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Inferring Rankings Using Constrained Sensing
Srikanth Jagabathula and Devavrat Shah

Abstract—We consider the problem of recovering a function over
the space of permutations (or, the symmetric group) over � ele-
ments from given partial information; the partial information we
consider is related to the group theoretic Fourier Transform of the
function. This problem naturally arises in several settings such as
ranked elections, multi-object tracking, ranking systems, and rec-
ommendation systems. Inspired by the work of Donoho and Stark
in the context of discrete-time functions, we focus on non-negative
functions with a sparse support (support size� domain size). Our
recovery method is based on finding the sparsest solution (through
�� optimization) that is consistent with the available information.
As the main result, we derive sufficient conditions for functions
that can be recovered exactly from partial information through ��

optimization. Under a natural random model for the generation
of functions, we quantify the recoverability conditions by deriving
bounds on the sparsity (support size) for which the function satis-
fies the sufficient conditions with a high probability as � � �. ��
optimization is computationally hard. Therefore, the popular com-
pressive sensing literature considers solving the convex relaxation,
�� optimization, to find the sparsest solution. However, we show
that �� optimization fails to recover a function (even with constant
sparsity) generated using the random model with a high proba-
bility as ���. In order to overcome this problem, we propose a
novel iterative algorithm for the recovery of functions that satisfy
the sufficient conditions. Finally, using an Information Theoretic
framework, we study necessary conditions for exact recovery to be
possible.

Index Terms—Compressive sensing, Fourier analysis over sym-
metric group, functions over permutations, sparsest-fit.

I. INTRODUCTION

F UNCTIONS over permutations serve as rich tools for
modeling uncertainty in several important practical ap-

plications; they correspond to a general model class, where
each model has a factorial number of parameters. However,
in many practical applications, only partial information is
available about the underlying functions; this is because either
the problem setting naturally makes only partial information
available, or memory constraints allow only partial information
to be maintained as opposed to the entire function—which
requires storing a factorial number of parameters in general.
In either case, the following important question arises: which
“types” of functions can be recovered from access to only par-
tial information? Intuitively, one expects a characterization that
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relates the “complexity” of the functions that can be recovered
to the “amount” of partial information one has access to. One
of the main goals of this paper is to formalize this statement.
More specifically, this paper considers the problem of exact
recovery of a function over the space of permutations given
only partial information. When the function is a probability
distribution, the partial information we consider can be thought
of as lower-order marginals; more generally, the types of partial
information we consider are related to the group theoretic
Fourier Transform of the function, which provides a general
way to represent varying “amounts” of partial information. In
this context, our goal is to (a) characterize a class of functions
that can be recovered exactly from the given partial infor-
mation, and (b) design a procedure for their recovery. We
restrict ourselves to non-negative functions, which span many
of the useful practical applications. Due to the generality of the
setting we consider, a thorough understanding of this problem
impacts a wide-ranging set of applications. Before we present
the precise problem formulation and give an overview of our
approach, we provide below a few motivating applications that
can be modeled effectively using functions over permutations.

A popular application where functions over permutations
naturally arise is the problem of rank aggregation. This problem
arises in various contexts. The classical setting is that of ranked
election, which has been studied in the area of Social Choice
Theory for the past several decades. In the ranked election
problem, the goal is to determine a “socially preferred” ranking
of candidates contesting an election using the individual
preference lists (permutations of candidates) of the voters.
Since the “socially preferred” outcome should be independent
of the identities of voters, the available information can be
summarized as a function over permutations that maps each
permutation to the fraction of voters that have the prefer-
ence list . While described in the context of elections, the
ranked election setting is more general and also applies to
aggregating through polls the population preferences on global
issues, movies, movie stars, etc. Similarly, rank aggregation
has also been studied in the context of aggregating webpage
rankings [2], where one has to aggregate rankings over a large
number of webpages. Bulk of the work done on the ranked
election problem deals with the question of aggregation given
access to the entire function over permutations that summarizes
population preferences. In many practical settings, however,
determining the function itself is nontrivial—even for rea-
sonably small values of . Like in the setting of polling, one
typically can gather only partial information about population
preferences. Therefore, our ability to recover functions over
permutations from available partial information impacts our
ability to aggregate rankings. Interestingly, in the context of
ranked elections, Diaconis [3] showed through spectral analysis
that a partial set of Fourier coefficients of the function possesses
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“rich” information about the underlying function. This hints
to the possibility that, in relevant applications, limited partial
information can still capture a lot of structure of the underlying
function.

Another important problem, which has received a lot of at-
tention recently, is the Identity Management Problem or the
Multi-object tracking problem. This problem is motivated by
applications in air traffic control and sensor networks, where
the goal is to track the identities of objects from noisy mea-
surements of identities and positions. Specifically, consider an
area with sensors deployed that can identify the unique signa-
ture and the position associated with each object when it passes
close to it. Let the objects be labeled and let

denote the vector of positions of the
objects at time . Whenever a sensor registers the signature of
an object the vector is updated. A problem, however, arises
when two objects, say , pass close to a sensor simultaneously.
Because the sensors are inexpensive, they tend to confuse the
signatures of the two objects; thus, after the two objects pass,
the sensor has information about the positions of the objects,
but it only has beliefs about which position belongs to which
object. This problem is typically modeled as a probability distri-
bution over permutations, where, given a position vector , a
permutation of describes the assignment of the po-
sitions to objects. Because the measurements are noisy, to each
position vector , we assign, not a single permutation, but a
distribution over permutations. Since we now have a distribution
over permutations, the factorial blow-up makes it challenging to
maintain it. Thus, it is often approximated using a partial set of
Fourier coefficients. Recent work by [4], [5] deals with updating
the distribution with new observations in the Fourier domain. In
order to obtain the final beliefs one has to recover the distribu-
tion over permutations from a partial set of Fourier coefficients.

Finally, consider the task of coming up with rankings for
teams in a sports league, for example, the “Formula-one” car
racing or American football, given the outcomes of various
games. In this context, one approach is to model the final
ranking of the teams using, not just one permutation, but a dis-
tribution over permutations. A similar approach has been taken
in ranking players in online games (cf. Microsoft’s TrueSkill
solution [6]), where the authors, instead of maintaining scores,
maintain a distribution over scores for each player. In this
context, clearly, we can gather only partial information and
the goal is to fit a model to this partial information. Similar
questions arise in recommendation systems in cases where
rankings, instead of ratings, are available or are preferred.

In summary, all the examples discussed above relate to in-
ferring a function over permutations using partial information.
To fix ideas, let denote the permutation group of order
and denote a non-negative function defined over
the permutations. We assume we have access to partial informa-
tion about that, as discussed subsequently, corresponds to
a subset of coefficients of the group theoretic Fourier Transform
of . We note here that a partial set of Fourier coefficients
not only provides a rigorous way to compress the high-dimen-
sional function (as used in [4], [5]), but also have natural
interpretations, which makes it easy to gather in practice. Under
this setup, our goal is to characterize the functions that can

be recovered. The problem of exact recovery of functions from
a partial information has been widely studied in the context of
discrete-time functions; however, the existing approaches don’t
naturally extend to our setup. One of the classical approaches
for recovery is to find the function with the minimum “energy”
consistent with the given partial information. This approach was
extended to functions over permutations in [7], where the au-
thors obtain lower bounds on the energy contained in subsets
of Fourier Transform coefficients to obtain better guarantees
when using the function the minimum “energy.” This approach,
however, does not naturally extend to the case of exact recovery.
In another approach, which recently gained immense popularity,
the function is assumed to have a sparse support and conditions
are derived for the size of the support for which exact recovery is
possible. This work was pioneered by Donoho; in [1], Donoho
and Stark use generalized uncertainty principles to recover a dis-
crete-time function with sparse support from a limited set of
Fourier coefficients. Inspired by this, we restrict our attention to
functions with a sparse support.

Assuming that the function is sparse, our approach to per-
forming exact recovery is to find the function with the sparsest
support that is consistent with the given partial information,
henceforth referred to as optimization. This approach is often
justified by the philosophy of Occam’s razor. We derive suf-
ficient conditions in terms of sparsity (support size) for func-
tions that can be recovered through optimization. Further-
more, finding a function with the sparsest support through
minimization is in general computationally hard. This problem
is typically overcome by considering the convex relaxation of
the optimization problem. However, as we show in Theorem
III.2, such a convex relaxation does not yield exact recovery in
our case. Thus, we propose a simple iterative algorithm called
the ‘sparsest-fit’ algorithm and prove that the algorithm per-
forms exact recovery of functions that satisfy the sufficient con-
ditions.

It is worth noting that our work has important connections
to the work done in the recently popular area of compressive
sensing. Broadly speaking, this work derives sufficient condi-
tions under which the sparsest function that is consistent with
the given information can be found by solving the corresponding

relaxation problem. However, as discussed below in the sec-
tion on relevant work, the sufficient conditions derived in this
work do not apply to our setting. Therefore, our work may be
viewed as presenting an alternate set of conditions under which
the optimization problem can be solved efficiently.

A. Related Work

Fitting sparse models to observed data has been a classical ap-
proach used in statistics for model recovery and is inspired by
the philosophy of Occam’s Razor. Motivated by this, sufficient
conditions for learnability based on sparsity have been of great
interest over years in the context of communication, signal pro-
cessing and statistics, cf. [8], [9]. In recent years, this approach
has become of particular interest due to exciting developments
and wide ranging applications including:

• In signal processing (see [10]–[14]) where the goal is to
estimate a ‘signal’ by means of minimal number of mea-
surements. This is referred to as compressive sensing.
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• In coding theory through the design of low-density parity
check codes [15]–[17] or in the design of Reed Solomon
codes [18] where the aim is to design a coding scheme with
maximal communication rate.

• In the context of streaming algorithms through the design
of ‘sketches’ (see [19]–[23]) for the purpose of maintaining
a minimal ‘memory state’ for the streaming algorithm’s
operation.

In all of the above work, the basic question (see [24]) per-
tains to the design of an “measurement” matrix so that

can be recovered efficiently from measurements (or
its noisy version) using the “fewest” possible number measure-
ments . The setup of interest is when is sparse and when

or . The type of interesting results (such as those
cited above) pertain to characterization of the sparsity of
that can be recovered for a given number of measurements .
The usual tension is between the ability to recover with large

using a sensing matrix with minimal .
The sparsest recovery approach of this paper is similar (in

flavor) to the above stated work; in fact, as is shown subse-
quently, the partial information we consider can be written as
a linear transform of the function . However, the methods
or approaches of the prior work do not apply. Specifically, the
work considers finding the sparsest function consistent with the
given partial information by solving the corresponding relax-
ation problem. The work derives a necessary and sufficient con-
dition, called the Restricted Nullspace Property, on the structure
of the matrix that guarantees that the solutions to the and

relaxation problems are the same (see [11], [21]). However,
such sufficient conditions trivially fail in our setup (see [25]).
Therefore, our work provides an alternate set of conditions that
guarantee efficient recovery of the sparsest function.

B. Our Contributions

Recovery of a function over permutations from only partial
information is clearly a hard problem both from a theoretical and
computational standpoint. We make several contributions in this
paper to advance our understanding of the problem in both these
respects. As the main result, we obtain sufficient conditions—in
terms of sparsity—for functions that can be recovered exactly
from partial information. Specifically, our result establishes a
relation between the “complexity” (as measured in sparsity) of
the function that can be recovered and the “amount” of partial
information available.

Our recovery scheme consists of finding the sparsest solution
consistent with the given partial information through opti-
mization. We derive sufficient conditions under which a func-
tion can be recovered through optimization. First, we state
the sufficient conditions for recovery through optimization in
terms of the structural properties of the functions. To understand
the strength of the sufficient conditions, we propose a random
generative model for functions with a given support size; we
then obtain bounds on the size of the support for which a func-
tion generated according to the random generative model sat-
isfies the sufficient conditions with a high probability. To our
surprise, it is indeed possible to recover, with high probability,

functions with seemingly large sparsity for given partial infor-
mation (see precise statement of Theorems III.3–III.6 for de-
tails).

Finding the sparsest solution through optimization is
computationally hard. This problem is typically overcome by
considering the convex relaxation of the optimization
problem. However, as we show in Example II-C.1, relax-
ation does not always result in exact recovery, even when the
the sparsity of the underlying function is only 4. In fact, a
necessary and sufficient condition for relaxation to yield
the sparsest solution that satisfies the constraints
is the so called Restricted Nullspace Condition (RNC) on
the measurement matrix ; interestingly, the more popular
Restricted Isoperimetric Property (RIP) on the measurement
matrix is a sufficient condition. However, as shown below,
the types of partial information we consider can be written as
a linear transform of . Therefore, Example II-C.1 shows
that in our setting, the measurement matrix does not satisfy
RNC. It is natural to wonder if Example II-C.1 is anomalous.
We show that this is indeed not the case. Specifically, we show
in Theorem III.2 that, with a high probability, relaxation
fails to recover a function generated according to the random
generative model.

Since convex relaxations fail in recovery, we exploit the struc-
tural property of permutations to design a simple iterative algo-
rithm called the ‘sparsest-fit’ algorithm to perform recovery. We
prove that the algorithm recovers a function from a partial set of
its Fourier coefficients as long as the function satisfies the suf-
ficient conditions.

We also study the limitation of any recovery algorithm to
recover a function exactly from a given form of partial infor-
mation. Through an application of classical information theo-
retic Fano’s inequality, we obtain a bound on the sparsity be-
yond which recovery is not asymptotically reliable; a recovery
scheme is called asymptotically reliable if the probability of
error asymptotically goes to 0.

In summary, we obtain an intuitive characterization of the
“complexity” (as measured in sparsity) of the functions that can
be recovered from the given partial information. We show how

relaxation fails in recovery in this setting. Hence, the suffi-
cient conditions we derive correspond to an alternate set of con-
ditions that guarantee efficient recovery of the sparsest function.

C. Organization

Section II introduces the model, useful notations and the pre-
cise formulation of the problem. In Section III, we provide the
statements of our results. Section IV describes our iterative al-
gorithm that can recover from when certain conditions
(see Condition 1) are satisfied. Sections V to XI provide detailed
proofs. Conclusions are presented Section XII.

II. PROBLEM STATEMENT

In this section, we introduce the necessary notations, defini-
tions and provide the formal problem statement.

A. Notations

Let be the number of elements and be set of all possible
permutations or rankings of these of elements. Our interest
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is in learning non-negative valued functions defined on ,
i.e., , where . The support
of is defined as

The cardinality of support, will be called the sparsity
of and will be denoted by . We will also call it the norm
of , denoted by .

In this paper, we wish to learn from a partial set of
Fourier coefficients. To define the Fourier transform of a
function over the permutation group, we need some notations.
To this end, consider a partition of , i.e., an ordered tuple

, such that ,
and . For example, is
a partition of . Now consider a partition of the elements,

, as per the partition, i.e., divide elements into
bins with th bin having elements. It is easy to see that

elements can be divided as per the partition in distinct
ways, with

Let the distinct partitions be denoted by .1 For
example, for there are
distinct ways given by

Given a permutation , its action on is defined through
its action on the elements of , resulting in a partition with
the elements permuted. In the above example with

acts on to give , i.e.,

Now, for a given partition and a permutation , define
a valued matrix as

This matrix corresponds to a degree representation
of the permutation group.

B. Partial Information as a Fourier Coefficient

The partial information we consider in this paper is the
Fourier transform coefficient of at the representation , for
each . The motivation for considering Fourier coefficients at
representations is two fold: first, they provide a rigorous
way to compress the high-dimensional function (as used
in [4], [5]), and second, as we shall see, Fourier coefficients at
representations have natural interpretations, which makes
it easy to gather in practice. In addition, each representation
contains a subset of the lower-order irreducible representations;

1To keep notation simple, we use � instead of � that takes explicit depen-
dence on � into account.

thus, for each conveniently captures the information
contained in a subset of the lower-order Fourier coefficients
up to . We now define the Fourier coefficient of at the
representation , which we call -partial information.

Definition II.1. ( -Partial Information): Given a function
and partition . The Fourier Transform coefficient

at representation , which we call the -partial information,
is denoted by and is defined as

Recall the example of with as a probability
distribution on . Then, is an matrix with the th
entry being the probability of element mapped to element
under . That is, corresponds to the first order marginal of

in this case.

C. Problem Formulation

We wish to recover a function based on its partial informa-
tion based from its partition . As noted earlier, the clas-
sical approach based on Occam’s razor suggests recovering the
function as a solution of the following optimization problem:

(1)

We note that the question of recovering from is very
similar to the question studied in the context of compressed
sensing, i.e., recover from . To see this, with an abuse
of notation imagine as a dimensional vector and as
an dimensional vector. Then, where each column
of corresponds to for certain permutation . The key
difference from the compressed sensing literature is that is
given in our setup rather than being a design choice.

Question One: As the first question of interest, we wish
to identify precise conditions under which optimization
problem (1) recovers the original function as its unique
solution.

Unlike the popular literature (cf. compressed sensing), such
conditions can not be based on sparsity only. This is well ex-
plained by the following (counter-)example. In addition, the ex-
ample also shows that linear independence of the support of
does not guarantee uniqueness of the solution to the optimiza-
tion problem.

Example II-C.1: For any , consider the four permuta-
tions and ,
where id is the identity permutation. In addition, consider the
partition . Then, it is easy to see that

We now consider three cases where a bound on sparsity is not
sufficient to guarantee the existence of a unique solution to (1).

1) This example shows that a sparsity bound (even 4) on is
not sufficient to guarantee that will indeed be the sparsest
solution. Specifically, suppose that where
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for , and for all other .
Without loss of generality, let . Then

Thus, function with
and for all other is

such that but . That is,
can not be recovered as the solution of optimization

problem (1) even when support of is only 4.
2) This example shows that although might be a sparsest

solution, it may not be unique. In particular, suppose that
and for all other

. Then,
. Thus, (1) does not have a unique solution.

3) Finally, this example shows that even though the support
of corresponds to a linearly independent set of columns,
the sparsest solution may not be unique. Now suppose that

where for , and
for all other . Without loss of generality, let

. Then

Here, note that is linearly
independent, yet the solution to (1) is not unique.

Question Two: The resolution of the first question will pro-
vide a way to recover by means of solving the optimization
problem in (1). However, in general, it is computationally a hard
problem. Therefore, we wish to obtain a simple and possibly it-
erative algorithm to recover [and hence for solving (1)].

Question Three: Once we identify the conditions for exact re-
covery of , the next natural question to ask is “how restrictive
are the conditions we imposed on for exact recovery?” In other
words, as mentioned above, we know that the sufficient condi-
tions don’t translate to a simple sparsity bound on functions,
however, can we find a sparsity bound such that “most,” if not
all, functions that satisfy the sparsity bound can be recovered?
We make the notion of “most” functions precise by proposing
a natural random generative model for functions with a given
sparsity. Then, for a given partition , we want to obtain
so that if then recovery of generated according
to the generative model from is possible with high proba-
bility.

This question is essentially an inquiry into whether the sit-
uation demonstrated by Example II.C.1 is contrived or not. In
other words, it is an inquiry into whether such examples happen
with vanishingly low probability for a randomly chosen func-
tion. To this end, we describe a natural random function gener-
ation model.

Definition II.2 (Random Model): Given and an in-
terval , a random function with sparsity

and values in is generated as follows: choose permu-
tations from independently and uniformly at random,2 say

; select values from uniformly at random, say
; then function is defined as

We will denote this model as .
Question Four: Can we characterize a limitation on the

ability of any algorithm to recover from ?

III. MAIN RESULTS

As the main result of this paper, we provide answers to the
four questions stated in Section II-C. We start with recalling
some notations. Let be the given partition of

. We wish to recover function from available
information . Let the sparsity of be

Answers One & Two: To answer the first two questions, we
need to find sufficiency conditions for recovering through
optimization (1) and a simple algorithm to recover the func-
tion. For that, we first try to gain a qualitative understanding
of the conditions that must satisfy. Note that a necessary con-
dition for optimization to recover is that (1) must have a
unique solution; otherwise, without any additional information,
we wouldn’t know which of the multiple solutions is the true so-
lution. Clearly, since , (1) will have
a unique solution only if is linearly indepen-
dent. However, this linear independence condition is, in general,
not sufficient to guarantee a unique solution; in particular, even
if is linearly independent, there could exist

such that and
, where ; Example II-C.1 illustrates such a

scenario. Thus, a sufficient condition for to be the unique
sparsest solution of (1) is that not only is
linearly independent, but is
linearly independent for all such that ; in other
words, not only we want for to be linearly
independent, but we want them to be linearly independent even
after the addition of at most permutations to the support of

. Note that this condition is similar to the Restricted Isometry
Property (RIP) introduced in [10], which roughly translates to
the property that optimization recovers of sparsity from

provided every subset of columns of is linearly
independent. Motivated by this, we impose the following con-
ditions on .

Condition (Sufficiency Conditions): Let satisfy the fol-
lowing:

Unique Witness: for any , there exists
such that , but ,

for all .

2Throughout, we will assume that the random selection is done with replace-
ment.
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Linear Independence: for any collection of in-
tegers taking values in

, unless .
The above discussion motivates the “unique witness” condi-

tion; indeed, for satisfying the “unique witness” con-
dition are linearly independent because every permutation has
a unique witness and no nonzero linear combination of
can yield zero. On the other hand, as shown in the proof of The-
orem III.1, the linear independence condition is required for the
uniqueness of the sparsest solution.

Now we state a formal result that establishes Condition 1 as
sufficient for recovery of as the unique solution of optimiza-
tion problem. Further, it allows for a simple, iterative recovery
algorithm. Thus, Theorem III.1 provides answers to questions
One and Two of Section II-C.

Theorem III.1: Under Condition 1, the function is the
unique solution to the optimization problem (1). Further,
a simple, iterative algorithm called the sparsest-fit algorithm,
described in Section IV, recovers .

Linear Programs Don’t Work: Theorem III.1 states that
under Condition 1, the optimization recovers and the
sparsest-fit algorithm is a simple iterative algorithm to recover
it. In the context of compressive sensing literature (cf. [11],
[13], [14], [21]), it has been shown that convex relaxation of
optimization, such as the Linear Programing relaxation, have
the same solution in similar scenarios. Therefore, it is natural
to wonder whether such a relaxation would work in our case.
To this end, consider the Linear Programing relaxation of (1)
stated as the following minimization problem:

(2)

Example II.C.1 provides a scenario where relaxation fails in
recovery. In fact, we can prove a stronger result. The following
result establishes that—with a high probability—a function gen-
erated randomly as per Definition II.2 cannot be recovered by
solving the linear program (2) because there exists a function
such that and .

Theorem III.2: Consider a function randomly generated
as per Definition II.2 with sparsity . Then, as longs as

is not the partition ( times), with probability
, there exists a function distinct from such that

and .
Answer Three: Next, we turn to the third question. Specifi-

cally, we study the conditions for high probability recoverability
of a random function in terms of its sparsity. That is, we wish
to identify the high probability recoverability threshold .
In what follows, we spell out the result starting with few specific
cases so as to better explain the dependency of on .

Case 1: . Here and provides the
first order marginal information. As stated next, for this case the
achievable recoverability threshold scales3 as .

3Throughout this paper, by ��� we mean the natural logarithm, i.e., ��� ,
unless otherwise stated.

Theorem III.3: A randomly generated as per Definition II.2
can be recovered by the sparsest-fit algorithm with probability

as long as for any fixed .
Case 2: with . Here

and provides the th order marginal information.
As stated next, for this case we find that scales at least as

.

Theorem III.4: A randomly generated as per Definition II.2
can be recovered from by the sparsest-fit algorithm for

, with probability as long
as for any fixed .

In general, for any with and ,
arguments of Theorem III.4 can be adapted to show that
scales as . Theorems III.3 and III.4 suggest that the
recoverability threshold scales for
with for . Next, we consider the case of
more general .

Case 3: with for any
. As stated next, for this case, the recoverability threshold
scales at least as .

Theorem III.5: A randomly generated as per Definition II.2
can be recovered from by the sparsest-fit algorithm for

with for any , with
probability as long as for
any fixed .

Case 4: Any . The results stated thus far
suggest that the threshold is essentially , ignoring the log-
arithm term. For general , we establish a bound on as
stated in Theorem III.6 below. Before stating the result, we in-
troduce some notation. For given , define
with . Let

Theorem III.6: Given , a randomly gener-
ated as per Definition II.2 can be recovered from by the
sparsest-fit algorithm with probability as long as

(3)

where

and are constants.
At a first glance, the above result seems very different from

the crisp formulas of Theorems III.3–III.5. Therefore, let us con-
sider a few special cases. First, observe that as

. Further, as stated in Lemma III.1, .
Thus, we find that the bound on sparsity essentially scales as

. Note that the cases 1, 2 and 3 fall squarely under this sce-
nario since . Thus, this general result
contains the results of Theorems III.3–III.5 (ignoring the loga-
rithm terms).
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Next, consider the other extreme of . Then, and
again by Lemma III.1, . Therefore, the bound
on sparsity scales as . This ought to be the case because for

we have , and unique
witness property holds only up to due to the
standard Birthday paradox.

In summary, Theorem III.6 appears reasonably tight for the
general form of partial information . We now state the Lemma
III.1 used above (proof in Appendix A).

Lemma III.1: Consider any with
and . Then

Answer Four: Finally, we wish to understand the funda-
mental limitation on the ability to recover from by
any algorithm. To obtain a meaningful bound (cf. Example
II-C.1), we shall examine this question under an appropriate
information theoretic setup.

To this end, as in random model , consider a func-
tion generated with given and . For technical reasons
(or limitations), we will assume that the values s are chosen
from a discrete set. Specifically, let each be chosen from inte-
gers instead of compact set . We will denote this
random model by .

Consider any algorithm that attempts to recover from
under . Let be the estimation of the algorithm. Define
probability of error of the algorithm as

We state the following result.

Theorem III.7: With respect to random model , the
probability of error is uniformly bounded away from 0 for all
large enough and any , if

(4)

where for any two numbers and denotes .

IV. SPARSEST-FIT ALGORITHM

As mentioned above, finding the sparsest distribution that is
consistent with the given partial information is in general a com-
putationally hard problem. In this section, we propose an effi-
cient algorithm to fit the sparsest distribution to the given par-
tial information , for any partition of . The algorithm
we propose determines the sparsest distribution exactly as long
as the underlying distribution belongs to the general family of
distributions that satisfy the ‘unique witness’ and ‘linear inde-
pendence’ conditions; we call this the ‘sparsest-fit’ algorithm.
In this case, it follows from Theorem III.1 that the ‘sparsest-fit’
algorithm indeed recovers the underlying distribution ex-
actly from partial information . When the conditions are

not satisfied, the algorithm produces a certificate to that effect
and aborts.

Using the degree representation of the permutations, the
algorithm processes the elements of the partial information ma-
trix sequentially and incrementally builds the permutations
in the support. We describe the sparsest-fit algorithm as a gen-
eral procedure to recover a set of non-negative values given
sums of these values over a collection of subsets, which for
brevity we call subset sums. In this sense, it can be thought of
as a linear equation solver customized for a special class of sys-
tems of linear equations.

Next we describe the algorithm in detail and prove the rela-
vant theorems.

A. Sparsest-Fit Algorithm

We now describe the sparsest-fit algorithm that was also re-
ferred to in Theorems III.1, III.3–III.6 to recover function
from under Condition 1.

Setup: The formal description of the algorithm is given in
Fig. 1. The algorithm is described there as a generic procedure
to recover a set of non-negative values given a collection of
their subset sums. As explained in Fig. 1, the inputs to the al-
gorithm are positive numbers sorted in ascending
order . As stated in assumptions C1–C3
in Fig. 1, the algorithm assumes that the numbers are dif-
ferent subset sums of distinct positive numbers
i.e., for some , and the values
and subsets satisfy the conditions: for each
for some and for . Given
this setup, the sparsest-fit algorithm recovers the values and
subset membership sets for
using , but without any knowledge of or subsets

.
Before we describe the algorithm, note that in order to use

the sparsest-fit algorithm to recover we give the nonzero
elements of the partial information matrix as inputs . In
this case, equals the number of nonzero entries of

, and the sets correspond to . Here, assump-
tion C1 of the algorithm is trivially satisfied. As we argue in
Section V, assumptions C2, C3 are implied by the ‘unique wit-
ness’ and ‘linear independence’ conditions.

Description: The formal description is given below in
the Fig. 1. The algorithm processes elements
sequentially and builds membership sets incrementally. It
maintains the number of nonempty membership sets at the
end of each iteration as . Partial membership sets are
maintained as sets , which at the end of iteration equals

. The values found are
maintained as . The value of is initialized
to zero and the sets are initialized to be empty.

In each iteration , the algorithm checks if the value can be
written as a subset sum of values for some
subset . If can be expressed as for some

, then the algorithm adds to sets for
and updates as before ending the

iteration. In case there exists no such subset , the algorithm
updates as , makes the set nonempty
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Fig. 1. Sparsest-fit algorithm.

by adding to it, and sets to . At the end the algorithm
outputs for .

We now argue that under assumptions C1–C3 stated in Fig. 1,
the algorithm finds for accurately. Note
that by Assumption C2, there exists at least one such that it
is equal to , for each . Assumption C3 guarantees
that the condition in the if statement is not satisfied whenever

. Therefore, the algorithm correctly assigns values
to each of the s. Note that the condition in the if statement
being true implies that is a subset sum of some subset

. Assumption C3 ensures that if such a
combination exists then it is unique. Thus, when the condition
is satisfied, index belongs only to the sets such that .
When the condition in the if statement is false, then from As-
sumptions C2 and C3 it follows that is contained only in .
From this discussion we conclude that the sparsest-fit algorithm
correctly assigns all the indices to each of the s. Thus, the
algorithm recovers for under Assumptions
C1, C2 and C3. We summarize it in the following Lemma.

Lemma IV.1: The sparsest-fit algorithm recovers for
under Assumptions C1, C2 and C3.

Complexity of the Algorithm: Initially, we sort at most el-
ements. This has a complexity of . Further, note
that the for loop in the algorithm iterates for at most times.
In each iteration, we are solving a subset-sum problem. Since
there are at most elements, the worst-case complexity of
subset-sum in each iteration is . Thus, the worst-case
complexity of the algorithm is . How-
ever, using the standard balls and bins argument, we can prove

that for , with a high probability, there are
at most elements in each subset-sum problem. Thus,
the complexity would then be with a high
probability.

V. PROOF OF THEOREM III.1

The proof of Theorem III.1 requires us to establish two
claims: under Condition 1, (i) the sparsest-fit algorithm finds

and (ii) the optimization (1) has as it’s unique solution.
We establish these two claims in that order.

The Sparsest-Fit Algorithm Works: As noted in Section IV,
the sparsest-fit algorithm can be used to recover from .
As per Lemma IV.1, the correctness of the sparsest-fit algorithm
follows under Assumptions C1, C2 and C3. The Assumption C1
is trivially satisfied in the context of recovering from as
discussed in Section IV. Next, we show that Condition 1 implies
C2 and C3. Note that the unique witness of Condition 1 implies
C2 while C3 is a direct implication of linear independence of
Condition 1. Therefore, we have established that the sparsest-fit
algorithm recovers from under Condition 1.

Unique Solution of Optimization: To arrive at a contradic-
tion, assume that there exists a function such that

and . Let

By hypothesis of Theorem III.1, satisfies Condition 1. There-
fore, entries of matrix contains the values .
Also, by our assumption . Now, by definition,
each entry of the matrix is a summation of a subset of
numbers, . Therefore, it follows that for each

, we have

Equivalently

(5)

where .
Now consider the matrix . As noted before, each of its

entries is a summation of a subset of numbers .
Further, each contributes to exactly distinct
entries of . Therefore, it follows that the summation of all
entries of is . That is

Similarly

But . Therefore

(6)
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where is vector of all 1s of appropriate dimension (we have
abused the notation here): in LHS, it is of dimension , in
RHS it is of dimension . Also, from (5) we have

(7)

for some . From (6) and (7), it follows that

(8)

Now, there are two options: (1) either all the s are , or (2)
some of them are equal to zero. In the case (1), when for
all , it follows that for each ; or
else, RHS of (8) will be strictly larger than LHS since
for all by definition. Therefore, the matrix in (5)
must contain exactly one nonzero entry, i.e., 1, in each column.
Since for all , it follows that there must be at
least nonzero entries in . Finally, since , it follows
that we must have . In summary, it must be that is a

matrix with each row and column having exactly one 1,
and rest of the entries 0. That is, is a permutation matrix. That
is, is permutation of with .
By relabeling the s, if required, without loss of generality, we
assume that , for . Since and

for , it follows that also satisfies Condi-
tion 1. Therefore, the sparsest-fit algorithm accurately recovers

from . Since the input to the algorithm is only and
, it follows that and we have reached con-

tradiction to our assumption that is not the unique solution of
optimization problem (1).

Now consider the remaining case (2) and suppose that
for some . Then, it follows that some of the columns in the
matrix are zeros. Removing those columns of we can write

where is formed from by removing the zero columns and
is formed from by removing s such that . Let be the
size of . Since at least one column was removed, .
The condition implies that the vector lies in a lower
dimensional space. Further, is a valued matrix. There-
fore, it follows that violates the linear independence property
of Condition 1 resulting in a contradiction. This completes the
proof of Theorem III.1.

VI. PROOF OF THEOREM III.2

We prove this theorem by showing that when two permuta-
tions, say , are chosen uniformly at random, with a high
probability, the sum of their representation matrices

can be decomposed in at least two ways. For that, note
that a permutation can be represented using cycle notation, e.g.,
for , the permutation can be
represented as a composition of two cycles . We call
two cycles distinct if they have no elements in common, e.g.,
the cycles and are distinct. Given two permutations

and , let be their composition.

Now consider two permutations and such that they
have distinct cycles. For example, and
are permutations with distinct cycles. Then

. We first prove the theorem for and then
extend it to a general ; thus, we fix the partition .
Then, we have

(9)

where and have distinct cycles and id is the identity per-
mutation. Now, assuming that , consider the following:

Thus, given , it can be decom-
posed in two distinct ways with both having the same norm.
Of course, the same analysis can be carried out when has a
sparsity . Thus, we conclude that whenever has two permu-
tations with distinct cycles in its support, the minimization
solution is not unique. Therefore, to establish claim of Theorem
III.2, it is sufficient to prove that when we choose two permuta-
tions uniformly at random, they have distinct cycles with a high
probability.

To this end, let denote the event that two permutations
chosen uniformly at random have distinct cycles. Since permu-
tations are chosen uniformly at random, can be computed
by fixing one of the permutations to be id. Then, is the
probability that a permutation chosen at random has more than
one cycle.

Let us evaluate . For that, consider a permutation
having exactly one cycle with the cycle containing elements.

The number of such permutations will be . This

is because we can choose the elements that form the cycle in

ways and the numbers can be arranged in the cycle in

ways. Therefore

(10)

Now, without loss of generality let’s assume that is even. Then

(11)

The other half of the sum becomes

(12)

Putting everything together, we have

Thus, Theorem III.2 is true for .
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In order to extend the proof to a general , we observe that the
standard cycle notation for a permutation we discussed above
can be extended to partitions for a general . Specifically, for
any given , observe that a permutation can be imagined as a
perfect matching in a bipartite graph, which we call
the -bipartite graph and denote it by ;
here and respectively denote the left and right vertex
sets with with a node for every partition
of . Let denote the -partitions of ; then,
the nodes in and can be labeled by . Since
every perfect matching in a bipartite graph can be decomposed
into its corresponding distinct cycles (the cycles can be obtained
by superposing the bipartite graph corresponding to identity per-
mutation with the -bipartite graph of the permutation), every
permutation can be written as a combination of distinct cycles in
its -bipartite graph. The special case of this for
is the standard cycle notation we discussed above; for brevity,
we call the -bipartite graph for the standard
bipartite graph.

In order to prove the theorem for a general , it follows from
an argument as above that it is sufficient to prove that a randomly
chosen permutation contains at least two distinct cycles in its

-bipartite graph with a high probability. We prove this by that
a permutation with at least two distinct cycles in its standard
bipartite graph has at least two distinct cycles in its -bipartite
graph for any general . The theorem then follows from the
result we established above that a randomly chosen permutation
has at least two distinct cycles in its standard bipartite graph with
a high probability.

To that end, consider a permutation, , with at least
two distinct cycles in the standard bipartite graph. Let

and denote
the first two cycles in the standard bipartite graph; clearly,

and at least one of is . Without loss of
generality we assume that . Let .
Since , we have . First, we con-
sider the case when . Now consider the -partition,

, of constructed as follows: placed in the th partition,
in the first partition, all the elements of the second cycle

arbitrarily in the first partitions and the
rest placed arbitrarily. Note that such a construction is possible
by the assumption on . Let denote ; then,
because does not contain in the th partition while
contains in the th partition. Thus, the partition

belongs to a cycle that has a length of at least 2 partitions.
Thus, we have found one cycle, which we denote by . Now
consider a second partition constructed as follows: placed
in the th partition, in the first and the rest placed arbitrarily.
Again, note that . Thus, belongs to a cycle of
length at least 2, which we denote by . Now we have found
two cycles , and we are left with proving that they are
distinct. In order to establish the cycles are distinct, note that
none of the partitions in cycle can be . This is true because,
by construction, contains in the th partition while none
of the partitions in can contain any elements from the cycle

in the th partition. This finishes the proof for all such that
.

We now consider the case when . Since
, it follows that and . For

, it is still feasible to construct and , and the theorem
follows from the arguments above. Now we consider the case
when ; let . Note that now
it is infeasible to construct as described above. Therefore,
we consider and

. Clearly,
and . Thus, and belong to two cycles, and

, each with length at least 2. It is easy to see that these cycles
are also distinct because every -partition in the cycle will
have only one element from cycle in the first partition and,
hence, cannot contain the -partition . This completes the
proof of the theorem.

VII. PROOF OF THEOREM III.3:

Our interest is in recovering a random function from partial
information . To this end, let

Here and are randomly chosen as per the random model
described in Section II. For ;

then is an matrix with its th entry being

To establish Theorem III.3, we prove that as long as
with can be recovered by the

sparsest-fit algorithm with probability for any fixed
. Specifically, we show that for , Condition

1 is satisfied with probability , which in turn implies
that the sparsest-fit algorithm recovers as per Theorem III.1.
Note that the “linear independence” property of Condition 1 is
satisfied with probability 1 under as are chosen
from a distribution with continuous support. Therefore, we are
left with establishing “unique witness” property.

To this end, let so that . Let be the
event that satisfies the unique witness property, .
Under , since permutations are chosen from in-
dependently and uniformly at random, it follows that is
the same for all . Therefore, by union bound, it is sufficient to
establish that . Since we are interested in

, it is sufficient to establish . Fi-
nally, once again due the symmetry, it is sufficient to evaluate

assuming , i.e., for all .
Define
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It then follows that

Therefore, for any , we have

(13)

Next we show that for the selection of , the RHS
of (13) is bounded above by . That will
complete the proof of achievability.

For that, we start by bounding

(14)

The last equality follows because all permutations are
chosen uniformly at random. For , we now evaluate

. Given , for any

will take a value from values, possibly including
, uniformly at random. Thus, we obtain the following bound:

(15)

From (13)–(15), we obtain that

(16)

where we have used in the last inequality. Since
. Using the standard fact

for small , we have

(17)

Finally, observe that

Therefore, from (16) and (17), it follows that

(18)

where we have used the fact that for and
. From (18), it follows that

. This completes the proof of achievability.

VIII. PROOF OF THEOREM III.4 :

Our interest is in recovering the random function from par-
tial information . As in proof of Theorem III.3, we use the
notation

Here and are randomly chosen as per the random model
described in Section II. For

and is an matrix.
To establish Theorem III.4, we shall prove that as long as

with a constant, can be recovered
by the sparsest-fit algorithm with probability . We shall
do so by verifying that the Condition 1 holds with probability

, so that the sparsest-fit algorithm will recover as
per Theorem III.1. As noted earlier, the “linear independence”
of Condition 1 is satisfied with probability 1 under .
Therefore, we are left with establishing the “unique witness”
property.

To this end, for the purpose of bounding, without loss of
generality, let us assume that for some

. Set . Following arguments similar to those in
the proof of Theorem III.3, it will be sufficient to establish that

; where is the event that permutation
satisfies the unique witness property.

To this end, recall that is a matrix. Each row
(and column) of this matrix corresponds to a distinct partition
of . Without loss of generality, let us order
the partitions of so that the th partition, , is defined
as follows: , and for

Note that since , we have for all
. Define
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Then it follows that

Therefore

(19)

First, we bound . Each permutation , maps
to

. Therefore, iff
maps set of elements to the same set of

elements. Therefore

(20)

Therefore, it follows that

(21)

Next we evaluate for . Given

, we have (at least partial) information about the action
of over elements .
Conditional on this, we are interested in the action of on ,
i.e., . Specifically, we want to
(upper) bound the probability that these elements are mapped
to themselves. Given , each will map

to one of the possibilities with
equal probability. Further, is
not a possibility. Therefore, for the purpose of upper bound, we
obtain that

(22)

From (19)–(22), we obtain that

(23)

Now and hence, . Using
for small , we have

(24)

Finally, observe that since

Thus, from (23) and (24), it follows that

(25)

In above, we have used the fact that for
and choice of . This completes the proof of Theorem
III.4.

IX. PROOF OF THEOREM III.5:

So far we have obtained the sharp result that the sparsest-fit
algorithm recovers up to sparsity essentially for

with where . Now we investigate this
further when scales with , i.e., . Let
with for some . For such

(26)

Our interest is in the case when for
any . For this, the structure of arguments will be similar
to those used in Theorems III.3 and III.4. Specifically, it will be
sufficient to establish that , where is
the event that permutation satisfies the unique witness
property.

To this end, we order the rows (and corresponding columns)
of the matrix in a specific manner. Specifi-
cally, we are interested in the rows that
we call and they are as follows: the first row,

corresponds to a partition where elements be-
long to the first partition and are partitioned
into remaining parts of size in that order.
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The partition corresponds to the one in which the first part
contains the elements ,
while the other parts contain
in that order. More generally, for contains

in the first partition and
remaining elements in the rest
of the parts in that order. By our choice of
and, hence, the above is well defined. Next, we bound
using these rows.

Now and hence, for all .
Define

Then it follows that

Therefore

(27)

First, we bound . Each permutation
maps to one of the possible other partitions with equal
probability. Therefore, it follows that

(28)

Thus

(29)

Next we evaluate for . Given

, we have (at least partial) information about the action
of over elements .
Conditional on this, we are interested in the action of on

. Given the partial information, each of the will map
to one of at least different options with equal probability
for —this is because the
elements in the first part and all elements
in the remaining parts are mapped completely randomly
conditional on . Therefore, it follows that

(30)

From (27)–(30), we obtain that

(31)

In the above, we have used the fact that

Consider

(32)

Therefore, it follows that

(33)

Using for any for
and , we have that for any

(34)

Therefore, we obtain

(35)

Now

(36)
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It can be checked that for given choice of , we have
and . Therefore, in sum-

mary we have that

(37)

Using similar approximations to evaluate the bound on RHS of
(31) along with (26) yields

(38)

This completes the proof of Theorem III.5.

X. PROOF OF THEOREM III.6: GENERAL

We shall establish the bound on sparsity up to which recovery
of is possible from using the sparsest-fit algorithm for
general . Let with

. As before, let

Here and are randomly chosen as per the random model
described in Section II. And, we are given partial in-

formation which is matrix with

Finally, recall definition with

As usual, to establish that the sparsest-fit algorithm recovers
from , we will need to establish “unique witness” property
as “linear independence” is satisfied due to choice of s as per
random model .

For the ease of exposition, we will need an additional nota-
tion of -bipartite graph: it is a complete bipartite graph

with vertices having a node each for a
distinct partition of and thus . Action of
a permutation , represented by a valued
matrix, is equivalent to a perfect matching in . In this no-
tation, a permutation has “unique witness” with respect to a

collection of permutations, if and only if there is an edge in the
matching corresponding to that is not present in any other per-
mutation’s matching.

Let denote the event that permutations chosen
uniformly at random satisfy the “unique witness” property. To
establish Theorem III.6, we wish to show that
as long as where is defined as per (3). To
do so, we shall study for . Now consider
the bipartite graph, , which is subgraph of , formed by the
superimposition of the perfect matchings corresponding to the

random permutations, . Now, the probability
of given that has happened is equal to the probability
that a new permutation, generated uniformly at random, has its
perfect matching so that all its edges end up overlapping with
those of . Therefore, in order to evaluate this probability we
count the number such permutations.

For the ease of exposition, we will first count the number of
such permutations for the cases when followed
by . Later, we shall extend the analysis to a general

. As mentioned before, for , the corresponding
is a complete graph with nodes on left and right. With

a bit of abuse of notation, the left and right vertices be labeled
. Now each permutation, say , corresponds to

a perfect matching in with an edge from left to right if
and only if . Now, consider , the superimposition of
all the perfect matching of the given permutations. We want to
count (or obtain an upper bound on) the number of permutations
that will have corresponding perfect matching so that all of its
edges overlap with edges of . Now each permutation maps a
vertex on left to a vertex on right. In the graph , each vertex

on the left has degree of at most . Therefore, if we wish a
choose a permutation so that all of its perfect matching’s edges
overlap with those of , it has at most choices for each
vertex on left. There are vertices in total on left. Therefore,
total number of choices are bounded above by . From this,
we conclude that for

In a similar manner, when , the complete bi-
partite graph has nodes on the left and right; each
permutation corresponds to a perfect matching in this graph. We
label each vertex, on left and right, in by unordered pairs

, for . Again, we wish to bound given
. For this, let , a subgraph of , be obtained

by the union of edges that belong to the perfect matchings of
given permutations. We would like to count the number pos-
sible permutations that will have corresponding matching with
edges overlapping with those of . For this, we consider the

pairs . Now if
is even then they end up covering all elements. If not, we

consider the last, th element, as an additional set.
Now using a similar argument as before, we conclude that

there are at most ways of mapping each of these
pairs such that all of these edges overlap with the edges of .
Note that this mapping fixes what each of these unordered
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pairs get mapped to. Given this mapping, there are ways of
fixing the order in each unordered pair. For example, if an un-
ordered pair maps to unordered pair there there are

options: : or . Thus, once we
fix the mapping of each of the disjoint unordered pairs,
there can be at most permutations with the given map-
ping of unordered pairs. Finally, note that once the mapping of
these pairs is decided, if is even that there is no element
that is left to be mapped. For odd, since mapping of the
elements is decided, so is that of . Therefore, in summary
in both even or odd case, there are at most
permutations that have all of the edge of corresponding perfect
matching in overlapping with the edges of . Therefore

Now consider the case of general . Let
and . Clearly,

. Now we partition the set into
partitions covering all elements:

and .
As before, for the purpose of upper bounding the number of
permutations that have corresponding perfect matchings in
overlapping with edges of , each of the first partitions can
be mapped in different ways; in total at most ways. For
each of these mappings, we have options at the most

Given the mapping of the first partitions, the mapping of the
elements of the st partition is determined (without or-

dering). Therefore, the additional choice is at most . In sum-
mary, the total number of permutations can be at most

Using this bound, we obtain

(39)

Let

Note that for . Therefore, it follows that

(40)

Recursive application of argument behind (40) and fact that
, we have

(41)

Using (39), it follows that for . Therefore

(42)

Since , we have a binomial and a
multinomial coefficient in RHS of (42). We simplify this
expression by obtaining an approximation for a multinomial
coefficient through Stirling’s approximation. For that, first
consider a general multinomial coefficient
with . Then, using the Stirling’s approximation

, for any , we obtain

Thus, we can write

(43)
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where . Similarly, we can write

(44)

where . It now follows from (43) and (44) that

(45)

Since and . Thus,
we can write

(46)

It now follows from (42), (45), and (46) that

(47)

Therefore, for , a sufficient condition is

(48)

for some . We now claim that
. The claim is clearly true for

for some . Now suppose .
Then, , say.
This implies that
as . Thus, for

as . Hence, the claim is true for as
. Finally, consider as . Note that the

function is increasing on for some
. Thus, for large enough,

since . Since , it now follows that
for large enough and .

This establishes the claim.
Since , it now follows that (48)

is implied by

(49)

Now consider . Then, we claim that
for large

(50)

In order to see why the claim is true, note that Stirling’s approx-
imation suggests,

Therefore

Now consider

(51)

Since for . Thus, the first
term in the RHS of (51) is non-negative for any . In addi-
tion, for every , either or
as . Therefore, the term on the RHS of (51) is asymp-
totically non-negative. Hence

(52)

Thus, it now follows from (50) that (49) is implied by

That is, we have “unique witness” property satisfied as long as

(53)

where

(54)

and is some constant. This completes the proof of Theorem
III.6.

XI. PROOF OF THEOREM III.7: LIMITATION ON RECOVERY

In order to make a statement about the inability of any algo-
rithm to recover using , we rely on the formalism of clas-
sical information theory. In particular, we establish a bound on
the sparsity of beyond which recovery is not asymptotically
reliable (precise definition of asymptotic reliability is provided
later).

A. Information Theory Preliminaries

Here we recall some necessary Information Theory prelimi-
naries. Further details can be found in the book by Cover and
Thomas [26].
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Consider a discrete random variable that is uniformly dis-
tributed over a finite set . Let be transmitted over a noisy
channel to a receiver; suppose the receiver receives a random
variable , which takes values in a finite set . Essentially,
such “transmission over noisy channel” setup describes any two
random variables defined through a joint probability dis-
tribution over a common probability space.

Now let be an estimation of the transmitted infor-
mation that the receiver produces based on the observation
using some function . Define probability of error
as . Since is uniformly distributed over

, it follows that

(55)

Recovery of is called asymptotically reliable if
as . Therefore, in order to show that recovery is
not asymptotically reliable, it is sufficient to prove that is
bounded away from 0 as . In order to obtain a lower
bound on , we use Fano’s inequality

(56)

Using (56), we can write

(57)

where we used for a discrete4 valued random
variable. The inequality (a) follows from the data processing
inequality: if we have Markov chain , then

. Since , from (57) we
obtain

(58)

Therefore, to establish that probability of error is bounded away
from zero, it is sufficient to show that

(59)

for any fixed constant .

B. Proof of Theorem III.7

Our goal is to show that when is large enough (in particular,
as claimed in the statement of Theorem III.7), the probability
of error of any recovery algorithm is uniformly bounded away
from 0. For that, we first fix a recovery algorithm, and then uti-
lize the above setup to show that recovery is not asymptotically

4The counterpart of this inequality for a continuous valued random variable
is not true. This led us to study the limitation of recovery algorithm over model

����� � rather than ���� �.

reliable when is large. Specifically, we use (59), for which
we need to identify random variables and .

To this end, for a given and , let be generated as per the
random model . Let random variable represent the
support of function i.e., takes values in . Given ,
let be the partial information that the recovery algorithm
uses to recover . Let random variable represent , the

matrix. Let denote the estimate of , and
denote the estimate of the support of

produced by the given recovery algorithm. Then

(60)

Therefore, in order to uniformly lower bound the probability of
error of the recovery algorithm, it is sufficient to lower bound
its probability of making an error in recovering the support of

. Therefore, we focus on

It follows from the discussion in Section XI-A that in order to
show that is uniformly bounded away from 0, it is sufficient
to show that for some constant

(61)

Observe that . Therefore, using Stirling’s approx-
imation, it follows that

(62)

Now is a matrix. Let with
, taking values in ; it is easy to

see that . Therefore, it follows that

(63)

For small enough constant , it is easy to see that the condi-
tion of (61) will follow if satisfies the following two inequal-
ities:

(64)

(65)

In order to obtain a bound on from (64), consider the fol-
lowing: for large numbers , let , for some
constants . Then,
which is . Therefore

(66)

for and constants . Also, observe that
is a nondecreasing function; hence, it follows that for



JAGABATHULA AND SHAH: INFERRING RANKINGS USING CONSTRAINED SENSING 7305

for large . Now take
and . Note that for all of interest;

therefore, as . Hence, (64) is satisfied for the
choice of

(67)

From (61), (64), (65), and (67) it follows that the probability of
error of any algorithm is at least for large enough and
any if

(68)

This completes the proof of Theorem III.7.

XII. CONCLUSION

In summary, we considered the problem of exactly recovering
a non-negative function over the space of permutations from a
given partial set of Fourier coefficients. This problem is moti-
vated by the wide ranging applications it has across several dis-
ciplines. This problem has been widely studied in the context
of discrete-time functions in the recently popular compressive
sensing literature. However, unlike our setup, where we want to
perform exact recovery from a given set of Fourier coefficients,
the work in the existing literature pertains to the choice of a lim-
ited set of Fourier coefficients that can be used to perform exact
recovery.

Inspired by the work of Donoho and Stark [1] in the context of
discrete-time functions, we focused on the recovery of non-neg-
ative functions with a sparse support (support size domain
size). Our recovery scheme consisted of finding the function
with the sparsest support, consistent with the given information,
through optimization. As we showed through some coun-
terexamples, this procedure, however, does not recover the exact
solution in all the cases. Thus, we identified sufficient conditions
under which a function can be recovered through optimiza-
tion. For each kind of partial information, we then quantified the
sufficient conditions in terms of the “complexity” of the func-
tions that can be recovered. Since the sparsity (support size) of a
function is a natural measure of its complexity, we quantified the
sufficient conditions in terms of the sparsity of the function. In
particular, we proposed a natural random generative model for
the functions of a given sparsity. Then, we derived bounds on
sparsity for which a function generated according to the random
model satisfies the sufficient conditions with a high probability
as . Specifically, we showed that, for partial informa-
tion corresponding to partition , the sparsity bound essentially
scales as . For , this bound essentially be-
comes and for , the bound essentially becomes

.
Even though we found sufficient conditions for the recov-

erability of functions by finding the sparsest solution, opti-
mization is in general computationally hard to carry out. This
problem is typically overcome by considering its convex relax-
ation, the optimization problem. However, we showed that
optimization fails to recover a function generated by the random

model with a high probability. Thus, we proposed a novel itera-
tive algorithm to perform optimization for functions that sat-
isfy the sufficient conditions, and extended it to the general case
when the underlying distribution may not satisfy the sufficient
conditions and the observations maybe noisy.

We studied the limitation of any recovery algorithm by means
of information theoretic tools. While the bounds we obtained
are useful in general, due to technical limitations, they do not
apply to the random model we considered. Closing this gap and
understanding recovery conditions in the presence of noise are
natural next steps.

APPENDIX

PROOF OF AUXILIARY LEMMA

Here we present the proof of Lemma III.1. For this, first con-
sider the limit . Specifically, let , for a very
small positive . Then, . By defini-
tion, we have ; therefore, in order to prove
that as , it is sufficient to prove that

as . For that, consider

(69)

In order to obtain a lower bound, we minimize
over . It follows from (69) that, for a given

is minimized for the choice of that
minimizes . Thus, we maximize subject
to and . Here we are max-
imizing a convex function over a convex set. Therefore, max-
imization is achieved on the boundary of the convex set. That
is, the maximum is ; consequently, the minimum value of

. Therefore, it follows that for

(70)

To prove a similar claim for , let for a small,
positive . Then, it follows that since
and for all . Using a convex max-
imization based argument similar to the one we used above,
it can be checked that . Therefore, it
follows that as . That is,

as . This completes the proof of
Lemma III.1.
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