definition 6: The dual conflict graph is a undirected graph
with vertex set and edge set , where an

edge exists between and if and cannot
transmit simultaneously due to interference constraints. Thus,
each link is connected to all links in .

For the rest of the section, to simplify notation, we will sup-
press the explicit dependence of all quantities on the combina-
torial interference model parameterized by the graphs and

. Let us denote the node degree and the chromatic number5

of the dual conflict graph by and ,
respectively. Note that . Let , ,
be the set of all possible link sets that can be active simul-
taneously, i.e., simultaneous transmissions on all the links in

at rate are feasible for the given interference
model. Each corresponds to a vector , where

. Let be the convex hull of all such vectors
. Thus, is the set of all vectors such that link capaci-

ties (for link ) can be obtained by time sharing between
the ’s for the given interference model. We then define the ca-
pacity region to be the set of traffic matrices which can be routed
over the graph such that each edge has capacity

, for some . The formal definition is as follows.

Definition 7 (Capacity Region ): The capacity region is
the set of traffic matrices such that the following set
of conditions are feasible for some :

(1)

where for ; the variables are
.

Thus, the capacity region consists of all traffic matrices which
can be supported using a transmission scheme which is a combi-
nation of routing and link scheduling (time-sharing between the
sets ). We now illustrate this capacity region by a couple of
special cases corresponding to widely used models for wireless
networks.

5The chromatic number of a graph is the minimum number of colors needed
to color the nodes of the graph such that no two nodes which are connected by
an edge share the same color.
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1) Protocol Model: The protocol model parameterized by
the maximum radius of transmission , and the amount of ac-
ceptable interference , is defined in [1] as follows.

(a) A node can transmit to any node if the distance between
and , , is less than the transmission radius .

(b) For transmission from node to to be successful, no
other node within distance ( , a constant)
of node should transmit simultaneously.

The corresponding definitions of and follow. A di-
rected link from node to node is in if . For a link

, let denote the transmitter and let denote the re-
ceiver. Then

Thus, the protocol model is a special case of the combinatorial
interference model.

2) Signal-to-Interference-and-Noise Ratio (SINR) Threshold
Model: Assume that all transmissions occur at power , and
the channel gain from the transmitter of node to the receiver
of node is given by , i.e., if node transmits at power , the
received signal power at node will be . A signal-to-inter-
ference-and-noise ratio (SINR) threshold model is parametrized
by a threshold such that a transmission from node to node
is successful if and only if the SINR is above , i.e.,

For example, if we assume that each link transmits Gaussian
signals and that the Shannon capacity on each link is achievable,
then the threshold is given by (assuming
for all as before).

We can define a corresponding combinatorial interference
model such that the feasible simultaneous transmissions de-
fined by the combinatorial interference model are a subset
of that described by the SINR threshold model. Consider
the set of directed links such that a link from node

to node is in if and only if . Also, define
. Then link can transmit at

rate if no other links in transmit simultaneously, if and
only if and are such that

(2)

It is easy to see that the above condition is satisfied if the fol-
lowing condition holds:

B. Results

We now derive results for the combinatorial interference
model which relate the maximum PMF to spectral properties
of the underlying graphs induced by the interference model.
Most of the results in this subsection use ideas from known
results. While important in their own right, these results and
their proofs motivate the results for an information-theoretic
setting for wireless networks with Gaussian channels. Also,

they provide alternate derivations for known capacity scaling
laws in random networks. In doing so, we derive a scaling law
for the conductance of a geometric random graph. This should
be of interest in its own right. Towards the end of this sub-
section, we obtain simple bounds on the delay in terms of the
hop-count. Hop-count and delay are equivalent measures for a
class of network models as discussed later in this subsection.

1) Bounds on PMF: For any , we denote the maximum
PMF on graph , where each edge has capacity , by

, and the corresponding min-cut by

We denote the corresponding quantities for the special case of
UMF by and , respectively. Then we have the fol-
lowing lemmas.

Lemma 3: is a continuous function for
.

Proof: See Appendix A.

Lemma 4: is a continuous function for
.

Proof: See Appendix A.

We now define a quantity for the combinatorial interference
model corresponding to the min-cut of a graph.

Definition 8: The min-cut for the combinatorial interference
model is defined as

Note that is well defined since is a continuous
function of , and is closed and bounded because it is the
convex hull of a finite number of points. The above definition
can be interpreted as the min-cut of the graph , where each
edge has capacity , and the vector is chosen from the
set such that it maximizes the min-cut of this graph . The
following result is an extension of Theorem 2 to combinatorial
interference models.

Theorem 3: is bounded as

(3)

Proof: Since is closed and bounded, it follows from
Lemma 4 that there exists such that .
Then, using Theorem 2, it follows that

Now, from Lemma 3, there is such that .
Using Theorem 2, it follows that

This completes the proof of Theorem 3.

Note that unlike the case for wireline networks (or equiva-
lently graphs), is a quantity hard to compute. Also, note that
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is a function of both and the dual graph . We next re-
late the maximum UMF to spectral properties of graphs
and .

Definition 9: The conductance of graph is defined as
follows:

where is the indicator function.

Corollary 1: Recall that is the chromatic number of the
dual graph . Then, is related to as follows:

Proof: Consider vertex coloring for the dual graph
. The chromatic number of is defined to be and

hence we need colors for vertex coloring of . Thus, we
have partitioned the set into subsets, say, , such
that the links in each subset can transmit simultaneously at rate

. Now let . Then, corresponding to uni-
form time sharing between the edge sets is given
by

which is a convex combination of . Hence,
for all , and . Then, using The-

orem 2 and the definition of conductance above

For the upper bound, note that for any , , i.e., is
lexicographically less than , and if .
Hence, . Then, the upper bound
follows again by a straightforward use of Theorem 2 and the
definition of conductance.

2) Average Delay: We now provide bounds on the average
delay for a class of traffic matrices. We measure delay in number
of hops, . The number of hops and the actual packet delay
are closely related notions. We explain this briefly as follows: If
the packet size is small enough, then by appropriate time divi-
sion of the capacity at nodes, the packet delay becomes essen-
tially equal to the number of hops taken by the packet. This is
similar to the model in, for example, [1], [2], and [4]. On the
other hand, if packet sizes are constant, then one needs a clever
scheduling scheme at the nodes in order to establish that the
delay is of the same order as the number of hops for a class of
networks in which each server or node gets to transmit once in a
constant number of time slots. A detailed analysis for this case
for grid networks can be found in [20].

We now characterize the number of hops. In order to do so, we
restrict ourselves to periodic link scheduling schemes (similar
arguments extend to any ergodic scheduling scheme as well).
For fixed networks, is the convex hull of the set , which
has a finite cardinality. Hence, any vector in can be written as a
linear combination of the ’s. Thus, to maximize the support-
able UMF, it is sufficient to optimize over transmission schemes

with periodic scheduling of links where the periodic schedule
corresponds to time division between the ’s.

We obtain the following general scaling of delay.

Theorem 4: Let be the total number of transmissions
by the wireless nodes on average per unit time.6 When data is
transmitted according to rate matrix , the average delay

, over all packets scales as

where

Proof: Let denote the set of all possible paths (without
cycles) in the network. The amount of flow generated at node
to be transmitted to node is . Let us consider an arbitrary but
fixed7 routing scheme where a fraction of the flow from node

to node is routed over path . We assume that the traffic
matrix is feasible. Hence, there exists a link scheduling and
routing scheme to support it. The total number of transmissions
per unit time at node is . Hence, the average
number of transmissions per unit time in the entire network,
denoted by , is

where is the number of hops on path . The total flow over a
path is , i.e., the fraction of total flow over path
is . Hence, the average number of hops traversed
by all packets is given by

We note that the above result uses very little information
about the specific underlying transmission scheme. For ex-
ample, consider the link scheduling scheme in the proof of
Corollary 1, where we partition the set of links into sub-
sets such that all the links in each subset can
transmit simultaneously. Note that this scheme can support
UMF . For this transmission scheme, every

link transmits at rate for at most fraction of the time.
Hence, we have . Thus, it follows from Theorem 4

that .

C. Computational Methods

We now describe computational methods to obtain bounds
on (the extensions to PMF are straightforward). As noted
earlier, for wire-line networks, the computation of is equiv-
alent to solving an LP. However, in a wireless network, the link
capacity is a function of the link schedule. Since, the number
of link schedules is combinatorial, determining the maximum
UMF is hard. Specifically, the question of checking the feasi-
bility of a rate vector was proved to be NP-hard by Arikan
[21]. In particular, there exists an interference model and graph

6The quantity S(n) is well defined since we consider periodic scheduling of
links.

7Here, we consider a fixed deterministic scheme. However, it is easy to see
that the result extends for any randomized scheme as well.



1466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

under which checking the feasibility of is NP-hard. Motivated
by this, here we address the question of providing a simple com-
putational method to bound . We use ideas of node coloring to
induce a link schedule in a way similar to, for example, [22]. In
particular, we can obtain an upper bound and a lower bound

for maximum UMF in polynomial time such that

The upper bound can be computed by solving the LP in (1) with
for all . For the lower bound, since the dual

graph has chromatic number , we can color the nodes of
(which are given by the set of wireless links) such that

no two nodes which share an edge share the same color. This, in
turn, induces a link scheduling scheme, where each link in is
scheduled for at least a fraction of time, and the resulting
is such that for all . Again, the lower bound
can be computed by solving the LP in (1) with for
all . It is easy to see that .

Now from Theorem 3, we know that .
Thus, we can now also bound as

Thus, the upper and lower bounds differ by at most a factor of
. In addition, using the algorithm in [18], we can find a

vector and the corresponding cut such that the
capacity of this cut

is within a factor of .

D. Application

We now illustrate our results for the combinatorial interfer-
ence model through an application to geometric random graphs.
The geometric random graph has been widely used to model
the topology of wireless networks after the work of Gupta and
Kumar [1]. However, it has been a combinatorial object of in-
terest for more than 60 years. We derive scaling laws for a com-
binatorial interference model which is more restrictive than the
protocol model. Note that the lower bound hence obtained is
also a lower bound for the protocol model. Specifically, the
lower bound is weaker by compared to the lower bound
obtained in [1]. We show that the scaling of the lower bound is
closely tied to conductance of a geometric random graph.

We first define the restricted protocol interference model. It
is also parameterized by the maximum radius of transmission ,
and the amount of acceptable interference .

(a) A node can transmit to any node if the distance between
and , , is less than the transmission radius .

(b) For transmission from node to to be successful, no
other node within distance (where is
a constant) of node should transmit simultaneously.

We now state a version of the well-known Chernoff bound
for binomial random variables that we use multiple times in this
paper.

Lemma 5: Let be independent and identically
distributed (i.i.d.) binary random variables with .
Let for . Then, for any

Specifically, for , we have

Consider wireless nodes distributed uniformly at random in
a unit square, and the interference model given by the restricted
protocol model with transmission radius . We denote such a
wireless network by . It is well known that for to
be connected with high probability, it is necessary to have

. We take and prove the
following bounds on the maximum UMF, , for the restrictive
protocol model; the lower bound is only weaker than
the result of Gupta and Kumar for the protocol model with

.

Lemma 6: For , with , max-
imum UMF is bounded as

Proof: To prove the above bounds, we obtain appropriate
upper and lower bounds on the quantity . These bounds along
with Theorem 3 imply Lemma 6. To obtain an upper bound on

, we evaluate the cut-capacity for a specific cut-set. For the
lower bound, we first, establish that a grid graph on nodes is
a subgraph of and then use the known conductance of
the grid graph.

First, consider the upper bound on . Specifically, consider
the square, say , of area (of side ) that is in the center
of the unit square. Let be the set of nodes that fall inside this
square. By definition, we have

Therefore, it is sufficient to obtain an upper bound on .
Corresponding to node , define a random variable

which is if is in , and otherwise. Since nodes
are placed uniformly and independently at random in the unit
area square, are i.i.d. binary random variable with

. Now, is the number of nodes in . Using
Lemma 5 with , it follows that for large enough ,

(and so ) with proba-
bility at least . Now, consider squares of sides

and , respectively, with their centers being
the same as that of . That is, . Let
and . This is illustrated in Fig. 1. Thus, is a
strip of width surrounding and is a strip of width on
the boundary and inside . Since, , it can
be easily shown that and have an area of .

Now, nodes that are in (i.e., located inside ) can only be
connected to those nodes in that lie in . Similarly, nodes
in that are connected to nodes must lie in . Thus, nodes
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Fig. 1. Construction of the regions S , S , and S .

that can communicate across the cut must lie within a
region of area . For the protocol model, if a node transmits,
nodes within distance of the receiver must not transmit.
That is, each transmission effectively silences nodes within an
area of . Thus, at any given time, the maximum number of
simultaneous transmissions between and is . This
along with implies that

For the lower bound, we identify a grid subgraph of
with . Consider a grid graph of

nodes with each node connected to one of its four neigh-
bors (with suitable modifications at the boundaries). The nodes
of are placed in a uniform manner in a unit square; each
node is at a distance from its neighbors. Now consider a
minimax matching between nodes of and randomly placed
nodes in the unit square, where a minimax matching is a perfect
matching between the nodes of and the nodes of
with maximum length minimized. Leighton and Shor [23] es-
tablished that the maximum edge length in a minimax matching,
say , is with probability at least .
Now we identify the subgraph (with grid graph structure)
of as follows. has all nodes. Consider the min-
imax matching between and . If a node of
is connected to node number of , then renumber it as
to obtain nodes of . Now by setting , clearly
a node and are connected in if they are connected in

. Thus, we have established that . Now, we will
focus only on the edges of that belong to and pro-
vide them with positive capacity by an appropriate communi-
cation scheme that is feasible for the restricted protocol model.
For this, note that in each node is connected to at most

nodes with probability at least (using the
Chernoff and Union bounds) for large enough . Hence, using
a simple time-division multiple-access(TDMA) scheme based
on vertex coloring of , each node gets to transmit once
in every time slots. This transmission can be

along any outgoing edge. Since we are interested in providing
positive capacity to only at most four outgoing edges, we have
established that there is a simple TDMA scheme which pro-
vides capacity to each edge of a grid subgraph of

. To complete the proof, we recall that the conductance
of a grid graph is [24]. That is

Now, putting all the preceding discussion together we have the
following:

(4)

We conclude the proof by noting that the upper and lower
bounds on along with Theorem 3 imply Lemma 6.

Now, we briefly discuss delay scaling. In [4], delay was de-
fined as the average number of hops per packet, and the packet
size was assumed to scale to an arbitrarily small value. For any
communication scheme feasible for the protocol model with
maximum transmission radius , the max-
imum number of transmissions per unit time is upper-bounded
as . Using this and Theorem 4 we obtain the fol-
lowing result immediately.

Corollary 2: The delay for any scheme achieving

is bounded above as

IV. GAUSSIAN FADING CHANNEL MODEL

In the preceding section, we assumed that the wireless net-
work is defined by two graphs and . We extended the
results of Leighton and Rao to wireless networks modeled by
a combinatorial interference model; this mainly exploited the
fact that all possible transmission schemes could be described
in terms of routing over a set of capacitated graphs, where the
set of edge capacity vectors belonged to the convex hull of a fi-
nite number of vectors. Thus, in this sense, the inherent discrete
nature of the model worked to our advantage.

While the combinatorial interference model can allow for ar-
bitrary scheduling and routing schemes, it does not model all
the degrees of freedom in a wireless network. Specifically, the
results are not information-theoretic. In this section, we provide
an information-theoretic characterization of the maximum PMF
in a wireless network with Gaussian fading channels. The tech-
niques for the combinatorial model can be easily extended to
obtain a feasible scheme and a lower bound on the maximum
PMF . However, for information-theoretic upper bounds we
have to work harder, especially to obtain a bound that relates to
the lower bound and allows us to quantify the gap.
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Our key contribution is in quantifying the suboptimality of the
UMF/PMF for a simple feasible scheme, and an upper bound on
the UMF/PMF for an arbitrary network topology, in terms of a
simple graph property. The bound is general when channel side
information (CSI) is assumed to be available only at the receiver
(see Theorem 5 and Corollary 3). For additive white Gaussian
noise (AWGN) channels, we state the result for PMF (see The-
orem 6) and quantify the gap for UMF when the signal-to-noise
ratio (SNR) is low enough (see Corollary 4). To the best of our
knowledge, this is the first such result which guarantees that a
feasible scheme achieves rates within a certain factor of an outer
bound for an arbitrary network topology. We also illustrate these
results through an application, in particular, by evaluating the
maximum UMF for a geometric random network. This recovers
many of the known results in a systematic manner.

Our main approach is as follows. We construct two directed
capacitated graphs and for the given wireless network.
The graph is such that the capacity (defined appropriately
later) of each cut in upper-bounds the corresponding cut-
capacity in the wireless network. The graph is such that there
exists a communication scheme that simultaneously achieves
the capacity of each edge in , and the ratio of capacity of each
cut in and is bounded above by a quantifiable term. This
leads to an approximate characterization of PMF in an arbitrary
wireless network with Gaussian fading channels. Moreover, the
feasible scheme that induces the capacities in supports PMF
which is within a quantifiable factor of the optimal.

A. Channel Model

This is similar to the model in, for example, [10]. We have
wireless nodes with transceiver capabilities lo-

cated arbitrarily in a plane. Node transmissions happen at dis-
crete times, . Let be the signal transmitted by node

at time . We assume that each node has a power con-
straint8 such that

Then , the signal received by node at time , is given by

(5)

where denotes a complex zero-mean white Gaussian noise
process with independent real and imaginary parts with variance

such that are i.i.d. across all . Let denote the
distance between nodes and . Let be such that

where is a stationary and ergodic zero mean complex
Gaussian process with independent real and imaginary parts and
variance , i.e., we assume ’s to be circularly sym-
metric Gaussian random variables. This models channel fluctu-
ations due to frequency flat fading. Also, is a monotonically
decreasing function that models path loss. It satisfies
for all . We also assume that the ’s are independent.

8For notational simplicity we assume that each node has the same power
constraint. The general case, where each node has different maximum average
power can be handled using identical techniques.

B. Graph Definitions

Consider the following two graphs induced by a wireless net-
work of nodes:

(1) is the fully connected graph with node set ;
(2) is the graph where each node is connected to

all nodes that are within a distance of . Let denote
the edge set of . Let be the maximum vertex
degree of . Finally, define

is connected
C. Preliminaries

We utilize the following two simple lemmas in the analysis
in this section.

Lemma 7: Given

Proof: See Appendix B.

Lemma 8: For any , ,
.

Proof: See Appendix B.

D. Results

We obtain bounds on the maximum PMF for three different
cases:

(1) fading channel with AWGN, and channel side informa-
tion (CSI) available only at the receiver (Theorem 5 and
Corollary 3);

(2) deterministic (no fading) AWGN channel (Theorem 6
and Corollary 4); and

(3) fading channel with AWGN, and CSI available at both
the transmitter and the receiver (Theorem 7).

The exact bounds for the above cases are different, but the
analysis and bounding techniques are similar.

1) Random Fading With Rx-Only CSI: We first obtain bounds
on the maximum supportable PMF for Gaussian channels with
random fading under the assumption that CSI is available at the
receiver, but not the transmitter. We then relate the bounds for
PMF, and show that the gap can be quantified well, and under
very general assumptions. We note that this is the case for which
we can obtain the strongest results.

Theorem 5: With CSI available only at the receivers, is
bounded as

Theorem 5 provides bounds on which relate to the “cut
capacity” of appropriate capacitated graphs. Specifically, we
can compute the information-theoretic bounds (for any PMF)
in polynomial time using flow arguments, and by solving an LP
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as detailed in Section IV-E. However, it is not clear how tight
these bounds are. We now quantify the gap between the upper
and lower bounds.

Corollary 3: For any , denote

Then

where

and

Note that both and are decreasing functions of ,
and is an increasing function of . Also, since power typ-
ically decays as for , while for uniformly dis-
tributed networks grows only linearly with , the decay of

and is much faster than the growth of . Hence,
for large enough, the gap is dominated by the term

. Specifically, assume that there exists an such
that the graph is connected, where

. Then the above bound for
UMF reduces to [25]

-

where

-

and is such that .
We provide the proofs of Theorem 5 and Corollary 3 below.

The main idea in the proof of Theorem 5 is to neglect interfer-
ence to upper-bound-achievable rates on links, and to construct
a transmission scheme to induce achievable rates on the links. In
particular, the scheme that we construct consists of time sharing
between multiple transmission schemes, each of which enables
direct transmissions between nodes that are separated by at most
distance . Then the lower bound on is obtained by routing
over graph , where each edge has a capacity given by this
time division scheme.

Proof: [Theorem 5] We first prove the upper bound. Fol-
lowing the steps in the proof of Theorem 2.1 in [10] and using

for , we obtain for

(6)

Now, for any PMF , it must be that

Hence, for any such PMF , the upper bound in the
theorem holds.

To establish the lower bound, we construct a transmission
scheme for which the PMF is greater than or equal to that in the
lower bound. For , consider the graph on
the nodes defined above. We use to denote the
maximum vertex degree of the graph . Now, consider
the following transmission scheme. A node can transmit to a
node only if . Also, when a node transmits, no node
within a distance of the receiver can transmit. This is
illustrated in Fig. 2. Thus, when a link is active, at
most nodes are constrained to remain silent, i.e.,
at most links are constrained to remain
inactive. Hence, the chromatic number of the dual graph is at
most . In addition, we assume that the
signal transmitted by each node has a Gaussian distribution. For
any given link that transmits data at a particular time, we treat all
other simultaneous transmissions in the network as interference.
Now focus on any one link, say link between node and

, without loss of generality. We claim the following.

Lemma 9: For the above scheme, the following rate on link
is achievable

We prove Lemma 9 in Appendix B. We now explain how it
implies the proof of Theorem 5. A similar analysis holds for
other links in as well. Thus, for graph the following rate
is jointly achievable on each link :

Now given the capacitated graph , we can use routing over
(see Section II-B) to obtain a PMF that is lower-bounded by the
following quantity:

This implies the following lower bound on :

This is precisely the lower bound in the statement of Theorem 5.

Proof: [Corollary 3] Consider any such that ,
. Then

(7)
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Fig. 2. Transmission scheme for lower bound in case of Rx-only CSI. Left. A node can transmit to any other node within distance r. Right. No node within distance
r(1 + �) of the receiver (node B) can transmit at the time when node A transmits to node B.

where the second line follows from the concavity of the log
function, Jensen’s inequality, for , and
definition of . Thus

(8)

The upper bound then follows from the upper bound in
Theorem 5.

Next, we consider the transmission scheme that led to
the lower bound in (23) with . Note that in (23), we
used the term as a bound on the interference
power. However, here we consider the actual interference

for a transmission from to .
Note that . Now, by Lemma 8, we have

(9)

Using (10) and (12) along with the lower bound obtained via
the time-division scheme that led to (23), the lower bound in
Theorem 5 gives us

(10)

2) AWGN Channels: We now consider an AWGN channel
without fading, i.e., we have w.p. , .
We first obtain the following set of bounds on maximum PMF
using standard arguments.

Theorem 6: The maximum PMF is bounded as

Next, we present a corollary of Theorem 6 which character-
izes the tightness of the above bound for UMF for low enough
SNR.

Corollary 4: Define

for all

and

Then, for

where

We now present the proofs of Theorem 6 and Corollary 4.

Proof: [Theorem 6] We first prove the upper bound. In
order to bound the sum-rate across each given cut, we refer to
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the proof of the max-flow min-cut lemma in [9], which yields
for any and

where . We therefore deduce that

since . Finally, we obtain

Now, for any PMF , it must be that

Hence, for any such PMF , the upper bound in the
theorem holds.

To establish the lower bound, we construct a transmission
scheme for which the PMF is greater than or equal to that in the
lower bound. For , consider the graph on
the nodes defined above. We use to denote the
maximum vertex degree of the graph . Now, consider
the following transmission scheme. A node can transmit to a
node only if . Also, when a node transmits, no node
within a distance of the receiver can transmit. Thus,
when a link is active, at most nodes
are constrained to remain silent, i.e., at most
links are constrained to remain inactive. Hence, the chromatic
number of the dual graph is at most . In
addition, we assume that the signal transmitted by each node has
a Gaussian distribution. Then, subject to the maximum average
power constraint, for any node pair , such that , the
following rate is achievable from :

(11)

Note that the interference is due to at most nodes and all the
interfering nodes are at least a distance away from the
receiver. We now consider routing over the graph , where
each edge has capacity . The lower bound then follows
from the lower bound in Theorem 2.

Proof: [Corollary 4] Consider any cut defined by .
Due to the symmetry of the upper bound in Theorem 6, without

loss of generality, assume . Consider any such that
. Then

(12)

where the last step follows from the definition of , and
for . Hence, the upper bound in the

corollary follows from the upper bound in Theorem 6. Since we
assume for all and , from Lemma 7, we have

(13)

For the lower bound, consider the choice of and
for the scheme described in the proof of Theorem 6.

Then, the interference during data transmission from to ,
. Now, Lemma 8 implies

that

(14)

Using an appropriately modified lower bound in Theorem 6 for
the choice of , , it follows that

(15)

where the second step follows from (13). The lower bound in
Theorem 6 then implies the lower bound in the corollary. This
completes the proof.

3) Random Fading With CSI at Both Tx and Rx: We now ob-
tain bounds on the PMF for a Gaussian channel with random
fading when CSI is available at both the transmitter and the re-
ceiver. Qualitatively, these bounds are very similar to the case
of deterministic AWGN channels. The main result is as follows.

Theorem 7: With CSI at both transmitters and receivers,
is bounded as follows:

The lower bound for the receiver only CSI case is a (weak) lower
bound for this case as well.
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Proof: The upper bound follows again from the proof of
Theorem 2.1 in [10], from which we deduce that for any

where is the th row of . Since is maximum when
for all , we obtain, following the steps of

the proof of Theorem 6

so the upper bound on follows from Theorem 2.

E. Computational Methods

We discuss the implications of the bounds for the case of CSI
availability at only the receiver as stated in Corollary 3. Similar
implications follow for the case where CSI is available to both
transmitters and receivers as well.

Corollary 3 shows that an upper bound on can be obtained
via the maximum PMF on graph , where each edge
has a capacity , and there is no interference;
specifically, times the PMF thus computed for is an
upper bound on . The lower bound is obtained via routing on

with edge having capacity . Hence, the
PMF on is a lower bound on . Both the above compu-
tations can be done by solving an LP in polynomial time. More-
over, the ratio of the bounds is quantified in Corollary 3. We
note that such an approximation ratio could be obtained easily
for the combinatorial interference model using node coloring ar-
guments. The arguments here are more complicated, as detailed
in the proof of Corollary 3.

F. Application

We now apply the information-theoretic characterization of
PMF in the previous subsection to obtain a scaling law for av-
erage UMF in a geometric random network with fading chan-
nels, and when CSI is available at the receivers. The scaling law
we obtain is along similar lines to those that exist in the liter-
ature. However, it illustrates that using very general methods,
we can obtain upper and lower bounds which are tight. Sim-
ilar bounds can be obtained when CSI is available both at the
transmitter and the receiver or when the channels are AWGN
channels.

We consider a geometric random graph model with a constant
node density: nodes are placed uniformly at random in a torus
of area (note that this is different from the standard model
of torus of unit area). Thus, the distance between two nodes
is a random variable taking values in . We assume
that all nodes have the same transmission power equal to , i.e.,

Fig. 3. Cut for obtaining upper bound.

for all . We have the following result charac-
terizing .

Lemma 10: Consider the Gaussian channel model with
random fading and CSI available only at the receivers. Let

, , and . Then for a geometric
random graph with constant node density (described above),
the average (over random position of nodes) is bounded as

if for some strictily positive constants
(independent of ) for all . (Note that the

condition is for the normalized channel gains ’s and not the
actual gains ’s.)

Proof: We use Theorem 5 to evaluate the bounds. First, we
obtain an upper bound by evaluating the bound of Theorem 5
for a specific cut . Then, we evaluate lower bound by
relating it to an appropriate grid-graph as in Lemma 6.

Now, we consider the upper bound. Consider a horizontal line
dividing the square of area into equal halves. Let be set of
nodes that lie in bottom half, and so is the set of nodes that
lie in the top half, as shown in Fig. 3. From Theorem 5, we have

(16)

where we have used Jensen’s inequality for all
, and the hypothesis of the lemma. Since, the nodes are

thrown uniformly at random, the expectation of each term in
(16) for a pair is the same. Using linearity of expectation,
we obtain that
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(17)

where we used the fact that for the last integral is bounded
above by a constant. The above evaluation can be justified as
follows. First note that . Given

, node in the bottom rectangle and node
in the top rectangle are uniformly distributed. Now, consider

a thin horizontal strip of width and length at distance
below the horizontal line dividing the square (and inducing
, ). The node belongs to this strip with probability

. Now, node is at distance at least from node .
Consider a ring of width , centered at node ’s position and
of radius . The area of this ring is . The probability
of node being in this ring is bounded above by . When
the above described condition is true, nodes and are at dis-
tance . Integrating over the appropriate ranges justifies the final
outcome (21).

Now, it is easy to see that under any configuration of nodes,
since for any , , and

elementary arguments. Let event .
Using Chernoff bound, it is easy to see that (with appropriate
selection of constants in definition of ) for large enough , we
have

Using this estimate and bound we obtain that

(18)

Next, we prove the lower bound. For this we construct a
graph with achievable link capacities for which the average

is lower-bounded as claimed in the lemma. Consider
. Then the corresponding , which is the

geometric random graph , is connected with high prob-
ability (at least by appropriate choice of constants
in selection of ). For this choice of , using the Chernoff and
Union bounds it follows that with probability at least

Again, we can identify a grid graph structure as a subgraph
structure of based on the argument used in Lemma 6. De-
note the edges of this grid subgraph structure as . We note that

edges are incident on each of the nodes that belong to

(which is a property of the grid-graph structure). Next, we de-
sign a feasible transmission scheme for which each edge in
can support a transmission rate of .

Specifically, we consider a TDMA schedule for the graph
similar to that described in the proof of the lower bound for The-
orem 5. It is easy to see that can be vertex colored using

colors. We use a randomized scheme to do TDMA
scheduling as follows: in each time-slot, each node becomes
tentatively active with probability and remains inac-
tive otherwise. If a node becomes tentatively active and none
of its neighbors in is tentatively active, then it will become
active. Else, it becomes inactive. All active nodes transmit in
the time-slot simultaneously. It is easy to see that each node
transmits for fraction of the time on an average.
The randomization here is used to facilitate the computation of
a simple bound on the average interference experienced by a
node due to transmissions by nodes that are not its neighbor.

Now under the above vertex coloring, each node gets to
transmit once in time-slots on average at power

. We wish to concentrate on trans-
missions for edges that belong to , which are a subset of
edges of . For any such transmission, say from with

, according to the above coloring of , no other
node within distance of transmits simultaneously. Also,
any node that is at least a distance away from can be active
with probability at most . Hence, the average power
corresponding to the interference received by node , say ,
can be bounded above as follows:

(19)

where we used the fact that each node transmits at power
for fraction of the time and

. By another application of Chernoff and
Union bounds, it can be shown that the number of nodes in an
annulus around node with unit width and radius for ,

, is with probability at least . Then
it follows that

where we have used fact that . Using this in (19), we
obtain that with probability at least we have

(20)

That is, as for . Thus, by selection of large
enough , can be made as small as possible. That is, when
transmission from happens, the average noise received
by node due to other simultaneous transmission is very small,
say less than for some small enough .

Given this, the arguments used in Lemma 9 imply that when
transmits to at power once in time-slot,
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considering other transmissions as noise, we obtain that the ef-
fective rate between is lower-bounded as

Now, is independent of everything else and

for some positive constants , as per our hypothesis. There-
fore, use of Lemma 8 implies

Further, for small enough . Therefore, another use of
Lemma 8 implies that

Now

where we have used the fact that and is monotoni-
cally decreasing. For , . Therefore,
for

Since , we have established that the
effective capacity of transmissions for each edge under the
above described TDMA scheme is . That is, each
edge of gets capacity at least . Now recall that
a grid graph with unit capacity has lower-bounded as

. Hence, using this routing of UMF along edges

of with capacity we obtain that

By careful accounting of probability of relevant events above
and the Union bound of events will imply that the above stated
lower bound on holds with probability at least . Since

with probability , it immediately implies the desired
lower bound of the lemma

This completes the proof of Lemma 10.

V. DISCUSSION

In this paper, we considered the question of characterizing the
PMF for a very general class of networks. For the simpler com-
binatorial model, we saw that the results for wireless networks
follow as simple extensions of those obtained by Leighton and
Rao for directed capacitated graphs. For the more interesting

information-theoretic setting, we obtain similar characteriza-
tions—the extensions are nontrivial in this case and involve the
construction of appropriate capacitated graphs to obtain lower
and upper bounds on the PMF. The lower bound is constructive,
and the simple transmission scheme which achieves it is guaran-
teed to achieve PMF within an approximation factor which can
be obtained in closed form. As a by-product, we obtain scaling
laws for geometric random networks for the protocol model and
for the information-theoretic case. While most of the results for
geometric random networks were known, we provide deriva-
tions which are simpler and more systematic.

The characterization of the maximum PMF in terms of the
min-cut of appropriate graphs is useful to obtain scaling laws
for random networks, and provides intuition as to which prop-
erties of the underlying network graphs determine the maximum
supportable PMF. However, the computation of the min-cut of
a graph is hard. Hence, we provide computational bounds for
the maximum PMF as well; these bounds can be computed in
polynomial time by solving linear programs. We characterize
the approximation bound in closed form. One implication is that
for the first time, lower bounds are available for a very general
class of networks with guaranteed approximation bounds.

APPENDIX A

Proof: [Lemma 2] From the hypothesis of the lemma, it is
clear that for at least fraction of all permutations
in , the permutation flow is feasible. By definition and
symmetry of permutations, we can write

Let us define the following indicator function:

is supportable
otherwise.

Consider a uniform time sharing scheme between all the per-
mutation flows. Then the following traffic matrix is supportable:

Thus

as

Step uses triangle inequality for norms and step uses
for any permutation matrix .
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Proof: [Lemma 3] Consider a cut such that
. Then, the following is a continuous function

of

The lemma then follows since the minimum of a finite number
of continuous functions is continuous.

Proof: [Lemma 4] For and any define the set

To prove the lemma, we have to show that for any , there
exists a such that for all , .
For consider

and

Then for any , it follows from (1) that
. It only remains to show that . For this note

that for all , where is as follows:

otherwise.

Now by scaling all the variables by in the LP (1) for
and using the monotonicity of in , we can see that

for all . If , we
are done. If not, choose , which gives

, and so we are done.

APPENDIX B

Proof: [Lemma 7] For any ,
, so

(21)

(22)

where (22) follows from Cauchy–Schwarz inequality.

Proof: [Lemma 8] Define

Note that for and .

Proof: [Lemma 9] We will use the following result, that
follows directly from Theorem 1 in [26].

Theorem 8: Consider a complex scalar channel where the
output when is transmitted is given by

where is a complex circularly symmetric Gaussian random
variable with unit variance, and satisfies . Also,

is zero mean and i.i.d. over channel uses. If is a complex
zero-mean circularly symmetric Gaussian random variable with

, then .

We consider a transmission scheme where the signal trans-
mitted over each link, when active, is a complex zero-mean
white circularly symmetric Gaussian with variance . More-
over, we assume that the transmissions on all links are mutually
independent. Let denote times at which link is
scheduled. Hence, at any such time , the re-
ceived signal at node is given by

Using the mutual independence of transmissions and zero mean
property along with the construction of the scheduling scheme

From Theorem 8

(23)

Since the channel is assumed to be i.i.d. over channel uses, a
random coding argument can be used to achieve this rate with a
probability of error that goes to zero as the block length goes to
infinity [12, Ch. 10].

Combining this with the time sharing between different sets
of links described in the proof of Theorem 5, since each link gets
to transmit at least once in times slots, or at least fraction
of the time, it follows that
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