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Abstract—A network of nodes communicate via point-to-point
memoryless independent noisy channels. Each node has some real-
valued initial measurement or message. The goal of each of the
nodes is to acquire an estimate of a given function of all the ini-
tial measurements in the network. As the main contribution of this
paper, a lower bound on computation time is derived. This bound
must be satisfied by any algorithm used by the nodes to commu-
nicate and compute, so that the mean-square error in the nodes’
estimate is within a given interval around zero. The derivation uti-
lizes information theoretic inequalities reminiscent of those used
in rate distortion theory along with a novel “perturbation” tech-
nique so as to be broadly applicable. To understand the tightness of
the bound, a specific scenario is considered. Nodes are required to
learn a linear combination of the initial values in the network while
communicating over erasure channels. A distributed quantized al-
gorithm is developed, and it is shown that the computation time es-
sentially scales as is implied by the lower bound. In particular, the
computation time depends reciprocally on “conductance”, which is
a property of the network that captures the information-flow bot-
tleneck. As a by-product, this leads to a quantized algorithm, for
computing separable functions in a network, with minimal compu-
tation time.

Index Terms—Computation time, conductance, distributed com-
puting, noisy networks, quantized summation.

I. INTRODUCTION

W E consider a network of nodes communicating via a net-
work of point-to-point memory-less independent noisy

channels. Each node has a single real-valued initial measure-
ment or message. The goal of each of the nodes is to acquire an
estimate of a given function of all the initial measurements in
the network.

We seek to understand the limitations imposed by the com-
munication constraints on the nodes’ performance in computing
the desired function. The performance is measured by the mean-
square error in the nodes’ estimates of the desired function. The
communication constraints consist of: 1) the topology of the
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network, that is, the connectivity of the nodes and 2) the noisy
channels between nodes that communicate. In order to capture
the limitation due to the communication constraints, we assume
that that the nodes have unlimited computation capability. Each
node can perform any amount of computation as well as en-
coding and decoding for communication.

As we discuss below, the formulation of Section II is not
the typical information theoretic formulation for networks. Our
setup is more similar to certain distributed computation formu-
lations. Still, we use information theoretic inequalities to derive
lower bounds on information exchange between nodes neces-
sary for the mean-square error in the nodes’ estimates to con-
verge to zero.

Both our technique and results are different from those of
the distributed computation results. In Section V, we derive a
lower bound on computation time that must be satisfied by any
algorithm used by the nodes to communicate and compute, so
that the mean-square error in the nodes’ estimates is within a
given interval around zero. The bound is in terms of the channel
capacities, the size of the desired interval, and the uncertainty in
the function to be computed. To obtain this bound, we develop
a novel “perturbation” technique as explained in Section V-C.
This allows us to apply our method to obtain non-trivial lower
bound for any functional computation setup.

Our lower bound is a universal lower bound that holds for any
causal distributed algorithm that can be used by the nodes to at-
tain their goal of function computation. We make minimal as-
sumptions on how a node encodes messages sent over the chan-
nels or decodes messages received via the channels. Further-
more, we make minimal restrictions on how the node uses the
information it possesses to compute or update its estimate. Es-
sentially, we only require that the encoders, decoders, and esti-
mators are measurable and causal mappings, the output depends
only the node’s initial measurement and the messages received
in the past.

As a result, our lower bound provides a means to assess the
optimality of distributed causal computation algorithms. No al-
gorithm can achieve a desired mean-square error in a compu-
tation time that is smaller than the lower bound. This limita-
tion is due to the distributed nature of the algorithm, specif-
ically, the need to communicate with nodes via a network of
noisy point-to-point channels. Therefore, any algorithm that has
a computation time that is equal to the lower bound is an op-
timal distributed algorithm for the given network topology. We
illustrate this in the remainder of the paper for a scenario where
nodes are required to learn a linear combination of the initial
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values in the network while communicating over block erasure
channels.

In Section VI, we consider a scenario where nodes are re-
quired to learn a linear combination of the initial values. Our
lower bound suggests that in this scenario, the computation time
depends reciprocally on a “conductance-like” term. This term is
equal to “conductance” when the the channel from node to
node has the same capacity as the channel from node to
. Conductance essentially captures the information-flow bot-

tleneck that arises due to topology and channel capacities. The
more severe the communication limitations, the smaller the con-
ductance. When nodes communicate over erasure channels, our
conductance is identical to the graph-theoretic conductance that
arises in the analysis of mixing times in Markov chains.

To establish the tightness of our lower bound, we describe
an algorithm for computation linear combination of the initial
values when nodes communicate over block erasure channels.
For this algorithm, the computation time matches the lower
bound. The algorithm that we describe here can in fact be
more generally used for distributed computation of separable
functions, a special case of which is the sum. The desired
function, a sum, is simple, and the algorithm that we describe
has computational demands that are not severe. So, the time
until the performance criterion is met using this algorithm is
primarily constrained by the limitations on communication.

Indeed, we show that the upper bound, on the time until
this algorithm guarantees the performance criterion, depends
reciprocally on conductance. Hence, we conclude that the
lower bound we derive using information theoretic analysis is
tight in capturing the limitations due to the network topology.
Alternatively, one can interpret this tightness as the fact that
the algorithm we describe here is the fastest with respect to its
dependence on the network topology, as quantified by the con-
ductance. Thus, our distributed quantized algorithm answers a
question of recent interest on the design of the fastest possible
distributed algorithm for separable function computation, for
example, in the works on consensus, linear estimation and
distributed control.

A. Related Work

Our work has similarities with a vast body of works that
can be broadly categorized as distributed computation, signal
processing, information theory or control. Our formulation is
most similar to some formulations appearing in the distributed
computation and signal processing literature. Our approach of
finding a lower bound using information theoretic inequalities
and demonstrating a bound-achieving algorithm is similar to
work in the information theory literature. Our inspiration, for
using information theoretic tools on a formulation that is not
typical in information theory, comes from a similar approach
that appears in the control theory literature. Below, we highlight
the difference between our work and some works from the dif-
ferent fields mentioned above.

Our problem formulation is similar to certain formulations in
the distributed computation literature, like the distributed aver-
aging and consensus literature. Each node has an initial value,
a real number or vector, and needs to exchange data with its
neighbors in order to compute a function of the data in the net-
work. Results consist of a suggested algorithm together with an

analysis of the algorithm. For example, upper or lower bounds
are provided on the time or number of messages exchanged until
nodes compute a certain quantity with given accuracy [4], [16],
[23]. Or, conditions are provided so that nodes reach agreement
asymptotically in the number of algorithm iterations [3], [29],
[30]. In the cited work, communication is subject to topological
constraints, but perfect when present.

Recent studies explicitly assume imperfect communication of
some sort, in addition to the topological constraint of having di-
rect links with neighbors only. For example, in the average con-
sensus problem, all nodes are required to asymptotically agree
on the average of all the initial values in the network. In [2] and
[31], messages are quantized but transmission is noiseless. In
[14], messages are real-valued, but links between nodes may fail
probabilistically. In a parameter estimation problem considered
in [15], messages are quantized and links may fail probabilisti-
cally.

In all of these works, authors assume that each node updates
its estimate of the quantity to be computed by linearly com-
bining the previous estimate, received data, and other infor-
mation that the node possesses. The computation algorithm is
analyzed together with the encoding and decoding strategies,
such as the suggested quantization scheme. Asymptotic proper-
ties, such as convergence to a consensus value, boundedness of
mean-square error, or unbiasedness of the estimate are exhib-
ited.

In contrast to the consensus literature, our goal is not for
nodes to ultimately agree on the same value. Rather, the goal is
for the nodes to compute a function of their measurements with
desired accuracy. All nodes need not obtain the same estimate
of the function. Our bounds are not asymptotic in the number
of algorithm iterations; the accuracy appears explicitly in the
bounds on computation time.

Furthermore, to obtain an optimal algorithm for summation
over block erasure channels, we do not constrain the node up-
date rule, for the estimate of the sum, to be linear. In fact, when
exchanging information, nodes need only keep track of the min-
imum of received values. So, nodes need not keep track of du-
plicate messages or sender identity. Another consequence of not
limiting our updates to be linear is that the quantization scheme
that we propose is relatively simple.

Another perspective is the information theoretic one. Each
node has access to a sequence of samples from its source. Al-
ternatively, the node receives data at some bit rate. In classical
network information theory, the goal is for nodes to reliably ex-
change these samples [5]. In [9], the authors derive information
theoretic bounds on the number of bits that must be exchanged
for nodes communicating via noiseless channels to acquire each
other’s data. In [1], the authors consider a point-to-point net-
work of finite-rate noiseless channels. This network connects
one set of nodes, the source nodes, to another, the destination
nodes. Source nodes need to transmit their data sequences to the
destination nodes. The admissible rate region is characterized.

Recent work investigates a variation on these information the-
oretic formulations. Nodes exchange information for function
computation rather than transmission of data. For example, in
[25] there is one encoder, a noiseless finite-rate channel and a
decoder with side information. The authors determine the com-
pression rate region so that the decoder can obtain a function
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of its side information and the source. In [24], the authors in-
vestigate the “computation capacity” region so that a decoder
receiving information via a multiple access channel obtains a
function of the sources.

Our formulation is different in several ways. For example, for
our lower bound for summation, each node has at time zero a
single real-valued initial value, that is, infinite bits. Unlike our
work, the results in [1], [24], and [25] hold asymptotically in the
block length (number of source samples or length of messages
sent over the channel, depending on the formulation).

But, like our work, results typically consist of two parts. First,
there are lower bounds. These are derived using information
theoretic inequalities and properties. Second, there is an algo-
rithm, or proof of existence of an algorithm or code, achieving
the lower bound.

Like our work, there is a common message that appropriate
processing of data improves performance. As put in [1], “net-
work coding has to be employed to achieve optimality”. In
[25], for certain functions, the rate region for computation is
larger than the rate region for data exchange (equivalently,
computing the identity function). That is, for computing certain
functions, transmission can be made more efficient than simply
transmitting the source. In [24], the authors show that for
computation over multi-access channels, codes that utilize joint
source-channel strategies outperform strategies which encode
the source and channel messages separately. Our optimal algo-
rithm requires that data is processed at nodes as they exchange
messages; in particular, a node passes on the minimum of all
the messages it receives.

In a similar flavor as our work, [10] and [12] provide an al-
gorithm for computation together with an algorithm-indepen-
dent lower bound that establishes optimality of the proposed al-
gorithm. In [10], each node in the network has one bit. Nodes
broadcast messages to each other via binary symmetric chan-
nels. The goal is for a fusion center to compute the parity of all
the bits in the network. Gallager proposes an algorithm that can
be used while guaranteeing a desired probability of error. He
exhibits an upper bound that is a constant multiple of the bits
that must be transmitted per node. Recently, it has been shown
in [12] that this algorithm is optimal. The authors produce an
algorithm-independent lower bound that is of the same order as
the upper bound.

Several formulations and results relevant to computation in
wireless sensor networks can be found in a detailed survey by
Giridhar and Kumar [11].

In summary, our formulation is similar to that of distributed
computation, but our approach is similar to that of informa-
tion theory. We use information theoretic inequalities, reminis-
cent of those of rate-distortion theory, in a different setting with
different objectives. In particular, we have a network of nodes
whose objective is to compute a given function of the nodes’
data, rather than to communicate reliably to each other their
data. Hence, our results are quite different from results within
either of these categories.

We capitalize on Martins’ successful use of information the-
oretic tools in [17]–[20] to characterize fundamental perfor-
mance limits of feedback control systems with communication
constraints. In our setting, the information theoretic approach
captures fundamental performance limitations that arise in the

network due to the communication constraints. The derivation
of the lower bound is independent of the communication algo-
rithm used by the nodes. Therefore, the lower bound enables us
to characterize the effect of the network structure on algorithm
running time. We propose an algorithm to compute the sum of
initial conditions for nodes exchanging information over block
erasure channels. By showing that this algorithm’s computa-
tion time achieves the lower bound, we conclude that the lower
bound is indeed tight in capturing the network constraints.

B. Organization

In the next section, we describe the problem formulation and
necessary formalities. In Section III we state the two main re-
sults of this paper. The first result is a general lower bound on the
computation time for nodes communicating over a network of
point-to-point independent memory-less channels. The second
result consists of two parts. First, we specialize the general lower
bound to the case of nodes computing the sum of their initial
values. Second, we describe a quantized algorithm for com-
putation of sum and show that its computation time achieves
our lower bound with respect to the dependence on the network
structure.

In Section IV, we illustrate how network topology, through
conductance, affects the computation time. We compare our
quantized algorithm with the popular linear iterative algorithms.
The comparison suggests that for network structures with small
conductance our algorithm outperforms the popular algorithms.

In Section V, we prove our main theorem on the general lower
bound. Then, we illustrate the use of a novel perturbation argu-
ment, introduced in Section V-C, to obtain a non-trivial bound
when nodes compute any general function. In Section VI-A, we
derive the lower bound for the computation of the sum of ini-
tial values; the computation time scales reciprocally with con-
ductance. In Section VI-B, we describe an algorithm that can
be used to compute the sum via block erasure channels, where
the block length depends on the number of nodes. We derive an
upper bound on its computation time; we show that this upper
bound also scales inversely with conductance. This establishes
the optimality of our quantized algorithm for computation of
summation in terms of its dependence on the graph structure.

II. PROBLEM DESCRIPTION

A network consists of nodes, each having a random initial
condition or value. We represent the initial condition at node
by the random variable . A realization of the random vari-
able will be denoted by lower-case letters, . Let repre-
sent the vector of all the initial condition random variables,

.
Each node is required to compute a given function of all

the initial conditions, with continuous support. That is, node
is required to estimate , and is a continuous

random variable. We let . Suppose that
nodes 1 to belong to set . Whenever we use a set as a sub-
script to a variable, we mean the vector whose entries are that
variable subscripted by the elements of the set. For example,

.
We assume that time is discretized into intervals, and enu-

merated by positive integers, . During each time step,
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a node can communicate with its neighbors. At the end of time-
slot , node uses the information it has received thus far to
form an estimate of . We denote this estimate by . The
estimates of all nodes in the network at the end of time slot

are denoted by the vector .
And, the estimates of nodes in set are denoted by

.
The nodes communicate via point-to-point noisy channels.

The network structure is described by a graph, ,
where is the set of nodes and is the set of edges, .
If node communicates with node via channel with capacity

, then . If , we set . We
assume that the graph is connected.

We assume that all channels in the network are independent,
memory-less and are operating in discrete-time. For each
channel, one channel symbol is sent per unit time. Each node
generates an input for its encoder every time units. For
simplicity, we assume that . Thus, by the end of time ,
each node has generated its th estimate, , based on the
received symbols and its initial value.

A. Features of the Formulation

Our formulation (and results) are appropriate when high ac-
curacy computation must take place over networks with severe
communication constraints. These include cases where

1) channel capacities are diminished, due to loss of transmis-
sion power, for example, or;

2) network topology creates information-flow bottlenecks.

B. Notation

The differential entropy of is denoted by . The mutual
information between and is denoted by . Most
of the definitions and properties we will need can be found in
texts like [5]. When indicated, we will need to use the most
general definition of mutual information. It can be used when the
random variables are arbitrary ensembles, not necessarily both
continuous or both discrete [26, p. 9]. The conditional mutual
information is similarly defined; see [26, Ch. 3].

Finally, when the argument in is a vector of length , for
example, , it is interpreted as the joint differ-
ential entropy . Similarly, when the arguments in

are vectors of length , for example and , it is to be
interpreted as .

III. MAIN RESULTS

This section contains the formal statements of our main
results. The first result, stated in Section III-A is a general
lower bound on computation time. The second result, stated in
Section III-B establishes the tightness of this lower bound in the
specific scenario of the distributed computation of a sum. This
involves, first, specializing the lower bound of Section III-A
to the case where nodes compute a linear combination of the
initial values in the network. Second, it involves developing
a quantized algorithm for nodes computing the sum while
communicating over erasure channels and showing that the

computation time of the algorithm matches the lower bound for
summation.

A. Result I: A General Lower Bound

The first main theorem of this paper provides a lower bound
to computation time as a function of the accuracy desired, as
specified by the mean-square error, and the uncertainty in the
function that nodes must learn, as captured by the differential
entropy.

We place few assumptions on how the nodes communicate
and compute their estimates. Namely, each node can use only its
own initial measurement and past received messages. But, we do
not specify how the node makes its computation or exchanges
messages. Hence, our lower bound reveals the smallest time that
must elapse before it is possible to achieve the performance de-
sired, over all communication and computation schemes that
satisfy our assumptions. The necessity of this time elapsing is
due to the fact that initial measurements are distributed and com-
munication must occur over a network with a given topology and
channel capacities.

Let be the symbols received by
the decoder of node up to time . Then, .
To capture the limitations arising exclusively due to the com-
munication structure, in deriving our lower bound, we assume
no limits on the computational capabilities of the nodes, such as
limited memory or power. So, we make no assumptions on ,
except that it is a measurable function.

Similarly, the messages that the node communicates with
other nodes are a function of the node’s initial condition and
messages it has received in the past. Let be transmitted by
the node encoder. The message transmitted by in the
channel use, , is a function of the received messages at
that node, and its own data, .
We make no assumptions on , except that it is a measurable
function. The notation of this paragraph will not be needed
until Appendix A.

We consider two mean-square error criteria. The operator
is to be interpreted, when the argument is a vector, , as

.
R1. ;
R2. , for all ;

where .
The first criterion requires that as the number of nodes in-

creases, the per node error is also smaller. It suggests that as the
number of nodes, , increases, we require the mean-square er-
rors at each of the nodes, to decrease like .
This criterion is appropriate if, for example, the initial values
at the nodes are independent and each node is to estimate the
average of the initial values in the network. As the number of
nodes increases, the variance of the average decreases. In cir-
cumstances where this does not happen, the second criterion
may be more appropriate.

The “computation time” is the first time at which the desired
performance criterion holds. In the first of our main results, we
seek a lower bound on the computation time, , that holds if the
desired mean-square error criterion, R1 or R2, is satisfied.
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Theorem III.1: For the communication network described
above, if at time, , the mean-square error is in an interval pre-
scribed by , , for every node, then is
lower bounded by

where and

This theorem captures the fact that the larger the uncertainty
in the function to be estimated, or the larger the desired accuracy,
the longer it must take for any algorithm to converge. Specifi-
cally, when the mean-square error decreases exponentially in
the accuracy, , the computation time increases linearly in , at
best.

B. Result II: An Optimal Summation Algorithm

Here, we consider a specific scenario of the general formu-
lation described in Section II. As before, we have a network of

nodes each having a random initial condition denoted by .
Each node needs to compute the same separable function of the
initial values.

Definition III.2: is separable if there exist func-
tions such that

Furthermore, we assume where is the class of all
separable functions with for all and

.

Remark: In the algorithm we describe, node generates sam-
ples from an exponential distribution with mean . For
the algorithm to work, we must have for all . That
is there is a constant such that for all , . Let

. There is no loss of generality. And, this simplifies our ex-
pressions where constants do not matter, as our results are .

We assume that node can compute without commu-
nication. Further, we assume that there exists a constant such
that for all , is a constant and should
be treated as a problem parameter.

In what follows, we will assume that . This
causes no loss of generality as we have assumed that each
node can compute . So, essentially, we have relabeled

with .
In terms of our formulation, we have that each node needs to

compute the same quantity , where . Here,
we assume that these initial values are distributed independently
and uniformly in the interval . The assumption that the
distributions are uniform and independent simplifies computa-
tions in the derivation of our lower bound for summation.

Let represent a realization of the initial conditions,
. The performance of an

algorithm, , used by the nodes to compute an estimate of

at each node, is measured by the algo-
rithm’s -computation time, . It is the time until
the estimates at all nodes are within a factor of of ,
with probability larger than . Recall that denotes the
estimate of node at the end of time .

Definition III.3: For and , the -com-
puting time of an algorithm, , denoted as is de-
fined as

Here, the probability is taken with respect to . This is
random because nodes communicate over noisy channels.

As before, nodes communicate over noisy channels that
are independent and discrete-time memory-less. Besides the
assumptions of Section II, we make no additional assumptions
about the channels in deriving our lower bound for summation.
Additional assumptions will be stated where they are necessary.

The conductance captures the information bottle-neck
in the capacitated graph . It depends on the connectivity or
topology of the graph along with the channel magnitude.

Definition III.4 (Conductance): The conductance of a capac-
itated graph with edge capacities is defined
as

We use the word “conductance” as it coincides with the no-
tion of conductance or “Cheeger” constant for a Markov chain
based on a symmetric and doubly stochastic matrix on the
network graph . We will have more to say about conductance
in Section IV.

A Lower Bound for Summation: Consider any algorithm,
, that guarantees that for any realization of the initial values,

with high probability each node has an estimate within of
the true value of , at time . The information theoretic lower
bound maintains that such algorithm must have a computation
time, , that is inversely proportional to conduc-
tance.

Theorem III.5: Nodes communicate in order for each node to
compute a linear combination of all initial values in the network.
Any algorithm that guarantees that for all ,

must have

where, is a constant, and
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If then .

Again, the probability in this theorem is taken with respect
to the measure on , conditional on , and induced by the
randomness due to communication over channels.

An Upper Bound for an Algorithm for Summation Over
Block Erasure Channels: Next, we provide an algorithm that
guarantees, with high probability, the nodes’ estimates are
within the desired -error interval around the true value of the
sum.

Here, we assume that nodes communicate via block-erasure
channels. Specifically, if a node sends a channel symbol to
node then it is successful with probability independently
of everything else. The channel symbol is of length bits,
where we shall decide value later. Thus, the effective ca-
pacity of the channel between nodes and is .
We assume that . Further, we assume that the matrix

is a doubly stochastic matrix.
We provide an upper bound on our algorithm’s computation

time. The computation time is inversely proportional to conduc-
tance.

Theorem III.6: Suppose that node has an initial condition,
. There exists a distributed algorithm by which nodes

compute a sum, , via communication of
quantized messages. If each quantized message is bits
and , the quantization error will be no more
than a given , and for any
and , the computation time of the algorithm will be

So, setting in the above bound, we have

The computation time of this algorithm depends on the net-
work topology, via the conductance of the graph, in the same re-
ciprocal manner manifested by the lower bound. Thus, we con-
clude that the lower bound is tight in capturing the effect of the
network topology on computation time. Conversely, the algo-
rithm’s running time is optimal with respect to its dependence
on the network topology, as captured by the conductance.

IV. CONDUCTANCE: CAPTURING THE EFFECT OF TOPOLOGY

The conductance of a graph, , is a property that cap-
tures the bottle-neck of information flow. It depends on the con-
nectivity, or topology, of the graph, and the magnitudes of the
channel capacities. The more severe the network constraints, the
smaller the conductance. It is also related to time it takes for in-
formation to spread in a network; the smaller the conductance,
the longer it takes.

is related to the standard definition of conductance uti-
lized in Markov chain theory. Specifically, consider a Markov
chain with irreducible and aperiodic probability transition ma-
trix on the nodes of graph . The may not be neces-
sarily symmetric or doubly stochastic. It is, however always sto-
chastic since it is a probability matrix. It is well known that such

Fig. 1. Two ways to connect six nodes: a ring graph and a fully connected
graph.

a Markov chain has a unique stationary distribution (cf.
Perron–Frobenius Theorem).

In the context of mixing times of Markov chains, conductance
for the above , , is defined as

where .
For a reversible Markov chain, the conductance is related to

the spectral gap , where and is the second
largest eigenvalue of the transition matrix . By the Cheeger
bound [28]

In general, the is used to bound the mixing time of the
Markov chain with transition matrix . Let be the mixing
time of the Markov chain, based on the notion of stopping time,
then the following is a well-known bound

Now, in our setup is symmetric and doubly stochastic. In
this case the stationary distribution is uniform. That is,

for all . Therefore, the conductance can be simplified to

In the case of our -bit erasure channels,
. In this sense, the is related to the standard

definition of conductance utilized in the context of Markov
chain theory. For more details on mixing times of Markov
chains see [22] and [28].

A. Conductance: Two Examples

Consider two networks, each has nodes. We calculate con-
ductance for two extreme cases of connectivity shown in Fig. 1.
On the one hand, we have severe topological constraints: a ring
graph. Each node may contact only the node on its left or the
node on its right. On the other hand, we have a case of virtually
no topological constraints: a fully connected graph. Each node
may contact every other node in the network.

To compare the conductances for the two topologies, suppose
that in both cases, the links from a given node to different nodes
are equally weighted. So, for the ring graph, let ,
for all for the fully connected graph, let ,
for all . Assume that for the ring graph, . If the
channels were erasure channels, this would be the probability
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that node makes contact with no other nodes. For the fully
connected graph, let . So, in both cases, we have that the
sum of the capacities of channels leaving a node is 1,

.
Using definition III.4 and some straightforward simplifica-

tions we have that for the ring, . For the fully con-
nected graph we have . For two networks with the
same number of nodes, the network with the more severe topo-
logical constraints has smaller conductance. In general, for a
ring graph, we have , while for a fully connected
graph we have .

Remark: In both of these examples, conductance scales like
the reciprocal of diameter. These examples were chosen to illus-
trate that conductance does capture the topological properties of
the network. In general, however, conductance and diameter are
not the same.

Conductance is the natural generalization that captures the
infomation bottleneck. Conductance depends on both channel
capacities and topology of the network while diameter is purely
topological property. Generally, the channel capacities will
cause conductance and diameter to be different.

To illustrate this, consider a complete graph with
instead of in the above ex-

ample. In this case, the diameter is still 1 but the reciprocal of
conductance will be . Here, our bound is a much better lower
bound than a diameter based lower bound.

More generally, different edges may have different channel
capacities, in which case conductance and diameter will again
be very different. For example, if only one of the nodes of a
complete graph had incident edges with capacities while
all the rest had capacity , conductance again evaluates to .
This node creates the information bottleneck in the network, and
this is captured by the conductance.

B. Comparison With Iterative Algorithms

A popular approach for computing a linear function of the ini-
tial values is based on linear iterations. If nodes can communi-
cate real numbers between them in each time instance, the com-
putation time for a linear iterative algorithm based on a doubly
stochastic matrix is proportional to the mixing time of the ma-
trix, [4]. As noted earlier, the mixing time , hence
computation time of iterative algorithm, is bounded as

Therefore, in order to obtain a fast iterative algorithm,
must have a small mixing time . The standard approach
of finding such a is based on the method of Metropolis [21]
and Hastings [13]. This method does indeed yield a symmetric
and doubly stochastic on .

For expander graphs, the resulting induced by the
Metropolis-Hastings method is likely to have .
Hence, the mixing time is , and this is essentially the
fastest possible mixing time. For example, the for a complete
graph will be , and it has . In this case,
both our algorithm and the linear-iteration algorithms, based

the Metropolis-Hastings induced , will have essentially op-
timal computation time. It should be noted that our algorithm,
described later, is quantized. On the other hand, a quantized
version of the linear iterative algorithm is far from obvious
and subject of recent interest and on-going research. To the
best of our knowledge, how to optimally deal with finite-rate
constraints in conjunction with the linear iterative updates is an
open question.

Certain graph topologies of interest do possess geometry and
are far from being expanders. Examples of these graphs include
those arising in wireless sensor network deployed in some geo-
graphic area [4], [8] or a nearest neighbor network of unmanned
vehicles [27]. The simplest example of a graph with geometry is
the ring graph that we considered above. The Metropolis-Hast-
ings method will lead to a as discussed in Section IV-A. It
has . But it is known that for this topology,
mixing time scales like , at the least. That is, mixing time
scales like and not . More generally, for any
symmetric , the mixing time is known to be at least (e.g.,
see [4]). Thus, the linear iterative algorithms based on a sym-
metric have computation time that scales like . In contrast,
our quantized algorithm will have computation time that scales
with (which is ) for the ring. Now the diameter of the
ring graph is and no algorithm takes less than or no can
have mixing time smaller than this diameter .

In general, it can be checked that the diameter of a graph
is at most for any irreducible probability matrix . For
graphs with bounded degree and with geometry, the induced
by the Metropolis-Hastings method has a diameter that scales
like . By a graph with geometry, we mean a graph with
polynomial growth: for any given node, the number of nodes
within distance from that node scales as for some fixed
constant . Diaconis and Saloff-Coste [7] have established that
for graphs with geometry the mixing time of any symmetric
doubly stochastic scales like at least , where is the diam-
eter of the graph . Therefore, linear iterative algorithms will
have computation time that scales like . In contrast, our algo-
rithm will have computation time which will be equal
to diameter for a given by the Metropolis-Hastings method.

In summary, our algorithm will provide the best possible
computation time scaling with respect to graph structure for
both expander graphs and graphs with geometry.

V. PROOF OF THEOREM III.1

In this section, we present the proof of Theorem III.1. The
core idea is to characterize the information flow between arbi-
trary “cut-sets” of the network. A cut divides the network into
two sets, and . Suppose that nodes 1 to

belong to set and nodes to belong to set .
So, the estimates of the nodes in set at time are

. The initial conditions of the nodes in sets
and are denoted by and

.
The quantity that will play a central role in the proof of The-

orem III.1 is the mutual information term, .
This is mutual information between the estimates of the nodes in
set and the initial conditions of the nodes in set , assuming
that all nodes in have each other’s initial conditions. Leading
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up to the proof of Theorem III.1, we prove 3 lemmas related to
.

In the first of our series of lemmas, we bound
from above by the mutual information

between the inputs and the outputs of the channels that traverse
the cut.

Lemma V.1: For a given cut in the network, and corre-
sponding cut-sets and

where is a vector of the variables transmitted by the en-
coders of the nodes in and is a vector of the variables
received via channels by the decoders of the nodes in . The
refers to the channel use.

In the second lemma, we bound from above
by the sum of the capacities of

the channels traversing the cut.

Lemma V.2: Suppose a network is represented by the graph
. The edges of the graph represent channels with

positive capacity. If the channels connecting the nodes are
memory-less and independent, then

The proof of this lemma makes apparent the value of the con-
ditioning in the mutual information terms. This conditioning is
equivalent to assuming that all nodes in have access to all in-
formation that is available at the nodes of the set , including
information about . In this way, we capture the information
that is traversing the cut, without including the effect of infor-
mation exchanged between nodes in the same set.

Finally, in the third lemma, we bound from below the term
. We show that this term is bounded from

below by the information that must be communicated from the
nodes of to the nodes of in order for the nodes of to
compute their estimates, . We then bound this
from below by an expression that involves the desired perfor-
mance criterion and the desired function.

For the mean-square error criterion R1, we have the following
lemma.

Lemma V.3: If then

where

and, is the size of the set , specifically, .
The lower bound involves two terms. These are (1) the desired

accuracy in the nodes’ estimates, specified by the mean-square
error criterion, and (2) the uncertainty in the function to be esti-
mated, , quantified by its differential entropy. The larger the
desired accuracy, the larger the in the mean-square error crite-
rion. This implies a larger lower bound on the information that

must be conveyed. Also, the larger the uncertainty in the func-
tion to be learned by the nodes in set , the larger the differential
entropy term. Hence, the lower bound is larger.

For the mean-square error criterion R2, we have the following
corollary.

Corollary V.4: If, for all
, then

where .
When, for all , we again have

a lower bound that depends on the desired accuracy and the
uncertainty in the function to be estimated. However, is
smaller than due to the weaker error requirement of R2.

The proofs of Lemma V.1 and V.2 are in Appendix A. In the
next sections, we prove Lemma V.3 and Corollary V.4. Then,
we prove Theorem III.1.

A. Proof of Lemma V.3 and Corollary V.4

Recall that the lemma stated that if
then

where

and is the size of the set , specifically, .
We start the proof by observing the following:

where
a) that is, , can be verified by

the chain rule for mutual information

because .
b) follows by the data processing inequality, because

.
Second, we obtain a lower bound on in

terms of the desired mean-square criterion. We have the fol-
lowing series of inequalities:

(1)

where (c) follows because conditioning reduces entropy.
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Now, because the multivariate Normal maximizes entropy
over all distributions with the same covariance

(2)

where, is a covariance matrix whose diagonal elements are
, and denotes the determinant. Re-

call that is the set containing nodes 1 to , so it has size .
Also, is a vector of length . So, is an by
matrix. Now

(3)

Here, (d) is due to Hadamard’s inequality [5, Ch. 9]. To see (e),
we have the following proposition.

Proposition V.5: For , subject to and
, is maximized when .

Now, (e) follows by setting and ob-
serving that

where the last inequality follows by the assumption of our
lemma.

Finally, using (3) and (2), we bound (1) from below and obtain
.

Proof of Corollary V.4: Recall that in this corollary, we had
the weaker condition that for all

. In this case, we show that we have the smaller
lower bound,

To see this, observe that implies
. So, replacing in of the

previous lemma by yields the desired result.

B. Proof of Theorem III.1

The proof proceeds in several steps. First, as shown in Lemma
V.1, for a given cut in the network and corresponding cut-sets

and

(4)

where is a vector of the variables transmitted by the en-
coders of the nodes in and is a vector of the variables
received via channel by the decoders of the nodes in .

Fig. 2. Diagram illustrating the use of the information theoretic technique to
obtain a lower bound in a situation where all nodes learn the same function.

Second, by Lemma V.2, because we have assumed that the
channels connecting the nodes are memory-less and indepen-
dent

(5)

Third, we combine (4) and (5) with Corollary V.4 to obtain

(6)

Finally, we have that

because (6) holds for any cut.

C. A Technical Difficulty and Its Resolution

Making use of the lower bounds derived above involves com-
puting the differential entropy of the random variables to be
learned in the network, specifically, , where

. If the ’s are different random variables, then
the differential entropy term is well-defined. However, if two
entries of are the same random variable, for example if both
are , then will be .

But, our technique and lower bound can still be used in situ-
ations where all nodes need to learn the same function of the
initial conditions. In order to have a nontrivial lower bound,
we modify the problem slightly. We introduce auxiliary random
variables associated with the nodes of set , to be learned by
nodes in . This enables us to obtain a nontrivial lower bound
for the modified problem. This is also a lower bound for the
original problem. By proper choice of the auxiliary random vari-
ables, the lower bound of the modified problem can be made as
large as possible, and hence the best possible approximation for
the lower bound of the original problem. This procedure is il-
lustrated in Fig. 2.

The aforementioned technique will be used in the next sec-
tion. In the examples below, we demonstrate the computation of

when we introduce the auxiliary random variables.

Example V.6 (The Solution): Let nodes
, belong to set , so that Let

and for . One can think
of being associated with a node in set , that is,

. So, node ’s initial condition would be .
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Furthermore, we assume that is separable, meaning
. Finally, we assume that the ’s

and ’s are mutually independent. Then

where
a) follows because we have assumed that the ’s and ’s

are mutually independent;
b) follows by the chain rule for differential entropy, and

again using the fact that the ’s and ’s are mutually
independent;

c) follows using the fact that , as
shown in shown in [5, Ch. 9].

In the next example, we assume that the function is a linear
function and that the auxiliary random variables are independent
Gaussian random variables. For this scenario, we then obtain the
expression for the lower bound of Corollary V.4.

Example V.7 (Using the Solution for a Linear Func-
tion): In addition to the assumptions in Example V.6, let

. We assume that are inde-
pendent and identically distributed Gaussian random variables,
with mean zero and variance . Then, the differential entropy
of is .

So, substituting in the expression from Example V.6, we have
that

(7)

To evaluate , we use the Entropy Power In-
equality, namely, for independent ’s

which implies that

Now, if we assume that each is uniformly distributed in the
interval between 1 and , then

So

(8)

Finally, we evaluate the lower bound of Corollary V.4 for this
scenario. Recall that we had

and . Using (7) together with the inequality of (8), we
have that

(9)
In summary, our use of basic information theoretic defini-

tions and inequalities has led to a lower bound that we have ap-
plied to a formulation for distributed function computation. The
lower bound on information consists of a term that arises due to
the mean-square error criterion and a term due to the function
that is to be estimated. Using techniques of network informa-
tion theory, we have shown how the bound on information can
be used to obtain a lower bound on computation time time.

VI. A TIGHT BOUND: COMPUTATION OF THE

SUM VIA ERASURE CHANNELS

In this section, we use the techniques of the previous section
to find a lower bound on computation time when nodes compute
a sum. We present a distributed algorithm for computation of the
sum over block erasure channels and provide an upper bound for
the run-time of the algorithm. Both bounds depend inversely on
conductance, which captures the limitations due to the network
topology. Therefore, we conclude that our lower bound is tight
in capturing the effect of the network topology via the conduc-
tance.

A. Information-Theoretic Lower Bound for Summation

In this section, we provide the proof of Theorem III.5. We
will use the techniques that we have developed in Section V.
In particular, we will use the results of Examples V.6 and V.7,
namely (9).

Proof of Theorem III.5: Recall that .
Suppose that we have any realization of the initial conditions,

. We are given an algorithm
that guarantees, for every such realization, that at time each
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node, , has an estimate, , of : . Furthermore,

for this algorithm, the estimate is within an -interval of
the true value of , with desired probability. That is

(10)

The proof proceeds in several steps. The proofs for steps 1
and 2 follow this proof.

1) Any algorithm that satisfies the probability condition of
(10) must satisfy, for small enough , a mean-square error
criterion:

2) Let and for ,
where are independent and identically dis-
tributed Gaussian random variables, with mean zero and
variance . Let the ’s be independent of the initial con-
ditions, . Then,

3) Next, let and be the sets for which

is minimized, and assume is the set with smaller size,
. For purposes of this proof, we enumerate the

nodes in set from 1 to . Then, let ,
where the ’s are those of Step 2.

4) Now, we can apply our information theoretic inequalities
to this set-up. We think of being associated with a node
in set , that is, . So, node ’s
initial condition would be . Denote
by . Using the derivations of Section V, we have that

where, (a) follows because is the vector of esti-
mates produced by the algorithm, and depends on the initial
conditions, ’s, while the ’s are independent of ’s.
Recall that

Note that from Step 2, we have that
. So, we have .

5) Next, we compute given the assumptions of
our formulation. Recall that we have performed these com-
putations in Example V.7. We obtained the following:

where we have substituted in
.

6) Finally, we make the appropriate choice of our parameters,
and . Assume, without loss of generality, that

otherwise, we can just scale our choices for and . Let

, then

Next, let . Then, because ,

Observe that , where is some integer.
So,

Combining with Step 4, we have that

Rearranging, we have that

Here, we must have , in
order for the lower bound to be positive.
Finally, because we had chose our such that

is minimized, we have that

Remark: We show in the next section that our lower bound
is tight in its reciprocal dependence on the conductance term.
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So, for fixed , we have a scaling law that is tight in the case of
severe communication constraints, such as very small channel
capacities due to low transmission power.

In the case of increasing number of nodes, however, must
increase exponentially with for our lower bound to remain
valid. The requirement is a by-product of using a formulation
based on random variables together with Information Theoretic
variables. This requirement ensures that as increases, our
bound properly captures the number of bits that are transferred.

When we consider sums of independent identically dis-
tributed random variables, Central Limit Theorem type
arguments imply that as the number of the random variables
increases, there is some randomness lost, because we know
that the distribution of the sum must converge to the Normal
distribution. However, in a setting where the initial conditions
are fixed values, as in the case of the algorithm we describe
below, the addition of a node clearly will not reduce the in-
formation that needs to be communicated in the network. To
counterbalance the probabilistic effects, we need to have
increase as the number of nodes increases.

Next, we complete the proof of Theorem III.5 by proving the
statements of Step 1 and Step 2.

Proof of Step 1: We show that for small enough
implies

.
First, observe that,

is equivalent to

Next, when we condition on , is a fixed number. So, we
have we have that

where the last inequality follows
• for the first term, because ,

and,
• for the second term, because

for all . We have also assumed that for
every is bounded from above.

Finally, we have that

where the outermost expectation is with respect to the joint dis-
tribution of the initial conditions.

Proof of Step 2: We show that if
, then ,

where , and has mean zero and variance
and is independent of all the ’s.

where
(a) follows because is the estimate produced by the

algorithm, and depends on the initial conditions, ’s,
while is independent of ’s, and,

(b) follows because has mean zero.

B. An Algorithm for Summation via Block Erasure Channels

Next, we describe the algorithm that achieves the lower
bound. That is, we exhibit the reciprocal dependence of the
algorithm’s computation time on the conductance of the graph.
Because the function that is to be computed, the sum, is rel-
atively simple, and the algorithm requires little computation
overhead, the limitations that arise are due primarily to the
communication constraints. In fact, the dependence on the
algorithm’s run-time on conductance arises due to the fact
that the algorithm uses an information spreading algorithm as
a subroutine. Information spreading depends reciprocally on
conductance: the more severe the connectivity constraints, the
smaller the conductance and the longer it takes for information
to spread in the network.

The algorithm that we describe is based on an algorithm by
Mosk-Aoyama and Shah [23]. In Section VI-B1 we discuss
this algorithm and its applicability to our formulation. In
Section VI-B2, we describe the contributions of [23] in the de-
sign of an algorithm for distributed computation of a separable
function, in a network of nodes using repeated communication
of real-valued messages. In Section VI-B3, we describe the
algorithm when the communicated messages are quantized, and
analyze how the performance of the algorithm changes relative
to the performance of the unquantized algorithm of [23].

1) Background: The algorithm that we describe is based on
an algorithm by Mosk-Aoyama and Shah [23]. In that formu-
lation, each node has a fixed real-valued initial condition, that
is bounded away from zero. Nodes compute a separable func-
tion1 of the initial values in the network. The algorithm guar-
antees that with some specified probability, all nodes have an
estimate of the function value within a desired -interval of ac-
curacy around the true value. In [23], each node may contact
one of its neighbors once in each time slot. If the edge be-
longs to , node sends its real-valued message to node with
probability and with probability sends its message to no
other nodes; if .

1A linear function of the initial conditions is a separable function.
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The algorithm of [23] is a simple randomized algorithm that
is based on each node generating an exponentially distributed
random variable with mean equal to the reciprocal of the node’s
initial value. The nodes sample from their respective distribu-
tions and make use of an information spreading algorithm to
make computations and ultimately obtain an estimate of the de-
sired function.

The advantage of this algorithm is that it is completely dis-
tributed. Nodes need not keep track of the identity of the nodes
from which received information originates. Furthermore, the
algorithm is not sensitive to the order in which information is
received. In terms of its performance, the algorithm’s compu-
tation time is almost optimal in its dependence on the network
topology, as the computation time scales inversely with conduc-
tance of the matrix representing the communication topology.

The drawback of the algorithm in [23], however, is that it
requires nodes to exchange real numbers. As such, the algorithm
is not practically implementable.

Below, we quantize this algorithm, so that instead of sending
real-valued messages, nodes communicate an appropriate
number of bits. In the process of quantization, we determine
the needed number of bits; for now, we call it . Now,
node can send to a -bit message each time it makes
contact. Again, the contact between the nodes is random: node
contacts node with probability . This is equivalent2 to node

communicating to via a -bit erasure channel, where
bits are sent noiselessly with probability , and there

is an erasure otherwise. In this case, capacity of the channel
is , so, . We will show
that the effect of communicating bits instead of real-valued
messages is to slow down the original algorithm by
however, the dependence of computation time on conductance
is unchanged.

Another difference between our formulation and the one in
[23], is that we assume that the initial conditions lie in a bounded
interval, , whereas in [23] there is no upper bound.
We need this assumption to show that our algorithm will also
guarantee that with some specified probability, all nodes have
an estimate of the function value within a desired -interval of
accuracy around the true value. However, due to communicating
a finite number of bits, cannot be arbitrarily close to zero.

Finally, we recall that in deriving the lower bound of the pre-
vious section, we had assumed a joint probability distribution on
the initial conditions. However, we will describe the algorithm
for fixed initial-values at the nodes. If the initial conditions were
in fact distributed according to some joint probability density
function, the algorithm that we describe below can be used for
any realization of the initial values to guarantee, with the desired
probability, the -accuracy criterion. So, the algorithm satisfies
the “if” condition in the statement of Theorem III.5. As such, the
computation time of the algorithm we describe below must be
bounded from below by the expression in Theorem III.5 which
includes the reciprocal of conductance.

2In [23], it is assumed that each node can contact at most one other node;
but it can be contacted by more than one nodes. Under our independent erasure
channel model, each node can contact more than one node. However, for our
purposes, this is only beneficial as it results in faster information dissemination.

We provide an upper bound on the run-time and show that,
indeed, it does scale inversely with conductance. Thus, the con-
tribution of this work includes the non-trivial quantized imple-
mentation of the algorithm of [23] and its analysis. As a conse-
quence, we obtain the fastest, in terms of dependence on net-
work topology, quantized distributed algorithm for separable
function computation.

2) Unquantized Function Computation: In [23], a random-
ized algorithm is proposed for distributed computation of a sepa-
rable function of the data in the network, so that with some spec-
ified probability, all nodes have an estimate of the function value
within the desired interval of accuracy. The computation algo-
rithm assumes that the nodes exchange real-valued messages
whenever a communication takes place. The algorithm depends
on:

• the properties of exponentially distributed random vari-
ables;

• an information spreading algorithm used as a subroutine
for the nodes to communicate their messages and deter-
mine the minimum of the messages.
a) The Algorithm: The following property of exponential

random variables plays a central role in the design of this al-
gorithm. Let be independent exponentially dis-
tributed random variables, where has mean . Then, the
minimum, , will also be exponentially
distributed, and its mean is .

Suppose that node has an initial value . Each node needs to
compute . Node generates an exponential distribution
with mean . It then draws a sample, , from that
distribution. All nodes do this. They exchange their samples so
that each node knows every sample. Then, each node may com-
pute the minimum of the samples,
is a realization of , which is exponentially distributed, with
mean .

For the algorithm proposed in [23], the nodes perform the
above procedure on samples from each node rather than one.
That is, node draws independently samples from its expo-
nential distribution, . The nodes exchange informa-
tion using the information spreading algorithm described below.
Ultimately, each node acquires , where is the
sample-wise minimum, . Then, for its
estimate of , each of the nodes computes

Recall that as increases, approaches the mean of
, namely . It is shown that, for large enough , the

nodes’ estimates of will satisfy the desired accuracy
criterion with the desired probability.

b) Computation of Minima Using Information Spreading:
The computation of the minimum using the information
spreading algorithm occurs as follows. Suppose that each
node has an initial vector and needs
to obtain , where .
To compute , each node maintains an -dimensional vector,

, which is initially , and
evolves such that contains node ’s estimate of at
time . Node communicates this vector to its neighbors;
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and when it receives a message from a neighbor at time
containing , node will update its vector by setting

, for .
Denote with the information spreading algorithm, used as a

subroutine to disseminate messages and compute the minimum.
The performance of this algorithm is captured by the -informa-
tion-spreading time, , at which with probability larger
than all nodes have all messages. More formally, let
is the set of nodes that have node ’s message at time , and
is the set of nodes, the definition of is the following.

Definition VI.1: For a given , the -information-
spreading time, of the algorithm , , is

As argued in [23], when an information spreading algorithm
is used where one real-number is transferred between two

nodes every time there is a communication, then with proba-
bility larger than , for all , when ,
because the nodes propagate in the network an evolving esti-
mate of the minimum, an -vector, as opposed to the -vectors

.
c) The Performance: The first of the two main theorems of

[23] provides an upper bound on the computing time of the pro-
posed computation algorithm and the second provides an upper
bound on the information spreading time of a randomized gossip
algorithm. These theorems are repeated below for convenience
as our results build on those of [23].

Theorem VI.2: Given an information spreading algorithm
with -spreading time for , there exists an
algorithm for computing separable functions such
that for any and ,

In the next section, we state a theorem analogous to this one,
but for the case where the nodes are required to communicate a
finite number of bits.

Next, the upper bound on the information spreading time is
derived for the communication scheme, or equivalently, the ran-
domized gossip algorithm. We refer the reader to [23] for fur-
ther details on the information spreading algorithm, including
an analysis of the case of asynchronous communication. The
theorem relevant to this section follows.

Theorem VI.3: Consider any stochastic and symmetric matrix
such that if . There exists an information

spreading algorithm, , such that for any ,

3) Quantized Function Computation: The nodes need to
each acquire an estimate of . For conve-
nience, we denote by . Recall that we have assumed
that node can compute without any communication. Fur-
ther, we’ve assumed that there exists a for which: for all ,

.

Let be the quantity to be estimated by
the nodes. We denote the estimate of at node by . The

is added to emphasize that this estimate was obtained using
an algorithm for nodes that can only communicate quantized
values using messages consisting a finite number of bits. The
randomness in is due to the fact that the links between the
nodes may fail probabilistically, as captured by .

Recall that the goal is to design an algorithm such that, for
large enough ,

while communicating only a finite number of bits between
the nodes. Again, we take advantage of the properties of ex-
ponentially distributed random variables, and an information
spreading algorithm used as a subroutine for the nodes to
determine the minimum of their values.

a) Computation of Minima Using Information Spreading:
We use the same scheme that was described in Section VI-B2
for computation of minima using information spreading. Now,
node quantizes a value that it needs to communicate to
its neighbor, , where node maps the value to a finite
set according to some quantization scheme. Then,

bits have to be communicated between the nodes before
can decode the message and update its . But, when each

communication between nodes is -bits, the time until
all nodes’ estimates are equal to with probability larger
than will still be . However, there will be
quantization error. Our choice of will determine this error.

b) Summary of Algorithm & Main Theorem: The proposed
algorithm, is summarized below.

1) Independently from all other nodes, node generates in-
dependent samples from an exponential distribution, with
parameter . If a sample is larger than an (which we
will specify later), the node discards the sample and regen-
erates it.

2) The node quantizes each of the samples according to a
scheme we describe below. The quantizer maps points in
the interval to the set .

3) Each of the nodes performs steps 1 and 2 and communi-
cates its messages via the information spreading algorithm,

, to the nodes with which it is connected. The nodes use
the information spreading algorithm to determine the min-
imum of each of the sets of messages. After
time has elapsed, each node has obtained the minima with
probability larger than .

4) Node sets its estimate of , , to be the reciprocal of
the average of the minima that it has computed.

Here, is a parameter that will be designed so that
is achieved. Deter-

mining how large and must be leads to the main theorem
of this section.

Theorem VI.4: Given an information spreading algorithm
with -spreading time for , there exists an
algorithm for computing separable functions via
communication of quantized messages. If each quantized mes-
sage is bits and , the quantization error
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will be no more than a given . Furthermore, for any
and

Remark: Here, we point out that the condition in the theorem
that reflects the fact that due to quantization,

can never get arbitrarily close to , no matter how large is
chosen.

Before proving this theorem, it is convenient to consider the
algorithm described above, excluding step 2; that is, with no
sample quantization. The derivation of the computation time
of this modified algorithm will lead to determining the appro-
priate truncation parameter, . Next, we introduce a quantiza-
tion scheme and determine the number of bits to use in order
to guarantee that the node estimates of converge with desired
probability; we find that this number of bits, , is of the
order of . The details can be found in Appendix B.

Thus, we have shown how a distributed algorithm for com-
puting separable functions may be quantized so that the effect
of the quantization scheme will be to slow down the informa-
tion spreading by , while the remaining performance char-
acteristics of the original algorithm will be virtually unchanged,
especially with respect to its dependence on conductance. This
result is stated in Theorem VI.4.

Combining the result of Theorem VI.4 with that of Theorem
VI.3 yields Theorem III.6. Comparison with a lower bound ob-
tained via information theoretic inequalities in Section VI-A re-
veals that the reciprocal dependence between computation time
and graph conductance in the upper bound of Theorem III.6
matches the lower bound. Hence the upper bound is tight in cap-
turing the effect of the graph conductance .

VII. DISCUSSION AND CONCLUSIONS

We’ve studied a network of nodes communicating over
point-to-point memoryless independent noisy channels. Each
node has an initial value. The objective of each of the nodes
is to compute a given function of the initial values in the net-
work. We have derived a lower bound to the time at which the
mean-square error in the nodes’ estimates is within a prescribed
accuracy interval.

The lower bound is a function of the channel capacities, the
accuracy specified by the mean-square error criterion, and the
uncertainty in the function that is to be estimated. The bound
reveals that, first, the more randomness in the function to be es-
timated, the larger the lower bound on the computation time.
Second, the smaller the mean-square error that is tolerated, the
larger the lower bound on the computation time. Hence, there is
a tradeoff captured between computation accuracy and compu-
tation time. In addition, the lower bound can be used to capture
the dependence of the convergence time on the structure of the
underlying communication network.

We’ve considered a network of nodes communicating to com-
pute a sum of the initial values in the network. Each of the nodes

is required to acquire an estimate that is, with a specified prob-
ability, within a desired interval of the true value of the sum.
We’ve applied our information theoretic technique to derive a
lower bound on the computation time for this scenario. We’ve
shown that when , the computation time is inversely
related to a property of the network called “conductance.” It cap-
tures the effect of both the topology and channel capacities by
quantifying the bottle-neck of information flow.

Next, we have described an algorithm that can be used in this
setting of nodes computing a sum via block erasure channels,
and guarantees that with the specified probability, each of the
nodes’ estimate is within the desired interval. We’ve determined
an upper bound on the algorithm’s computation time. We’ve
shown that it too is inversely related to conductance.

Hence, we conclude that our lower bound is tight in cap-
turing the effect of the communication network, via conduc-
tance. Equivalently, our algorithm’s run-time is optimal in its
dependence on conductance. That is, we have obtained a scaling
law for convergence time as a function of a network property,
conductance. When the number of nodes is fixed, this scaling
law becomes tighter as the communication constraints are more
severe, like diminished channel capacities.

A critical assumption in our work is that the network is a
point-to-point network of independent memoryless channels. In
this context, there is no interference or collisions from other
users. The limitations imposed by the communication network
are its pattern of connectivity and the noisy channels. And in
this case, the capacity of each of the channels quantifies the bit
constraints.

Furthermore, when the function to be computed is simple,
like a sum, limitations arise primarily due to communication
constraints, not the computational abilities of the nodes. In such
a scenario, and when in addition we assume initial measure-
ments are independent and channels are block-erasure channels,
our results capture the effect of topology and imperfect trans-
mission on the performance of nodes.

Our general lower bound depends on the assumption that
communication occurs over a network of point-to point inde-
pendent memoryless channels. Our lower bound for summation
depends on the additional assumption that the initial measure-
ments at the nodes are independent. This assumption primarily
simplifies the computation of the entropy term in the general
lower bound.

Our achievability result depends on the further assumption
that the channels are block-erasure channels, whose block
length depends on the number of nodes. In general, the algo-
rithm we describe for summation will work for any network of
point-to-point channels. When the channels are block erasure
channels, the computation time of the algorithm depends recip-
rocally on conductance and hence achieves the lower bound.
For these channels, and for the summation task, our code is
relatively simple. We believe that an area for future work is to
design optimal codes for more general point-to-point channels.
These codes will necessarily be more sophisticated than the one
we have here. Some insights to the issues that arise in coding
for computation over multi-access channels are highlighted in
the work of Nazer and Gastpar [24].
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APPENDIX A
PROOFS OF LEMMAS V.1 AND V.2

In this appendix, we present the proofs of Lemmas V.1 and
V.2, that we used in Section V to derive the lower bound of
Theorem III.1.

1) Proof of Lemma V.1: We prove the following in-
equality:

(A.11)

where is a vector of the variables transmitted by the en-
coders of the nodes in and is a vector of the variables
received via channels by the decoders of the nodes in .

For this proof, we use the general formulation for multi-ter-
minal networks of [5, Sect. 14.10]. let be transmitted by
the node encoder and be received by the node de-
coder. We denote a sequence of length transmitted by
as . The indices in brackets
represent channel use. As before, if nodes 1 to belong
to , we have that . Similarly, we have
that , representing the variables
received after the -th use of the channel.

We assume that the estimate at node , , is a function
of the received messages at that node, and its own data,

. The message transmitted by in
the channel use, , is also a function of the received
messages at that node, and its own data,

.
As in [5], the channel is a memoryless discrete-time channel.

In our case, for convenience, we assume the channel to be con-
tinuous, represented by the conditional probability distribution
function . However, we note that the
inequalities below hold even in the case that the channel is
discrete. In this case, the random variable arguments of
would be arbitrary ensembles, and so we use the general
definition for as the “average conditional information”
in [26, Ch. 3], and for the conditional entropy, , we
use . All the equalities and inequalities
below will continue to hold. We refer the reader to [26, Ch. 3]
for technical details.

The following inequalities proceed in the same manner as
Theorem 14.10.1 in [5]. For convenience, we repeat the steps
here using our notation.

Above:
a) holds by the data processing inequality, because

;
b) follows by the chain rule for mutual information;
c) follows by the definition of mutual information, (or, in

the discrete channel case, it follows by Kolmogorov’s for-
mula [26, Ch. 3] and by noting that the entropy term is
well-defined since would take values in a discrete set);

d) follows, for the first term, because ,
so it does not change the conditioning; and the second part
follows because conditioning reduces entropy;

e) holds, for the first term, because conditioning reduces en-
tropy, and for the second term, because the channel output
depends only on the current input symbols;

f) from the definition of mutual information.

2) Proof of Lemma V.2: In this lemma, we consider a net-
work that is represented by the graph . The edges of
the graph represent channels with positive capacity. If the chan-
nels connecting the nodes are memoryless and independent, we
show that

For simplicity of notation in the rest of the proof, we omit the
braces after the random variables, . For example, instead of

we write .
As we had in the previous lemma, is transmitted by the

node encoder. Previously, we had not specified which nodes
will receive this code letter. In our set up, however, there is a
dedicated channel between every two nodes that have an edge
between them. So, the transmitter at node will send out code-
words to each of the neighbors of , that is all , such that

. We denote the encoder’s code letter from to as
represents all messages transmitted by the encoder of

node . So, , for all , such that .
Similarly, is received by the node decoder. It consists

of all the digits received by from its neighbors, all such that
. If there is a link from node to , the code letter from

node arrives at the decoder of through a channel. We denote
the digit received at from as represents all the received
messages; so, , for all , such that .

In order to make our notation in the proof simpler, we intro-
duce dummy random variables. In particular, we will use
and even if . Effectively, we are introducing a link
between nodes and . But, in this case, we set . So
now, we let and .
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The key to the proof is the memorylessness and independence
of the channels. That is, the output of a channel at any instant,

, depends only on the channel input at that instant, .
Because of this, we have that

To obtain this expression, we express the mutual information
in terms of the entropy

Next, we express the entropy terms using the chain rule. We
assume that nodes 1 to belong to set and nodes to
belong to . Then,

and

Because conditioning reduces entropy, we have that

For every channel, given its input, the channel output is inde-
pendent of all other channel outputs. So

Combining the two inequalities, we have

Now, let and consider the expression
. Recall that we have assumed that
. Also, we have that . So,

includes .
For the first differential entropy term we have the following

sequence of inequalities:

where
a) follows by the chain rule;
b) follows because the channels are independent; so, given

, is independent of all of the other random vari-
ables;

c) holds because conditioning reduces entropy.
Next, observe that

where
d) follows by the chain rule;
e) follows because the channels are independent; so, given

, is independent of all of the other random vari-
ables.

Finally, combining these inequalities:

Hence, we have the desired expression

Finally, to complete the proof, we note that

This is because, by definition

where the maximum is taken over all distributions of the channel
input, .

APPENDIX B
PROOF OF THEOREM VI.4

1) Determining : Before we state the lemma of this sec-
tion, we describe the modified computation algorithm, ,
which consists of steps 1 to 4 above excluding 2, and we in-
troduce the necessary variables.

First, node , independently from all other nodes, generates
samples drawn independently from an exponential distribution,
with parameter . If a sample is larger than , the node discards
the sample and regenerates it. This is equivalent to drawing the
samples from an exponential distribution truncated at .

Let be the random variable representing the
sample at node , where the subscript “T” emphasizes that the
distribution is truncated. Then, the probability density function
of is that of an exponentially distributed random vari-
able, , with probability density function
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for , conditioned on the the event . For

and elsewhere.
Second, the nodes use a spreading algorithm, , so that each

determines the minimum over all for each set of samples,
. Recall that we consider the random variables at this

stage as if there was no quantization. In this case, the nodes
compute an estimate of ; we denote the

estimate of at node by . Furthermore, we denote the
estimates at node of the minimum of each of each of the set
of samples by , and the actual minima of
the set of samples by .

It it is shown in [23] that by the aforementioned spreading
algorithm, with probability at least , the estimates of the

minima, , will be be equal to the actual minima, , for all
nodes, , in time slots.

Last, each of the nodes computes its estimate, , of by
summing the minimum values it has computed, inverting the
sum, and multiplying by :

The following lemma will be needed in the proof of Theorem
VI.4.

Lemma B.1: Let be real numbers such that for
all and . Fur-

thermore, let and let denote node ’s
estimate of using the modified algorithm of this section, .

For any , and for , if

where, .

Proof: First, note that when , we have
that for all . So, it is sufficient to show
that

Let , the minimum of independent ex-
ponentially distributed random variables, , with parameters

respectively, then will itself be exponentially dis-
tributed with parameter . Observe that the cumula-
tive distribution function of , , is identical to
that of , conditioned on the event , where

, (see Appendix for proof).
Hence, we have that

Now, because , it follows that:

From Cramer’s Theorem, see [6], and the properties of expo-
nential distributions, we have that

and for .
Next, we have that , because the

are mutually independent. Furthermore,
. To see this, note that the complement of is

, and . So, by the
union bound, we have

where the last inequality follows because .
Finally, putting all this together, we have that

Letting completes the proof.

2) Proof of Theorem VI.4: Before we proceed with the
proof of the Theorem, we describe the quantization scheme.
In step 2 of the algorithm , node quantizes the sample it
draws, a realization of denoted by . The quantizer

maps points in the interval to the set .
Each node also has a “codebook,” , a bijection that maps

to , chosen such that for a
given , . We will denote by

.
While we do not further specify the choice of the quantiza-

tion points, , we will use the fact that the quantization error
criterion can be achieved by a quantizer that divides the interval

to no more than intervals of length each. Then, the
number of messages will be , and the number of bits
that the nodes communicate is .

Proof: We seek an upper bound on the -computation
time of the algorithm , the time until, with probability at least
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, all nodes have estimates that are within
a factor of of . That is

First, suppose that we may communicate real-valued mes-
sages between the nodes. We analyze the effect of quantization
on the convergence of the node estimates to the desired
factor of . For this, we compare the quantized algorithm, ,
with the modified algorithm .

Note that for the above quantization scheme, for all and
any realization of denoted by

hence

and

(A.12)

Note that is a realization of .
Now, suppose that the information spreading algorithm, , is

used so that in time

(A.13)

Consider the case where , we have
from Lemma B.1 that, for any , if

Combining with (A.12), we have that

But the event

is equivalent to

And, letting ,

So

Letting , we have that

Combining this with (A.13) in the Total Probability Theorem,
we have the desired result

Finally, recall that when the nodes communicate their
real-valued messages, with high probability all nodes have
estimates of the minima that they need in the computation of
the estimate of in time. So, the computation
time is of that order.

Now, for the quantization algorithm described in this section
the nodes need to communicate bit messages before the
appropriate minima are computed. Because we assume that this
is the case, that the nodes exchange bits at a time,
time slots are needed until the quantized messages are dissemi-
nated and the minima computed. Consequently, the computation
time of the quantized algorithm will be .

But, , and by design, for a given we choose

; so . Furthermore,
we choose , such that . Then,

so, bits are needed.
As we have previously seen, for

. But, and , so
. We therefore have, for
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