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We consider the problem of detecting the source of a rumor which has spread in a network using only observations about
which set of nodes are infected with the rumor and with no information as to when these nodes became infected. In a recent
work (Shah and Zaman 2010), this rumor source detection problem was introduced and studied. The authors proposed the
graph score function rumor centrality as an estimator for detecting the source. They establish it to be the maximum likelihood
estimator with respect to the popular Susceptible Infected (SI) model with exponential spreading times for regular trees. They
showed that as the size of the infected graph increases, for a path graph (2-regular tree), the probability of source detection
goes to 0 and for d-regular trees with d¾ 3 the probability of detection, say �d , remains bounded away from 0 and is less
than 1/2. However, their results stop short of providing insights for the performance of the rumor centrality estimator in more
general settings such as irregular trees or the SI model with nonexponential spreading times.

This paper overcomes this limitation and establishes the effectiveness of rumor centrality for source detection for generic
random trees and the SI model with a generic spreading time distribution. The key result is an interesting connection between
a continuous time branching process and the effectiveness of rumor centrality. Through this, it is possible to quantify the
detection probability precisely. As a consequence, we recover all previous results as a special case and obtain a variety of
novel results including the universality of rumor centrality in the context of tree-like graphs and the SI model with a generic
spreading time distribution.
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1. Introduction
Imagine someone starts a rumor which then spreads through
a social network. After the rumor has spread for a long
amount of time, we observe this network of rumor infected
individuals. We only know who has heard the rumor and the
underlying network structure. No information is given about
when the people heard the rumor. Our goal is to use only
this information to discover the source of the rumor.

This rumor source detection problem is very general and
arises in many different contexts. For example, the rumor
could be a computer virus spreading through the Internet,
a contagious disease infecting a human population, or a
trend or new product diffusing through a social network. In
each of these different scenarios, detection of the source
is of great interest. One would naturally like to find the
originator of a malicious cyber-attack. Detecting the source
of a viral epidemic would aid with the development of
effective vaccination, quarantine, and prevention strategies.
In social networks, sources of rumors, trends, or new product
adoption may be effective at disseminating information, and
their identification would be of interest to companies wishing
to develop viral marketing campaigns.

Detection of the source is made challenging in each of
these situations by the fact that one may not have information
regarding the time of the infection or adoption. For example,
if the computer virus remains dormant and then upon
activation renders the system inoperable, it may not be
possible to determine when the machine was infected. For
contagious diseases, determining exactly when a person
became infected can be difficult due to lack of sufficient data.
Rather, only a broad time window of when the infection
occurred may be known. For trends or new product adoption
one may be able to determine the exact time of adoption
if this occurs through a social network such as Facebook
which records the time of each user’s activity. However,
there can be situations where people do not share the fact
that they have adopted until much after they have done so,
making it difficult to pinpoint precisely when the adoption
occurred.

Given the wide ranging applications, it begs to understand
the fundamental limitations of the source detection problem.
Concretely, there are two key questions that need to be
addressed. First, how does one actually construct the rumor
source estimator? Since no information about infection times
is given, a rumor source estimator would need to extract
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all information about the identity of the source using only
the structure of the rumor infected network, but it is not
obvious in what manner. Second, what are the fundamental
limits to this rumor source detection problem? In particular,
how accurately can one find the rumor source, what is the
magnitude of errors made in this detection, and how does
the network structure affect one’s ability to find the rumor
source?

1.1. Related Work

Rumor spreading was originally studied in the context of
epidemiology to predict, control, and prevent the spread
of infectious diseases. The epidemiological models for the
spread of disease generally consisted of individuals that could
be in one of three states: susceptible, infected, or recovered.
In the susceptible-infected-recovered or SIR model all three
states are allowed, but there are variants such as the SI model
which only consider susceptible and infected individuals.
Daniel Bernoulli developed the first differential equation
models for the spread of a disease (Bernoulli and Blower
2004). Modern differential equation models were introduced
in (Kermack and McKendrick 1927) and later expanded in
(Anderson and May 1979a) and (Anderson and May 1979b).
These models provided insight into the disease spreading
dynamics, but they were very coarse and made several
simplifying assumptions about human populations. The next
level of modeling involved taking into account the network
over which the disease spread. Contact network modeling
was able to capture in greater detail the specific manner by
which disease spread. These models have allowed researchers
to understand how the network structure affects the ability of
a disease to become an epidemic (Moore and Newman 2000,
Pastor-Satorras and Vespignani 2001, Ganesh et al. 2005).
The insights obtained from modeling disease spreading at
a network level have allowed epidemiologists to develop
vaccination and quarantine strategies to control modern viral
epidemics (Meyers et al. 2003, 2005; Pourbohoul et al. 2005,
2009; Bansal et al. 2006, 2010; Fraser et al. 2009; Yang
et al. 2009).

The network models developed for disease propagation
have found application in the context of online social net-
works. In Domingos and Richardson (2001), Kempe et al.
(2003), and Hartline et al. (2008) optimization methods were
applied to network models to select the best set of users
to seed with a new product or information to maximize its
spread in a social network. This work is complementary to
that in epidemiology, where the goal is to prevent the spread
of a viral outbreak, not accelerate it. Another interesting
line of work has focused on using the spread of rumors in a
social network to reconstruct the unknown network structure
(Gomez-Rodriguez et al. 2010, Myers and Leskovec 2010,
Netrapalli and Sanghavi 2012).

Controlling the spread of a rumor, whether it be a conta-
gious disease or the adoption of a new product, has been
the main focus of a large amount of research, but the
question of identifying the source of the rumor has been

largely overlooked. A problem located at the intersection of
probability theory and information theory recently emerged
which is thematically related to rumor source detection. It
is known as the reconstruction problem and the goal is to
estimate the information possessed by a source based on
noisy observations about this information as it propagates
through a network. There are interesting similarities between
the two problems: the signal of interest, the information of
the source (for the reconstruction problem) and the rumor
source itself (for the rumor source detection problem) are
extremely “low-dimensional.” However, the observations
for each problem, the noisy versions of the information
(reconstruction) and infected nodes (rumor source detection),
lie in a very “high-dimensional” setting. This makes esti-
mation and detection quite challenging. It is not surprising
that results for the reconstruction problem, even for tree or
tree-like graphs, have required sophisticated mathematical
techniques (Evans et al. 2000, Mossel 2001, Gerschenfeld
and Montanari 2007). Therefore, one would expect similar
types of challenges for the rumor source detection problem,
which involves not estimating information at a known source,
but rather finding the source itself among a large number of
vertices in a network.

The rumor source detection problem was first formally
posed and studied in Shah and Zaman (2010). The authors
proposed a graph-score function called rumor centrality as an
estimator for the rumor source. They showed that the node
with maximal rumor centrality is the maximum likelihood
(ML) estimate of the source for rumor spreading on regular
trees under the SI model with homogeneous exponential
spreading times. They demonstrated the effectiveness of this
estimator by establishing that the rumor source is found with
strictly positive probability for regular trees and geometric
trees under this setting. The model and precise results from
Shah and Zaman (2010) are described in §2.

Although this work laid the foundations of the rumor
source detection problem, the results had some key lim-
itations. First, they do not quantify the exact detection
probability, say �d, for d-regular graphs, for the proposed
ML estimator other than �2 = 0, �3 = 0025 and 0 <�d ¶ 005
for d ¾ 4 for the SI model with exponential spreading times.
Second, the results do not quantify the magnitude of the error
in the event of not being able to identify the source. Third,
the results do not provide any insights into how the estimator
behaves for rumor spreading on generic heterogeneous tree
(or tree-like) graphs under the SI model with a generic
spreading time distribution.

1.2. Summary of Results

The primary reason behind the limitations of the results
in Shah and Zaman (2010) is the fact that the analytic
method employed there is quite specific to regular trees with
homogeneous exponential spreading times. To overcome
these limitations, as the main contribution of this work we
introduce a novel analysis method that utilizes connections to
the classical Markov branching process (MBP) (equivalently,
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a generalized Polya’s urn (GPU)). As a consequence of this,
we are able to quantify the probability of the error event
precisely and thus eliminate the shortcomings of the prior
work.

Our results in this work collectively establish that, even
though, rumor centrality is an ML estimator only for regular
trees and the SI model with exponential spreading times, it is
universally effective with respect to heterogeneity in the tree
structure and spreading time distributions. It’s effectiveness
for generic random trees immediately implies its utility for
finding sources in sparse random graphs that are locally
tree-like. Examples include Erdös-Rényi and random regular
graphs. A brief discussion to this effect can be found in §3.4.

The following is a summary of our main results (see §3
for precise statements):

1. Regular trees, SI model with exponential spreading
times: We characterize �d, the detection probability for
d-regular trees, for all d. Specifically, for d¾ 3

�d = dI1/2

(

1
d− 2

1
d− 1
d− 2

)

− 4d− 150

In above Ix4a1b5 is the incomplete beta function with
parameters a1 b evaluated at x ∈ 60117 (see (4)). This implies
that �d > 0 for d ¾ 3, �3 = 0025, and �d → 1 − ln 2 as
d → �. Furthermore, we show that the probability of rumor
centrality estimating the kth infected node as the source
decays as exp4−ä4k55. The precise results are stated as
Theorem 3.1, Corollaries 1 and 2.

2. Generic random trees, SI model with exponential
spreading times: For generic random trees (see §3.2 for
precise definition) which are expanding, we establish that
there is strictly positive probability of correct detection
using rumor centrality. Furthermore, the probability of rumor
centrality estimating the kth infected node as the source
decays as exp4−ä4k55. The precise results are stated as
Theorems 3.2 and 3.3.

3. Geometric trees, SI model with generic spreading times:
For any geometric tree (see §3.2.2 for precise definition), we
establish that the probability of correct detection goes to 1
as the number of infected nodes increases. The precise result
is stated as Theorem 3.4.

4. Generic random trees, SI model with generic spreading
times: For generic expanding random trees with generic
spreading times (see §3.2 for definition), we establish that
the probability of correct source detection remains bounded
away from 0. The precise result is stated as Theorem 3.2.

2. Model, Problem Statement and
Rumor Centrality

We start by describing the model and problem statement
followed by a quick recall of the precise results from
Shah and Zaman (2010). In the process, we shall recall
the definition of rumor centrality and source estimation as
introduced in Shah and Zaman (2010).

2.1. Model

Let G = 4V1E5 be a possibly infinite connected graph.
Let v ∈V be a rumor source from which a rumor starts
spreading at time 0. As per the classical Susceptible Infected
(SI) model the rumor spreads in the graph. Specifically,
each edge e = 4u11 u25 has a spreading time Se associated
with it. If node u1 gets infected at time t1, then at time
t1 + Se the infection spreads from u1 to u2. A node, once
becoming infected, remains infected. The spreading times
associated with edges are independent random variables
with identical distribution. Let F 2 �→ 60117 denote the
cumulative density function of the spreading time distribution.
We shall assume that the distribution is non-negative valued,
i.e., F 405= 0 and it is nonatomic at 0, i.e., F 40+5= 0. Since
it is a cumulative density function, it is nondecreasing and
limx→� F 4x5= 1. The simplest, homogeneous SI model has
exponential spreading times with parameter � > 0 with
F 4x5= 1 − exp4−�x5 for x¾ 0. In Shah and Zaman (2010),
the results were restricted to this homogeneous exponential
spreading time setting. In this paper, we shall develop results
for arbitrary spreading time distributions consistent with the
above assumptions.

Given the above spreading model, we observe the rumor
infected graph G4t5= 4V 4t51E4t55 at some time t > 0. To
simplify our notation, we will refer to the time dependent
rumor infected graph at time t simply as G= 4V 1E5. We do
not know the value of t or the realization of the spreading
times on edges e ∈ E; we only know the rumor infected
nodes V ⊂V and edges between them E = V ×V ∩E. The
goal is to find the rumor source (among V ) given G.

We note here that in this setting we do not observe
the underlying graph G. This means we do not observe
edges on the boundary between infected and noninfected
nodes. However, these boundary edges do provide additional
information. For example, if an infected node has a large
number of uninfected neighbors, then it is likely that this
node has not been infected for very long, otherwise more of
its neighbors would be infected. Intuitively, this would mean
that it is less likely that this node is the source. Our rumor
source estimator, which we present next, does not require
any knowledge of G, though our analysis of the estimator’s
performance will require knowledge of the structure of G.
We will find that without observing G, our rumor source
estimator is still able to perform well on a variety of graphs
under general spreading models.

2.2. Rumor Centrality: An Estimator

To solve the rumor source detection problem, the notion of
rumor centrality was introduced in Shah and Zaman (2010).
Rumor centrality is a “graph score” function. That is, it
takes G= 4V 1E5 as input and assigns a non-negative number
or score to each of the vertices. Then the estimated source is
the one with maximal (ties broken uniformly at random)
score or rumor centrality. The node with maximal rumor
centrality is called the “rumor center” (which is also the
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Figure 1. (Color online) Example of rumor centrality
calculation for a 5 node network.

1

2 3

4 5

Rumor centrality of node 1 = 8

{1, 3, 2, 4, 5}, {1, 2, 3, 4, 5},
{1, 2, 4, 3, 5}, {1, 2, 4, 5, 3},
{1, 3, 2, 5, 4}, {1, 2, 3, 5, 4},
{1, 2, 5, 3, 4}, {1, 2, 5, 4, 3}

Spreading orders

Note. The rumor centrality of node 1 is 8 because there are 8 spreading
orders that it can originate, which are shown in the figure.

estimated source) with ties broken uniformly at random. We
start with the precise description of rumor centrality for
a tree1 graph G: the rumor centrality of node u∈ V with
respect to G= 4V 1E5 is

R4u1G5=
�V �!

∏

w∈V T
u
w

1 (1)

where T u
w is the size of the subtree of G that is rooted at

w and points away from u. For example, in Figure 1, let
u be node 1. Then �V � = 5; the subtree sizes are T 1

1 = 5,
T 1

2 = 3, T 1
3 = T 1

4 = T 1
5 = 1 and hence R411G5= 8. In Shah

and Zaman (2010), a linear time algorithm is described to
compute the rumor centrality of all nodes building on the
relation R4u1G5/R4v1G5= T v

u /T
u
v for neighboring nodes

u1 v ∈ V (4u1 v5 ∈E).
The rumor centrality of a given node u ∈ V for a tree

given by (1) is precisely the number of distinct spreading
orders that could lead to the rumor infected graph G starting
from u. This is equivalent to computing the number of linear
extensions of the partial order imposed by the graph G due
to causality constraints of rumor spreading. Under the SI
model with homogeneous exponential spreading times and a
regular tree, it turns out that each of the spreading orders is
equally likely. Therefore, rumor centrality turns out to be
the maximum likelihood (ML) estimator for the source in
this specific setting (cf. Shah and Zaman 2010). In general,
the likelihood of each node u ∈ V being the source given G
is proportional to the weighted summation of the number of
distinct spreading orders starting from u, where weight of a
spreading order could depend on the details of the graph
structure and spreading time distribution of the SI model.
Now for a tree graph and SI model with homogeneous
exponential spreading times, as mentioned above, such a
quantity can be computed in linear time. But in general, this
could be complicated. For example, computing the number
of linear extensions of a given partial order is known to
be #P-complete (Brightwell and Winkler 1991). There are
algorithms for approximately sampling linear extensions
given a partial order (Karzanov and Khachiyan 1991), Shah
and Zaman (2010) proposed the following simpler alternative
for general graphs.

Definition 1 (Rumor Centrality). Given node u ∈ V in
graph G= 4V 1E5, let T ⊂G denote a breadth-first search
tree of u with respect to G. Then, the rumor centrality of u
with respect to G is obtained by computing it as per (1) with
respect to T . The estimated rumor source is the one with
maximal rumor centrality (ties broken uniformly at random).

2.3. Prior Results

In Shah and Zaman (2010), the authors established that
rumor centrality is the maximum-likelihood estimator for
the rumor source when the underlying graph G is a regular
tree. They studied the effectiveness of this ML estimator
for such regular trees. Specifically, suppose we observe the
n4t5 node rumor infected graph G after time t, which is a
subgraph of G. Let Ck

t be the event that the source estimated
as per rumor centrality is the kth infected node, and thus C1

t

corresponds to the event of correct detection. The following
are key results from Shah and Zaman (2010):

Theorem 2.1 (Shah and Zaman 2010). Let G be a d-
regular infinite tree with d¾ 2. Let

�L
d = lim inf

t→�
P4C1

t 5¶ lim sup
t→�

P4C1
t 5= �U

d 0 (2)

Then,

�L
2 = �U

2 = 01 �L
3 = �U

3 =
1
4 1 and

0 <�L
d ¶ �U

d ¶ 1
2 1 ∀ d¾ 40

(3)

3. Main Results
We state the main results of this paper. In a nutshell, our
results concern the characterization of the probability of
Ck

t for any k ¾ 1 for large t when G is a generic tree.
As a consequence, it provides a characterization of the
performance for sparse random graphs.

3.1. Regular Trees, SI Model with Exponential
Spreading Times

We first look at rumor source detection on regular trees
with degree d ¾ 3, where rumor centrality is an exact
ML estimator when the spreading times are exponentially
distributed. Our results will utilize properties of Beta random
variables. We recall that the regularized incomplete Beta
function Ix4a1b5 is the probability that a Beta random
variable with parameters a and b is less than x ∈ 60117,

Ix4a1 b5=
â4a+ b5

â4a5â4b5

∫ x

0
ta−141 − t5b−1 dt1 (4)

where â4 · 5 is the standard Gamma function. For regular
trees of degree ¾ 3 we obtain the following result.

Theorem 3.1. Let G be d-regular infinite tree with d¾ 3.
Assume a rumor spreads on G as per the SI model with
exponential distribution with rate �. Then, for any k¾ 1,

lim
t→�

P4Ck
t 5= I1/2

(

k− 1 +
1

d− 2
11 +

1
d− 2

)

+ 4d− 15
(

I1/2

(

1
d− 2

1 k+
1

d− 2

)

− 1
)

0 (5)
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For k = 1, Theorem 3.1 yields that �L
d = �U

d = �d for all
d¾ 3 where

�d = dI1/2

(

1
d− 2

1
d− 1
d− 2

)

− 4d− 150 (6)

More interestingly,

Corollary 1.

lim
d→�

�d = 1 − ln 2 ≈ 003070 (7)

For any d¾ 3, we can obtain a simple upper bound for
Theorem 3.1 which provides the insight that the probabil-
ity of error in the estimation decays exponentially with
error distance (not number of hops in graph, but based on
chronological order of infection) from the true source.

Corollary 2. When G is a d-regular infinite tree, for any
k¾ 1,

lim
t→�

P4Ck
t 5¶ k4k+ 15

(

1
2

)k−1

� exp4−ä4k550

To provide intuition, we plot the asymptotic error dis-
tribution limt→� P4Ck

t 5 for different degree regular trees
in Figure 2. As can be seen, for degrees greater than 4,
all the error distributions fall on top of each other, and
the probability of detecting the kth infection as the source
decays exponentially in k. We also plot the upper bound
from Corollary 2. As can be seen, this upper bound captures
the rate of decay of the error probability. Thus we see tight
concentration of the error for this class of graphs. Figure 3
plots the asymptotic correct detection probability �d versus
degree d for these regular trees. It can be seen that the
detection probability starts at 1/4 for degree 3 and rapidly
converges to 1 − ln425 as the degree goes to infinity.

Figure 2. (Color online) limt→� P4Ck
t 5 vs. k for regular

trees of different degree.

0 5 10 15 20
10–6

10–4

10–2

100

102

k (infection rank)

lim
tT

∞
P

(C
tk
)

Degree = 3

Degree = 4

Degree = 25

Degree = 10,000

Upper bound

Figure 3. (Color online) �d vs. degree d for regular
trees.

101 102 103 104
0

0.1

0.2

0.3

�d

0.4

0.5

Degree

1/4

1 – ln(2)

3.2. Generic Random Trees, SI Model with Generic
Spreading Times

The above precise results were obtained using the memoryless
property of the exponential distribution and the regularity of
the trees. Next, we wish to look at a more general setting both
in terms of tree structures and spreading time distributions.
In this more general setting, although we cannot obtain
precise values for the detection and error probabilities, we
are able to make statements about the nontriviality of the
detection probability of rumor centrality. When restricted
to exponential spreading times for generic trees, we can
identify bounds on the error probability as well. Let us start
by defining what we mean by generic random trees through
a generative model.

Definition 2 (Generic Random Trees). It is a rooted
random tree, generated as follows: given a root node as a
starting vertex, add �0 children to root where �0 is an inde-
pendent random variable with distribution D0. If �0 6= 0, then
add a random number of children chosen as per distribution
D over 80111 0 0 09 independently to each child of the root.
Recursively, to each newly added node, add independently a
random number of nodes as per distribution D.

The generative model described above is precisely the
standard Galton-Watson branching process if D0 =D. If we
take D0 and D to be deterministic distributions with support
on d and d − 1 respectively, then it gives the d-regular
tree. For a random d-regular graph on n nodes, as n grows
the neighborhood of a randomly chosen node in the graph
converges (in distribution, locally) to such a d-regular tree.
If we take D0 = D as a Poisson distribution with mean
c > 0, then it asymptotically equals (in distribution) to the
local neighborhood of a randomly chosen node in a sparse
Erdös-Rényi graph as the number of nodes grows. Recall that
a (sparse) Erdös-Rényi graph on n nodes with parameter c
is generated by selecting each of the

(

n

2

)

edges to be present
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with probability c/n independently. Effectively, random trees
as described above capture the local structure for sparse
random graphs reasonably well. For that reason, establishing
the effectiveness of rumor centrality for source detection for
such trees provide insights into its effectiveness for sparse
random graph models.

We shall consider spreading time distributions to be
generic. Let F 2 601�5→ 60117 be the cumulative distribution
function of the spreading times. Clearly F 405 = 0, F is
nondecreasing and limt→� F 4t5= 1. In addition, we shall
require that the distribution is nonatomic at 0, i.e., F 40+5= 0.
We state the following result about the effectiveness of rumor
centrality with such generic spreading time distribution.

Theorem 3.2. Let �0, distributed as D0, be such that
Pr4�0 ¾ 35 > 0 and let �, distributed as per D, be such that
1 < E6�7 <�. Suppose the rumor starts from the root of the
random tree generated as per distributions D0 and D as
described above and spreads as per the SI model with a
spreading time distribution with an absolutely continuous
density. Then,

lim inf
t→�

P4C1
t 5 > 00

The above result says that irrespective of the structure of
the random trees, spreading time distribution and elapsed
time, there is nontrivial probability of detecting the root
as the source by rumor centrality. The interesting aspect
of the result is that this nontrivial detection probability is
established by studying events when the tree grows without
bound. For finite size trees with n nodes, the rumor source
can be estimated by selecting a random node, giving a
probability of correct detection of n−1 > 0. However, such
events are trivial and are not of much interest to us (neither
mathematically, nor motivationally).

3.2.1. Generic Random Trees, SI Model with Expo-
nential Spreading Times. Extending the results of Theo-
rem 3.2 for explicitly bounding the probability of the error
event P4Ck

t 5 for generic spreading time distribution seems
rather challenging. Here we provide a result for generic
random trees with exponential spreading times.

Theorem 3.3. Consider the setup of Theorem 3.2 with
spreading times being homogeneous exponential distributions
with (unknown, but fixed) parameter �> 0. In addition, let
D0 =D. Let �, distributed as per D, be such that E6�7 > 1
and E6exp4��57 <� for all � ∈ 4−�1�5 for some � > 0.
Then, for appropriate constants C ′1C ′′ > 0,

lim sup
t→�

P4Ck
t 5¶C ′ exp4−kC ′′50 (8)

The above result establishes an explicit upper bound on
the probability of the error event. The bound applies to
essentially any generic random tree and demonstrates that
the probability of identifying later infected nodes as the
rumor source decreases exponentially fast.

3.2.2. Geometric Trees, SI Model with Generic Spread-
ing Times. The trees considered thus far, d-regular trees
with d ¾ 3 or random trees with E6�7 > 1, grow expo-
nentially in size with the diameter of the tree. This is in
contrast with path graphs or d-regular trees with d = 2
which grow only linearly in diameter. It can be easily seen
that the probability of correct detection, P4C1

t 5 will scale
as ä41/

√
t5 for path graphs as long as the spreading time

distribution has nontrivial variance (see Shah and Zaman
2010 for proof of this statement for the SI model with
exponential spreading times). In contrast, the results of this
paper stated thus far suggest that the expanding trees allow
for nontrivial detection as t → �. Thus, qualitatively path
graphs and expanding trees are quite different—one does
not allow detection whereas the other does. To understand
where the precise detectability threshold lies, we look at
polynomially growing geometric trees.

Definition 3 (Geometric Tree). A geometric tree is a
rooted, nonregular tree parameterized by constants �, b,
and c, with �¾ 0, 0 < b ¶ c, and root node v∗. Let d∗

be the degree of v∗, let the neighbors of v∗ be denoted
v11 v21 0 0 0 1 vd∗ , and let the subtree rooted at vi and directed
away from v∗ be denoted by Ti for i = 1121 0 0 0 1 d∗. Denote
the number of nodes in Ti at distance exactly r from the
subtree’s root node vi as ni4r5. Then we require that for all
1 ¶ i¶ d∗

br� ¶ ni4r5¶ cr�0 (9)

The condition imposed by (9) states that each of the
neighboring subtrees of the root should satisfy polynomial
growth (with exponent �> 0) and regularity properties. The
parameter �> 0 characterizes the growth of the subtrees
and the ratio c/b describes the regularity of the subtrees. If
c/b ≈ 1 then the subtrees are somewhat regular, whereas
if the ratio is much greater than 1, there is substantial
heterogeneity in the subtrees. Note that the path graph is a
geometric tree with �= 0, b = 1, and c = 2.

We shall consider the scenario where the rumor starts
from the root node of a rooted geometric tree. We shall show
that rumor centrality detects the root as the source with an
asymptotic probability of 1 for a generic spreading time
distribution with exponential tails. This is quite interesting
given the fact that rumor centrality is an ML estimator
only for regular trees with exponential spreading times. The
precise result is stated next.

Theorem 3.4. Let G be a rooted geometric tree as described
above with parameters �> 0, 0 <b¶ c and root node v∗

with degree d∗ such that

dv∗ >
c

b
+ 10

Suppose the rumor starts spreading on G starting from v∗ as
per the SI model with a generic spreading time distribution
whose cumulative density function F 2 �→ 60117 is such
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that (a) F 405= 0, (b) F 40+5= 0, and (c) if X is a random
variable distributed as per F then E6exp4�X57 < � for
� ∈ 4−�1�5 for some �> 0. Then

lim
t
P4C1

t 5= 10

A similar theorem was proven in Shah and Zaman (2010),
but only for the SI model with exponential spreading times.
We have now extended this result to arbitrarily distributed
spreading times. Theorem 3.4 says that �= 0 and �> 0
serve as a threshold for nontrivial detection: for �= 0, the
graph is a path graph, so we would expect the detection
probability to go to 0 as t → � as discussed above, but for
�> 0 the detection probability converges to 1 as t → �.

3.3. Detection Probability and Graph Growth:
Discussion

Our results can be viewed as relating detection probability
to graph growth parametrized by �. For path graphs, where
no detection is possible, �= 0. For any finite, positive �
we have geometric graphs where the detection probability
converges to one. For regular trees or random graphs, the
growth is exponential, which gives �= �, and we have a
detection probability that is strictly between zero and one.

To understand these results at a high level, it is helpful
to consider the properties of the rumor center given by
Lemma 1. Essentially, this lemma states that the graph is
balanced around the rumor center. For the rumor source to
be the rumor center (and therefore correctly identified as the
true source), the rumor must spread in a balanced way. For
a path graph (�= 0), balance is a very delicate condition,
requiring both subtrees of the source to be exactly equal in
size. The probability of this occurring goes to zero as the
graph size goes to infinity.

For any non-negative, finite alpha, this balance condition
becomes easier to achieve if the source has degree greater
than or equal to three. In this case, because the number of
vertices grows polynomially, the variation of the size of a
rumor infected subtree after a time t is much smaller than
the expected value of its size, resulting in a concentration of
the size. This means that with high probability, no subtree
will be larger than half of the network size, and balance is
achieved. The key here is that the boundary where the rumor
can spread grows slower than the size of the rumor infected
graph. If the graph has d�+1 nodes, then the boundary
contains d� nodes.

For infinite alpha, which corresponds to graphs with
exponential growth, the rumor boundary size is of the same
order of magnitude in size as the rumor infected graph. This
results in a high variance in the subtree size. We would
expect this high variance to result in detection becoming
impossible. However, our analysis shows that the manner in
which the rumor spreads on these graphs results in detection
being possible with strictly positive probability. Another way
to view this result is that the vertices in each subtree act

as witnesses which we can use to triangulate the source.
If there are three or more subtrees, and the subtree sizes
do not vary considerably (as in graphs with polynomial
growth), then the witnesses have low noise, and we can
detect the source exactly as the observed rumor infected
graph grows. For exponentially growing graphs, the noise in
the signals provided by the witnesses grows with the number
of witnesses. The increased number of witnesses balances the
increased noise to give a detection probability that remains
strictly positive as the graph size goes to infinity.

3.4. Locally Tree-Like Graphs: Discussion

The results of the paper are primarily for tree structured
graphs. On one hand, these are specialized graphs. On
the other hand, they serve as local approximations for
a variety of sparse random graph models. As discussed
earlier, for a random d-regular graph over m nodes, a
randomly chosen node’s local neighborhood (say up to
distance o4logm5) is a tree with high probability. Similarly,
consider an Erdös-Rényi graph over m nodes with each
edge being present with probability p = c/m independently
for any c > 0 (c > 1 is an interesting regime due to the
existence the of a giant component). A randomly chosen
node’s local neighborhood (up to distance o4logm5) is a tree
and distributionally equivalent (in the large m limit) to a
random tree with Poisson degree distribution.

Given such “locally tree-like” structural properties, if a
rumor spreads on a random d-regular graph or sparse Erdös-
Rényi graph for time o4logm5 starting from a random node,
then rumor centrality can detect the source with guarantees
given by Theorems 3.1 and 3.2. Thus, although the results
of this paper are for tree structured graphs, they do have
meaningful implications for tree-like sparse graphs.

For the purpose of illustration, we conducted some simu-
lations for Erdös-Rényi graphs that are reported in Figure 4.
We generated graphs with m = 501000 nodes and edge
probabilities p = c/m for c = 10 and c = 20. The rumor
graph contained n = 500 nodes and the spreading times
had an exponential distribution with mean one. We used
the general graph version of rumor centrality as defined in
Definition 1 as the rumor source estimator. We ran 101000
rumor spreading simulations to obtain the empirical error
distributions plotted in Figure 4. As can be seen, the error
drops of exponentially in k, very similar to the regular tree
error distribution. To make this more evident, we also plot
the asymptotic error distributions for regular trees of degree
10 and 20 and it can be seen that the error decays at similar,
exponential rates. This indicates that even though there is
substantial randomness in the graph, the asymptotic rumor
source detection error distribution behaves as though it were
a regular tree graph. This result also suggests that the bounds
in Theorem 3.3 are loose for this graph.

4. Proofs
Here proofs of the results stated in §3 are presented. We
establish results for d-regular trees by connecting rumor
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Figure 4. (Color online) Empirical error probability vs.
k for Erdös-Rényi graphs with 500 vertices,
mean degree 10 and 20, and exponentially
distributed spreading times with mean one.

c = 10

c = 20

Regular tree degree = 10

Regular tree degree = 20

0 2 64 108 12

k (infection rank)

10–4

10–2

10–1

10–3

100

P
(C

50
0)

k

Note. Also shown are limt→� P4Ck
t 5 for degree 10 and 20 regular trees

with exponentially distributed spreading times with mean one.

spreading with Polya urn models and branching processes.
Later we extend this novel method to establish results
for generic random trees under arbitrary spreading time
distributions. After this, we prove Theorem 3.4 using standard
Chernoff’s bound and the polynomial growth property of
geometric trees.

4.1. Proof of Theorem 3.1: d-Regular Trees

4.1.1. Background: Polya’s Urn. We will recall Polya’s
urn process and it’s asymptotic properties that we shall
crucially utilize in establishing Theorem 3.1. An interested
reader can find a good exposition in Athreya and Ney (1972).

In the simplest form, Polya’s Urn process operates in
discrete time. Initially, at time 0, an urn contains balls of two
types, say W0 white balls and B0 black balls. Let Wn and Bn

denote the number of white and black balls, respectively, at
the end of time n¾ 1. At each time n¾ 1, a ball is drawn
at random from the urn (Wn−1 +Bn−1 balls in total). This
ball is added back along with �¾ 1 new balls of the same
type leading to a new configuration of balls 4Wn1Bn5. For
instance, at time n, a white ball is drawn with probability
Wn−1/4Wn−1 + Bn−15 and we have that Wn = Wn−1 + �,
Bn = Bn−1.

Under the above described process, it is easy to check that
the fraction of white (or black) balls is a bounded martingale.
Therefore, by the martingale convergence theorem, it has a
limit almost surely. What is interesting is that the limiting
distribution is nicely characterized as stated below.

Theorem 4.1 (Athreya and Ney 1972, Theorem 1,
p. 220). For the Polya’s Urn process described above

Wn

Wn +Bn

→ Y almost surely1 (10)

where Y is a Beta random variable with parameters W0/�
and B0/�. That is, for x ∈ 60117,

P4Y ¶ x5= Ix

(

W0

�
1
B0

�

)

1

where Ix4a1b5 is the incomplete Beta function defined as
in (4)

4.1.2. Setup and Notation. Let G = 4V1E5 be an
infinite d-regular tree and let the rumor start spreading from
a node, say v1. Without loss of generality, we view the tree
as a randomly generated tree, as described in §3, with v1

being the root with d children and all the subsequent nodes
with d− 1 children (hence each node has degree d). We
shall be interested in d ¾ 3. Now suppose the rumor is
spread on this tree starting from v1 as per the SI model with
exponential distribution with rate �> 0.

Initially, node v1 is the only rumor infected node and its d
neighbors are potential nodes that can receive the rumor. We
will denote the set of nodes that are not yet rumor infected
but are neighbors of rumor infected nodes as the rumor
boundary. Initially the rumor boundary consists of the d
neighbors of v1. Under the SI model, each edge has an
independent exponential clock of mean 1/�. The minimum
of d independent exponentials of mean 1/� is an exponential
random variable of mean 1/4d�5, and hence when one of
the d nodes (chosen uniformly at random) in the rumor
boundary gets infected, the infection time has an exponential
distribution with mean 1/4d�5. Upon this infection, this
node gets removed from the boundary and adds its d− 1
children to the rumor boundary. That is, each infection adds
d− 2 new nodes to the rumor boundary. In summary, let
Z4t5 denote the number of nodes in the rumor boundary at
time t, then Z405= d and Z4t5 evolves as follows: each of
the Z4t5 nodes has an exponential clock of mean 1/�; when
it ticks, it dies and d− 1 new nodes are born which in turn
start their own independent exponential clocks of mean 1/�
and so on. Let u11 0 0 0 1 ud be the children of v1; let Zi4t5
denote the number of nodes in the rumor boundary that
belong to the subtree Ti4t5 that is rooted at ui with Zi405= 1
for 1 ¶ i¶ d; Z4t5=

∑d
i=1 Zi4t5. Let Ti4t5= �Ti4t5� denote

the total number of nodes infected in the subtree rooted at
ui at time t; initially Ti405= 0 for 1 ¶ i¶ d. Since each
infected node add d− 2 nodes to the rumor boundary, it can
be easily checked that Zi4t5= 4d− 25Ti4t5+ 1 and hence
Z4t5= 4d−25T 4t5+d with T 4t5 being the total number of
infected nodes at time t (excluding v1).

4.1.3. Probability of Correct Detection. Suppose we
observe the rumor infected nodes at some time t which we
do not know. That is, we observe the rumor infected graph
G4t5 which contains the root v1 and its d infected subtrees
Ti4t5 for 1 ¶ i¶ d. We recall the following result of Shah
and Zaman (2010) that characterizes the rumor center (for a
proof see §4.2).
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Lemma 1 (Shah and Zaman 2010). Given a tree graph
G= 4V 1E5, there can be at most two rumor centers. Specifi-
cally, a node v ∈ V is a rumor center if and only if

T v
i ¶ 1

2

(

1 +
∑

j∈N4v5

T v
j

)

1 ∀ i ∈N4v51 (11)

where N4v5= 8u ∈ V 2 4u1 v5 ∈E9 are neighbors of v in G
and T v

j denotes the size of the sub-tree of G that is rooted
at node j ∈N4v5 and includes all nodes that are away from
node v (i.e., the subtree does not include v). The rumor
center is unique if the inequality in (11) is strict for all
i ∈N4v5.

This immediately suggests the characterization of the event
that node v1, the true source, is identified by rumor centrality
at time t: v1 is a rumor center only if 2Ti4t5¶ 1+

∑d
j=1 Tj4t5

for all 1 ¶ i¶ d, and if the inequality is strict then it is the
unique rumor center. Let Ei = 82Ti4t5 < 1 +

∑d
j=1 Tj4t59 and

Fi = 82Ti4t5¶ 1 +
∑d

j=1 Tj4t59. Then,

P4C1
t 5¾ P

( d
⋂

i=1

Ei

)

= 1 −P
( d
⋃

i=1

Ec
i

)

4a5

¾ 1 −

d
∑

i=1

P4Ec
i 5

4b5

= 1 −dP4Ec
150 (12)

Above, (a) follows from the union bound of events and
(b) from symmetry. Similarly, we have

P4C1
t 5¶ P

( d
⋂

i=1

Fi

)

= 1 −P
( d
⋃

i=1

F c
i

)

4a5

= 1 −

d
∑

i=1

P4F c
i 5

4b5

= 1 −dP4F c
1 50 (13)

Above, (a) follows because events F c
1 1 0 0 0 1 F

c
d are disjoint

and (b) from symmetry. Therefore, the probability of correct
detection boils down to evaluating P4Ec

15 and P4F c
1 5 which,

as we shall see, will coincide with each other as t → �.
Therefore, the bounds of (12) and (13) will provide the exact
evaluation of the correct detection probability as t → �.

4.1.4. P4Ec
15, P4F

c
1 5 and Polya’s Urn. Effectively, the

interest is in the ratio T14t5/41 +
∑d

i=1 Ti4t55, especially as
t → � (implicitly we are assuming that this ratio is well
defined for a given t or else by definition there is only one
node infected which will be v1, the true source). It can be
easily verified that as t → �, Ti4t5→ � for all i almost
surely and hence Zi4t5= 4d− 25Ti4t5+ 1 goes to � as well.
Therefore, it is sufficient to study the ratio Z14t5/4

∑d
j=1 Zj4t55

as t → � since we shall find that this ratio converges to
a random variable with density on 60117. In summary, if
we establish that the ratio Z14t5/4

∑d
j=1 Zj4t55 converges in

distribution on 60117 with a well defined density, then it
immediately follows that P4Ec

15
t→�

−→ P4F c
1 5 and we can use

Z14t5/4
∑d

j=1 Zj4t55 in place of T14t5/41 +
∑d

j=1 Tj4t55.

With these facts in mind, let us study the ratio
Z14t5/4

∑d
j=1 Zj4t55. For this, it is instructive to view the

simultaneous evolution of 4Z14t51Z6=14t55 (where Z 6=14t5¬
∑d

j=2 Zj4t5) as that induced by the standard, discrete time,
Polya’s urn. Initially, �0 = 0 and there is one ball of type 1
(white) representing Z14�05= 1 and d− 1 balls of type 2
(black) representing Z6=14�05= d− 1 in a given urn. The jth
event happens at time �j (also known as a split time) when
one of the Z14�j−15+Z 6=14�j−15 (= d+ 4j − 154d− 25) balls
chosen uniformly at random is returned to the urn along
with d− 2 new balls of its type. If we set �j − �j−1 equal to
an exponential random variable with mean 1/4�4d+ 4j − 15 ·
4d− 2555, then it is easy to check that the fraction of balls
of type 1 is identical in law to that of Z14t5/4

∑d
i=1 Zi4t55

(here we are using the memoryless property of exponential
random variables crucially). Therefore, for our purposes, it
is sufficient to study the limit law of fraction of balls of
type 1 (or white) under this Polya’s urn model.

From the discussion in §4.1.1, it follows that the ratio
Z14t5/4

∑d
i=1 Zi4t55 converges to a Beta random variable

with parameters 1/4d− 25 and 4d− 15/4d− 25. Since the
Beta distribution has a density on 60117, from the above
discussion it follows that as t → �, �P4Ec

15−P4F c
1 5� → 0

and hence from (12), (13)

lim
t→�

P4C1
t 5= 1 −d

(

1 − I1/2

(

1
d− 2

11 +
1

d− 2

))

1 (14)

where I1/24a1 b5 is the probability that a Beta random variable
with parameters a and b takes value in 6011/27. Note that
this establishes the result of Theorem 3.1 for k = 1 in (5).

4.1.5. Probability of Ck
t . Thus far we have established

Theorem 3.1 for k = 1 (the probability of the rumor center
being the true source). The probability of the event Ck

t (the
kth infected node being the rumor center) is evaluated in an
almost identical manner with a minor difference. For this
reason, we present an abridged version of the proof.

Let Tk = inf8t2 n4t5 = k9 represent the time when kth
node is infected. It can be easily checked that for d ¾ 3
regular tree with exponential spreading time distribution,
Tk <� with probability 1. Consider t ¾ Tk. For k¾ 2, let vk
be the kth infected node when the rumor starts from v1. We
will evaluate the probability of identifying vk as the rumor
center. Let G represent the rumor infected tree observed
at time t with n4t5 ¾ k nodes. Let w11 0 0 0 1wd be the d
neighbors of vk, as is illustrated in Figure 5. We shall denote
the neighbor of vk that is along the path joining vk and v1

as w1. Note that w1 must have been infected before vk when
the rumor starts spreading from v1. Let w21 0 0 0 1wd be the
d− 1 “children” of vk, away from v1.

For convenience, we shall use notation t′ = t− Tk with
t′ ¾ 0. Let Tk

i 4t
′5 be the subtree of G rooted at wi at time t

away from vk. Therefore, Tk
14t

′5 is rooted at w1 and includes
v11 0 0 0 1 vk−1. For 2 ¶ i ¶ d, Tk

i 4t
′5 are rooted at wi and

contain nodes in G that are away from vk. None of the
Tk

i 4t
′5 for 1 ¶ i¶ d include vk. When vk is infected at time
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Figure 5. (Color online) Illustration of the labeling of
the neighbors of vk and their subtrees for k = 3
in a rumor graph at tk (the time of infection
of vk).

v1

v2/w1

vk = v3

T1
3(0) = 2

T3
3(0) = 0

T2
3(0) = 0

w2

w3

Note. The rumor infected nodes are colored black, and the uninfected
nodes are white.

Tk, we have that T k
1 405= k− 1, and T k

i 405= 0 for 2 ¶ i¶ d.
This notation is illustrated in Figure 5.

By definition Tk
14t

′5 is never empty, but Tk
i 4t

′5 can be
empty if wi is not infected, for 2 ¶ i¶ d. As before, let
T k
i 4t

′5= �Tk
i 4t

′5�. As per Lemma 1, vk is identified as a rumor
center if and only if all of its d subtrees are balanced, i.e.,

2T k
i 4t

′5¶ 1 +

d
∑

j=1

T k
j 4t

′51 ∀ 1 ¶ i¶ d0 (15)

Therefore, for t ¾ Tk with t′ = t − Tk,

P4Ck
t 5¾ P

( d
⋂

i=1

Ei

)

= 1 −P
( d
⋃

i=1

Ec
i

)

¾ 1 −

d
∑

i=1

P4Ec
i 51 and (16)

P4Ck
t 5¶ P

( d
⋂

i=1

Fi

)

= 1 −P
( d
⋃

i=1

F c
i

)

= 1 −

d
∑

i=1

P4F c
i 51 (17)

where Ei = 82T k
i 4t

′5 < 1 +
∑d

j=1 T
k
j 4t

′59 and Fi = 82T k
i 4t

′5¶
1 +

∑d
j=1 T

k
j 4t

′59.
As before, we shall evaluate these probabilities by studying

the evolution of the appropriate rumor boundaries. However,

unlike for k = 1, when k¾ 2 the rumor boundaries have
asymmetric initial conditions. Specifically, Tk

1405= k− 1,
Zk

14 · 5= 4d− 254k− 15+ 1 and for 2 ¶ i¶ d, Tk
i 405= 0

and Zk
i 405= 1. Beyond this difference, the rules governing

the evolution of the rumor boundaries are the same as
those described in the proof for k = 1. To evaluate Ec

1

(and F c
1 ), we consider a Polya’s urn in which we start

with 4d − 254k − 15 + 1 balls of type 1 (corresponding
to Zk

1405) and d − 1 balls of type 2 (corresponding to
∑d

j=2 Z
k
j 405). With these initial conditions, the limit law of

fraction of balls of type 1 turns out to be (see Athreya and
Ney 1972 for details) a Beta distribution with parameters
a= 44d− 254k− 15+ 15/4d− 25 = 4k− 15+ 1/4d− 25
and b = 4d− 15/4d− 25= 1 + 1/4d− 25. Finally, since the
fraction of balls of type 1, i.e., the ratio Zk

14t
′5/4

∑k
j=1 Z

k
j 4t

′55,
equals T k

1 4t
′5/41 +

∑d
j=1 T

k
j 4t

′55 as t′ → �, we obtain

lim
t′→�

P4Ec
15= lim

t′→�
P4F c

1 5

= 1 − I1/2

(

k− 1 +
1

d− 2
11 +

1
d− 2

)

0 (18)

For 2 ¶ i¶ d, in the corresponding Polya’s urn model, we
start with 1 ball of type 1 and k4d− 25+ 1 balls of type 2.
Therefore, using an identical sequence of arguments, we
obtain that for 2 ¶ i¶ d,

lim
t′→�

P4Ec
i 5= lim

t′→�
P4F c

i 5=1−I1/2

(

1
d−2

1 k+
1

d−2

)

0 (19)

From (16)–(19), it follows that

lim
t→�

P4Ck
t 5= I1/2

(

k−1+
1

d−2
11+

1
d−2

)

+4d−15
(

I1/2

(

1
d−2

1k+
1

d−2

)

−1
)

0 (20)

This establishes (5) for all k and completes the proof of
Theorem 3.1.

4.2. Proof of Lemma 1

We provide here a proof of Lemma 1 for the convenience of
the reader. Much of this proof is taken from Shah and Zaman
(2010). We begin by establishing the following property
about rumor centrality.

Proposition 1. Consider an undirected tree graph G =

4V 1E5 with �V � =N and any two neighboring nodes u1 v ∈ V
such that 4u1 v5 ∈E. The rumor centralities of these two
nodes satisfy the following relationship:

R4u1G5

R4v1G5
=

T v
u

N − T v
u

0 (21)

We now show that if v is a rumor center then it must
satisfy the condition given by Equation (11) in Lemma 1.
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For any node i neighboring the rumor center v, Proposition 1
gives

R4i1G5

R4v1G5
=

T v
i

N − T v
i

¶ 10

Rearranging terms, we obtain

T v
i ¶ N

2
¶ 1

2

(

1 +
∑

j∈N4v5

T v
j

)

0

We now establish the other direction of Lemma 1. Assume
Equation (11) of the Lemma is satisfied for a node v. We
now show that v must be a rumor center.

Let i ∈ V be a node d hops from v and let 8v0 = v1
v11 v21 0 0 0 1 vd = i9 be the sequence of nodes in the path
between v and i. Using Proposition 1 we obtain

R4i1G5

R4v1G5
=

d
∏

i=1

R4vi1G5

R4vi−11G5
=

d
∏

i=1

T vi−1
vi

N − T
vi−1
vi

0

The subtrees on the path between v and i have the special
property that T vi−1

vi
= T v

vi
for i = 1121 0 0 0 1 d because the nodes

in the subtree rooted at vi are the same if the subtree is
directed away from vi−1 or v. We also have the property
that N/2 ¾ T v

vi−1
> T v

vi
for i = 21 0 0 0 1 d because the subtrees

must decrease in size by at least one node as we traverse the
path from v to i and node v satisfies Equation (11) in the
Lemma. With these facts we obtain

R4i1G5

R4v1G5
=

d
∏

i=1

T v
vi

N − T v
vi

¶ 10 (22)

If the inequality is strict in Equation (11), then we have
that for any i 6= v, T v

i <N/2. Using Proposition 1 it can be
shown that this implies that for every i 6= v, there exists a
node j 6= i such that T i

j >N/2. This violates Equation (11),
which means i cannot be a rumor center. Therefore, v is the
unique rumor center.

4.3. Proof of Proposition 1

The rumor centrality of a node v in a tree G= 4V 1E5 with
�V � =N is given by

R4v1G5=
N !

∏

w∈V T
v
w

with the tree variables T v
w denoting the size of the subtree

of G that is rooted at w and points away from v. For any
two nodes u1 v in a tree such that 4u1 v5 ∈ E there is a special
relationship between their subtrees. For any w ∈ V 1w 6= u1 v,
it can be shown that T v

w = T u
w . Also, it can be shown that

Tv
u contains all nodes which are not in Tu

v . This gives the
simple relation that T u

v =N − T v
u . With these results on the

subtree variables we obtain

R4u1G5

R4v1G5
=

∏

w∈V T
v
w

∏

w∈V T
w
v

=
T v
u

N − T v
u

0

4.4. Proof of Corollary 1

Simple analysis yields Corollary 1. We start by defining the
asymptotic probability for a d-regular tree as limt→� P4C1

t 5
= �d. This quantity then becomes

�d = dI1/2

(

1
d− 2

11 +
1

d− 2

)

−d+ 1

= 1 −
dâ41 + 2/4d− 255

â41/4d− 255â41 + 1/4d− 255

·

∫ 1

1/2
t1/4d−25−141 − t51/4d−25 dt

We then take the limit as d approaches infinity.

lim
d→�

�d = lim
d→�

1 −
dâ41 + 2/4d− 255

â41/4d− 255â41 + 1/4d− 255

·

∫ 1

1/2
t1/4d−25−141 − t51/4d−25 dt

= 1 − lim
d→�

dâ41 + 2/4d− 255
4d− 2 −� +O4d−155â41 + 1/4d− 255

·

∫ 1

1/2
t1/4d−25−141 − t51/4d−25 dt

= 1 −

∫ 1

1/2
t−1 dt

= 1 − ln 20

Above, � is the Euler-Mascheroni constant and we have
used the following approximation of â4x5 for small x:
â4x5= x−1 −� +O4x5.

4.5. Proof of Corollary 2

Corollary 2 follows from (5) and monotonicity of the â
function over 611�5. For k¾ 2,

lim
t→�

P4Ck
t 5= I1/2

(

k− 1 +
1

d− 2
11 +

1
d− 2

)

+ 4d− 15
(

I1/2

(

1
d− 2

1 k+
1

d− 2

)

− 1
)

¶ I1/2

(

k− 1 +
1

d− 2
11 +

1
d− 2

)

=
â4k+ 2/4d− 255

â4k− 1 + 1/4d− 255â41 + 1/4d− 255

·

∫ 1/2

0
tk+1/4d−25−241 − t51/4d−25 dt

4a5

¶ â4k+ 2/4d− 255
â4k− 1 + 1/4d− 255â41 + 1/4d− 255

·

∫ 1/2

0
tk−2 dt

4b5

¶ 4e2â4k+ 25
â4k− 15

∫ 1/2

0
tk−2 dt
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4c5

¶ 4e2k4k+ 154k+ 25
(

1
2

)k−1

� exp4−ä4k550

In above, (a) follows from the fact that t < 1 and hence
tk−2+1/4d−25 ¶ tk−2. For (b), we use the following well-
known properties of the â function: (i) over 621�5, the â
function is nondecreasing and hence for k¾ 2 and d¾ 3,
â4k+2/4d− 255¶ â4k+25; (ii) over 401�5, the â function
achieves its minimal value in 61127 which is at least 1/42e5
and therefore, along with (i), we have that â4k − 1 +

1/4d− 255¾ â4k− 15/42e5 and â41 + 1/4d− 255¾ 1/42e5.
For (c), we use the fact that â4x + 15 = xâ4x5 for any
x ∈ 401�5.

4.6. Proof of Theorem 3.2: Correct Detection for
Random Trees

The goal is to establish that there is a strictly positive
probability of detecting the source correctly as the rumor
center when the rumor starts at the root of a generic random
tree with generic spreading time distribution as defined
earlier. The probability is with respect to the joint distribution
induced by the tree construction and the SI rumor spreading
model with independent spreading times. We extend the
technique employed in the proof of Theorem 3.1. However,
it requires using a generalized Polya’s urn or age-dependent
branching process as well as delicate technical arguments.

4.6.1. Background: Age-Dependent Branching Process.
We recall a generalization of the classical Polya’s urn known
as an age-dependent branching process. Such a process
starts at time t = 0 with a given finite number of nodes,
say B405¾ 1. Each node remains alive for an independent,
identically distributed lifetime with cumulative distribution
function given by F 2 601�5→ 60117. The lifetime distri-
bution function F will be assumed to be nonatomic at 0,
i.e., F 40+5= 0. Each node dies after remaining alive for
its lifetime. Upon the death of a node, it gives birth to
random number of nodes, say �. The random variables �
corresponding to each node are independent and identically
distributed over the non-negative integers. The newly born
nodes live for their lifetime and the upon death give birth to
new nodes, and so on.

As can be seen, the classical Galton-Watson process is a
special case of this general model and the size of the entire
urn in the Polya’s urn process described earlier naturally fits
this model. An interested reader is referred to Athreya and
Ney (1972) for a detailed exposition. Next, we recall certain
remarkable asymptotic properties of this process that will be
crucially utilized. We start with a useful definition.

Definition 4 (Athreya and Ney 1972, p. 146). Let m≡

Ɛ6�7. The Malthusian parameter �= �4m1F 5 of an age-
dependent branching process is the unique solution, if it
exists, of the equation

m
∫ �

0
e−�y dF 4y5= 10 (23)

A sufficient condition for the existence of the Malthusian
parameter is m= Ɛ6�7 > 1. As an example, consider pro-
cess where spreading time distribution is exponential with
parameter �, i.e., F 4t5= 1− e−�t , and let m= E6�7 > 1. The
Malthusian parameter �4m1F 5 is given by the solution of

m
∫ �

0
e−�y�e−�y dy = 11

which is

�4m1F 5= �4m− 150

The Malthusian parameter captures the average growth rate
of the branching process. We now recall the following result.

Theorem 4.2 (Athreya and Ney 1972, Theorem 2,
p. 172). Consider an age-dependent branching process
as described above with the additional properties that
m=E6�7 > 1 and E6� log�7 <�. Let �≡ �4m1F 5 be the
Malthusian parameter of the process and define

c =
m− 1

�m2
∫ �

0 ye−�y dF 4y5
0

Let B4t5 denote the number of nodes alive in the process at
time t ¾ 0. Then

1
ce�t

B4t5
t→�

→W in distribution1

where W is such that

E6W 7=1 (24)

P4W =05=q1 (25)

P4W ∈4x11x255=
∫ x2

x1

w4y5dy1 for 0<x1<x2<�1 (26)

where q ∈ 40115 is the smallest root of the equation
∑�

k=0 s
kP4� = k5= s and w4 · 5 is absolutely continuous with

respect to the Lebesgue measure so that
∫ �

0 w4y5dy = 1 − q.

The above result states that with probability q (0 < q < 1)
the branching process becomes extinct, and with probability
1 − q the size of the process scales as exp4�t5 for large t.
We will need finer control on the asymptotic growth of the
branching process. Precisely, we shall use the following
implication of the above stated result.

Corollary 3. Under the setting of Theorem 4.2, for any
f > 1, there exists an x > 0, so that

P4W ∈ 4x1 fx55 > 00 (27)

Proof. Define

ak = f k1 for k ∈�0

By definition, 8W > 09=
⋃

k∈� 8W ∈ 4ak1 ak+179. Because
of the absolute continuity of w4 · 5 in (26), it follows that
P4W = ak5= 0 for all k ∈�. Therefore, it follows that

0 < P4W > 05

= P
(

⋃

k∈�

8W ∈ 4ak1 ak+159

)

¶
∑

k∈�

P4W ∈ 4ak1 ak+1550 (28)

From above, it follows that there exists a k such that
P4W ∈ 4ak1 ak+155 > 0. This completes the proof.
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4.6.2. Notation. We quickly recall some notation. To
start with, as before let v1 be the root node of the tree.
It has �0 children distributed as per D0. Define the event
A= 8�0 ¾ 39. By assumption of Theorem 3.2, P4A5 > 0. We
shall show that

lim inf
t→�

P4C1
t �A5> 01 (29)

as it will imply the desired result lim inf t→� P4C1
t 5 > 0,

using P4A5 > 0 since P4C1
t 5¾ P4C1

t �A5P4A5. Therefore, we
shall consider conditioning on event A and let d = �0 ¾ 3
for remainder of the proof. Note that all the spreading times
as well as all other randomness are independent of �0. The
only effect of conditioning on A is that we know that root
has d ¾ 3 children. Let u11 0 0 0 1 ud be the d children of
root v1. The random tree G is constructed by adding a
random number of children to u11 0 0 0 1 ud recursively as per
distribution D as explained in §3.2.

Furthermore, as explained in §3.2, the rumor spreads on G
starting from v1 at time 0 as per the spreading times with
cumulative distribution function F that is nonatomic at 0.
Let G be the sub-tree of G that is infected at time t with
n4t5 infected nodes in G at time t. Let Ti4t5 denote the
subtree of G rooted at node ui (pointing away from root v1)
at time t, for 1 ¶ i¶ d and let Ti4t5= �Ti4t5�. By definition
Ti405 = 0 for 1 ¶ i¶ d. Let Zi4t5 denote the size of the
rumor boundary of Ti4t5; initially Zi405= 1, 1 ¶ i¶ d.

Now let us consider the evolution of Zi4 · 5: recall that
each node in the rumor boundary has a rumor infected
parent (neighbor). This node will become infected after
the amount of time given by the spreading time associated
with the edge connecting the node with its infected parent.
After the node becomes infected, it is no longer part of
the rumor boundary, but all of its uninfected neighbors
(children) become part of the rumor boundary. And as per
the random generative process of the tree construction, the
number of children added, �, has distribution D. Therefore,
the rumor boundary process Zi4 · 5 for each 1 ¶ i ¶ d is
exactly an age-dependent branching process. Furthermore,
each Zi4 · 5 evolves independently and since initially each
starts at the same time with exactly one node, they are
identically distributed. Therefore, we can utilize the results
stated in §4.6.1 to characterize the properties of Zi4 · 5 for
1 ¶ i¶ d. In the case of regular trees, Zi4 · 5 and Ti4 · 5 were
linearly related which allowed us to obtain results about
Ti4 · 5 and the desired conclusion. While in this general
setting, Zi4 · 5 and Ti4 · 5 are not linearly related, we show
that they are asymptotically linearly related because of an
appropriate Law of Large Numbers effect. This will help us
obtain the desired conclusion. We present the details next.

4.6.3. Correct Detection. As before, we wish to show
that

P4C1
t �A5¾ P

( d
⋂

i=1

{

2Ti4t5 < 1 +

d
∑

j=1

Tj4t5

})

1 (30)

where we have removed the conditioning on A, as the only
effect of A was having d distinct trees, which is already
captured. We shall establish (30) in two steps:

Step 1. Using the characterizations of Zi4 · 5 in terms of
age dependent branching processes as discussed above, we
shall show that there is a nontrivial event E1 ⊂

⋂d
i=182Zi4t5 <

∑d
j=1 Zj4t59 with lim inf t→� P4E15 > 0.
Step 2. Identify an event E2 ⊂E1 with lim inf t→� P4E25

> 0 and E2 ⊂
⋂d

i=182Ti4t5 < 1 +
∑d

j=1 Tj4t59 for all t large
enough.

This will yield the desired results.

4.6.4. Step 1. For any x > 0 and � > 0 define the event
E4x1�1 t5 as

E4x1�1 t5

=

d
⋂

i=1

8Zi4t5c
−1e−�t

∈ 4x1 41 − 3�54d− 15x590 (31)

Since d¾ 3, 41 − 3�54d− 15 > 1 for small enough �> 0
and hence the above event is well defined. It can be easily
checked that E4x1�1 t5⊂

⋂d
i=182Zi4t5 <

∑d
j=1 Zj4t59, since

under this event,

max
i

Zi4t5¶41−3�54d−15x<4d−15x¶4d−15min
i
Zi4t50

By Theorem 4.2, it follows that Zi4t5c
−1e−�t converges to

Wi, which are independent across i and identically distributed
as per (25)–(26). Therefore, using Corollary 3, it follows
that there exists an x∗ > 0 such that

lim inf
t→�

P4E4x∗1 �1 t55 > 00 (32)

Define E1 =E4x∗1 �1 t5.

4.6.5. Step 2. We want to find E2 ⊂E1 so that for t
large enough, E2 ⊂

⋂d
i=182Ti4t5 < 1 +

∑d
j=1 Tj4t59 and

lim inf t→� P4E25 > 0. For regular trees this was achieved
by using the linear (deterministic) relationship between the
Zi4 · 5 and Ti4 · 5. Here, we do not have such a relationship.
Instead, we shall establish an asymptotic relationship. To
that end, recall that for any t ¾ 0,

Zi4t5= 1 +
∑

`∈Ti4t5

4�` − 150 (33)

The above holds because as per the branching process, when
a node in the “boundary” dies (−1 is added to Zi4 · 5) and it
is added to Ti4 · 5, �` new nodes are added to boundary.

Consider Ti4 · 5. It grows by adding nodes with a random
number of children as per distribution D independently. Let
�11�21 0 0 0 be these random number of children added to it in
that order (we assume this sequence to be infinite irrespective
of whether or not Ti4 · 5 stops growing). Since these are i.i.d.
random variables with finite mean (actually, E6� log�7 <�),
by the standard Strong Law of Large Numbers, for any
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small enough �1� > 0, with probability at least 1 − �, for all
1 ¶ i¶ d, we have that for all p¾ 1

41 − �5p

m
−C4�1�5¶Ni4p5¶

41 + �5p

m
+C4�1�5 (34)

where Ni4p5 = inf8`2
∑`

j=14�j − 15¾ p9, m = E6�7 and
C4�1�5 is a non-negative constant depending upon �1�
but independent of p. Let us call the event represented
by (34) as E′4�1 �5. Here, we have the freedom of choosing
as small a � and � as we like. We will choose � so that
it is much smaller than the probability of event E1 for t
large enough. Given such a choice, it will follow that for
all t large enough, the event E2 =E1 ∩E′4�1�5 has strictly
positive probability. Under event E2, we have (with the
definition Ẑi4t5=Zi4t5c

−1e−�t)

Ẑi4t5∈4x∗1x∗41−3�54d−1551 for all 1¶ i¶d1

Ti4t5c
−1e−�t

∈

(

Ẑi4t541−�5

m
−at1

Ẑi4t541+�5

m
+at

)

for all 1¶ i¶d1

(35)

where the constants at → 0 as t → �. Therefore, it can be
easily checked that for t large enough and � small enough,
E2 ⊂

⋂d
i=182Ti4t5 < 1 +

∑d
j=1 Tj4t59, just the way we argued

that E1 ⊂ ∩d
i=182Zi4t5 <

∑d
j=1 Zj4t59. As discussed above,

with an appropriate choice of � and �, we can guarantee
that lim inf t→� P4E25 > 0. This concludes the search for
the desired event E2 and we have established the desired
claim of lim inf t→� P4C1

t 5 > 0. This completes the proof of
Theorem 3.2.

4.7. Proof of Theorem 3.3

4.7.1. Background: Properties of Age-Dependent
Branching Processes. We shall utilize the following prop-
erty known in the literature about bounds on the moment
generating function of the size of an age-dependent branch-
ing process. We shall assume the notation from the earlier
section.

Theorem 4.3 (Nakayama et al. 2004, Theorem 3.1).
Consider an age dependent branching process with the
properties that m=E6�7 > 1, E6exp4��57 <� for all � ∈

401 �15 for some �1 > 0, and the spreading time distribution
is nonatomic. Let B4t5 represent the number of living nodes
in the branching process at time t and let V 4t5 represent the
number of nodes born before time t. Then, there exists a
�∗ > 0 such that for all � ∈ 4−�∗1 �∗5

E6e�B4t57¶E6e�V 4t57 <�0 (36)

4.7.2. Background: Two Inequalities. We state two
useful concentration-style inequalities that we shall derive
here for completeness.

Proposition 2. For i¾ 1 let Xi be independent and identi-
cally distributed random variables such that E6exp4�X157 <
� for all � ∈ 4−�1�5 for some �> 0. Then, for any �> 0,
there exists constants C11C24�1�5 > 0 such that

P
( n
∑

i=1

Xi ¶�n41 − �5

)

¶C1 exp4−C24�1�5�n51 (37)

where �=E6X17.

Proposition 3. Consider independent and identical random
variables X11 0 0 0 1Xr+s for integers r1 s such that 1 ¶ s < r .
Let �=E6X17 and E6exp4�X157 <� for all � ∈ 4−�1�5
for some � > 0. Then there exists a constant c such that
for any � > 0, there exists a constant �∗ = min44� + 4r −

s5�5/424r + s5c51 �1/25 for some 0 <�1 <�, such that

P
( r
∑

i=1

Xi −

s
∑

j=1

Xr+j ¶−�

)

¶ exp
(

−
1
2
�∗4� + 4r − s5�5

)

0

(38)

Next, we prove these two propositions.

Proof of Proposition 2. Let X be a random variable with
identical distribution as that of Xi1 i¾ 1. By assumption in
the Proposition statement, it follows that for � ∈ 4−�1�5

MX4�5≡ logE6exp4�X57

= log
(

1 +

�
∑

j=1

�jE6Xj 7/j!

)

¶ log41 + ��+ c�251

for some c > 0 for all � ∈ 4−�11 �15 for some 0 <�1 <�.
Using the inequality log41 + x5 ¶ x for all x > −1, we
obtain

MX4�5¶ ��+ c�20 (39)

Now, for any â > 0 and � > 0, using standard arguments
and (39), we obtain

P
( n
∑

i=1

Xi ¶ n�− â

)

= P
(

exp
(

−�

( n
∑

i=1

Xi − n�

))

¾ exp4â�5
)

¶ exp4−�â + �n�5E6exp4−�X57n

= exp4−�â + �n�+ nMX4−�55

¶ exp4−�â + cn�25 (40)

For any 0 < �¶ â/42nc5,

P
( n
∑

i=1

Xi ¶ n�− â

)

¶ exp
(

−
1
2
â�

)

0
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Using â = n�� and �∗ = min4�/21��/42c55, we have

P
( n
∑

i=1

Xi ¶ n�41 − �5

)

¶ exp
(

−
1
2
n���∗

)

= exp
(

−C24�1�5n�

)

1 (41)

where C24�1 �5= 1
2�min4�/21��/42c55. This completes the

proof of Proposition 2.

Proof of Proposition 3. Given 1 ¶ s < r , � > 0 and � > 0,
using standard arguments (with the notation that the random
variable X has an identical distribution as Xi11 ¶ i¶ r + s)

P
( r
∑

i=1

Xi −

s
∑

j=1

Xr+j ¶−�

)

= P
(

−�

( r
∑

i=1

Xi −

s
∑

j=1

Xr+j

)

¾ ��

)

¶ exp4−��5E6exp4−�X57rE6exp4�X57s0

Using notation and arguments similar to that in the proof of
Proposition 2, we conclude that the above inequality can
be bounded above, for some c > 0 and � ∈ 4−�11 �15 for
0 <�1 <� as

P
( r
∑

i=1

Xi −

s
∑

j=1

Xr+j ¶−�

)

¶ exp4−�� + 4s − r5��+ 4r + s5c�250 (42)

For �∗ = min44� + 4r − s5�5/424r + s5c51 �1/25, we obtain

P
( r
∑

i=1

Xi −

s
∑

j=1

Xr+j ¶−�

)

¶ exp
(

−
1
2
�∗4� + 4r − s5�5

)

0 (43)

4.7.3. Proof of Theorem 3.3. Theorem 3.3 assumes that
the spreading times have an exponential distribution with
(unknown) parameter �> 0 for all edges. The underlying
graph is a generic random tree, just like that in Theorem 3.2.
We shall crucially utilize the “memory-less” property of
the exponential distribution to obtain the exponential error
bound on lim supt→� P4Ck

t 5 claimed in Theorem 3.3.
To that end, continuing with notations from the proof of

Theorem 3.2, let Tk = inf8t > 02 T 4t5= k9. By definition,

lim sup
t→�

P4Ck
t � Tk = �5= 00 (44)

Therefore,

lim sup
t→�

P4Ck
t 5¶ lim sup

t→�

P4Ck
t � Tk <�50 (45)

Therefore, let us assume that Tk <� and we will be inter-
ested in t > Tk. We shall redefine the index for time as

Figure 6. (Color online) Illustration of the labeling of the
subtree random processes Xj4t

′5 for k = 3 in
a rumor graph at t = tk (the time of infection
of vk).

v1

v2
vk = v3

Z (t3) = 6
�3 = 2

4

i = 1
T1

3(t �) = 2 + � Xi(t
�)

T2
3(t �) = X5 + (t �)

X1(0) = 0 X2(0) = 0

X3(0) = 0

X4(0) = 0

X5(0) = 0

T3
3(t �) = X6 + (t �)

X6(0) = 0

Note. The rumor infected nodes are colored black, and the uninfected
nodes are white.

t′ = t − Tk. When t′ = 0, we have exactly k nodes infected
and let them be v11 0 0 0 1 vk, chronologically infected in that
order. Let d = �k +1 denote the total number of neighbors of
vk, let w1 denote the neighbor of vk on the path connecting
vk and v1 and let w21 0 0 0 1wd be the other neighbors of vk.
Let Tk

14t
′5 (with T k

1 4t
′5= �Tk

14t
′5�) be the sub-tree rooted at

w1 including v1 (and not including vk). Similarly, let Tk
j 4t

′5
(with T k

j 4t
′5= �Tk

j 4t
′5�) be the sub-tree rooted at wj , not

including vk for 2 ¶ j ¶ d. By definition T k
1 405= k− 1 and

T k
j 405= 012 ¶ j ¶ d.
Let Z4t′5 be the size of the rumor boundary of the graph

at t′ and let �k =Z405 be the size of the rumor boundary
immediately after the kth node is infected. By definition,
�k ¾ d−1 as w21 0 0 0 1wd are part of the rumor boundary when
t′ = 0. Let X14t

′51 0 0 0 1X�k
4t′5 be the size of the sub-trees at

time t′ = t− Tk (for t¾ Tk) growing from these �k rumor
boundary nodes. This is illustrated in Figure 6. Because of
the memory-less property of exponential spreading time
distribution, it can be argued that X14t

′51 0 0 0 1X�k
4t′5 are

independent and identically distributed random variables.
Putting the above discussion together, we have that

T k
1 4t

′5= k− 1 +

�k−d+1
∑

j=1

Xj4t
′51

d
∑

i=2

T k
i 4t

′5=

�k
∑

j=�k−d+2

Xj4t
′50

(46)

With Tk <�, for t ¾ Tk and t′ = t − Tk,

P4Ck
t � Tk <�5

¶ P
( d
⋂

i=1

{

2T k
i 4t

′5¶
d
∑

j=1

T k
j 4t

′5

}

+ 1

∣

∣

∣

∣

Tk <�

)
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¶ P
(

T k
1 4t

′5¶
d
∑

j=2

T k
j 4t

′5+ 1

∣

∣

∣

∣

Tk <�

)

¶ P
(

k− 1 +

�k−d+1
∑

j=1

Xj4t
′5¶

�k
∑

j ′=�k−d+2

Xj ′4t
′5+ 1

)

0 (47)

We shall argue that the term on the right in (47) is bounded
from above by O4exp4−ak55 for all k large enough. To that
end, we shall utilize Propositions 2 and 3.

First, recall that �k − d+ 1, which is the total number
of nodes in the rumor boundary at time t = Tk because of
the first k− 1 infected nodes, equals

∑k−1
i=1 4�i − 15, where

�11 0 0 0 1 �k−1 are the random number of children of the first
k− 1 infected nodes. By assumption, E6�7 > 1. Therefore,
using Proposition 2, it follows that for an appropriate choice
of constants C11C2,

P4�k−d+1¶4k−154E6�7−15/25¶C1 exp4−C2k50 (48)

Second, consider the rumor boundary induced because of
the children of vk, denoted in the above sum as d− 1 nodes
(corresponding to the terms in the right hand side of the
equation). Since d, the degree of vk is a random number
distributed as per � and E6exp4��57 <� for all � ∈ 4−�1�5
for some � > 0, it follows that for appropriate constants
C31C4 > 0 (with k¾ 2),

P4d− 1 > 4k− 154E6�7− 15/45¶C3 exp4−C4k50 (49)

Define the event E = 8�k −d+ 1 > 4k− 154E6�7− 15/29∩

8d− 1 ¶ 4k− 154E6�7− 15/49. Then, from (48)–(49), we
have P4Ec5¶C5 exp4−C6k5 where C5 =C1 +C3 and C6 =

min4C21C45.
Finally, to bound P4F 5, where F = 8k − 1 +

∑�k−d+1
j=1 Xj4t

′5¶∑�k
j ′=�k−d+2 Xj ′4t

′5+ 19, consider the fol-
lowing: for all k large enough, using Proposition 3, we
have

P4F 5¶ P4F �E5+P4Ec5

¶C7 exp4−C8k5+C5 exp4−C6k5

=C ′ exp4−C ′′k50 (50)

In the last inequality, the first term is derived by applying
Proposition 3 where r ¾ 4k − 154E6�7 − 15/2 and s ¶
4k− 154E6�7− 15/4, i.e., r ¾ 2s, � = k− 2, and C ′1C ′′ > 0
are appropriate constants depending upon C51C61C7 and C8.
Note that the conditions of Proposition 3 are satisfied because
of Theorem 4.3. This completes the proof of Theorem 3.3.

4.8. Proof of Theorem 3.4: Geometric Trees

The proof of Theorem 3.4 uses the characterization of the
rumor center provided by Proposition 1. That is, we wish to
show that for all n large enough, the event that the size of the
d∗ rumor infected sub-trees of the source v∗ are essentially
“balanced” occurs with high probability. To establish this, we

shall use coarse estimations on the size of each of these sub-
trees using the standard concentration property of renewal
processes along with geometric growth. This will be unlike
the proof for regular trees where we had to necessarily delve
into very fine detailed probabilistic estimates of the size of
the sub-trees to establish the result. This relatively easier
proof for geometric trees (despite their heterogeneity) brings
out the fact that it is fundamentally much more difficult
to analyze expanding trees than geometric structures as
expanding trees do not yield to generic concentration based
estimations as they necessarily have very high variances.

To that end, we shall start by obtaining sharp estimates
on the size of each of the d∗ rumor infected sub-trees
of v∗ for any given time t. We are assuming here that the
spreading times have a distribution F with mean � > 0
and an exponential tail (precisely, if X is random variable
with distribution F , then E6exp4�X57 <� for � ∈ 4−�1�5
for some � > 0). Initially, at time 0 the source node v∗

is infected with the rumor. It starts spreading to its d∗

children (neighbors). Let Ti4t5 denote the size of the rumor
infected subtree, denoted by Ti4t5, rooted at the ith child
(or neighbor) of node v∗. Initially, Ti405= 0. Because of
the balanced and geometric growth conditions assumed
in Theorem 3.4, the following will be satisfied: for small
enough � > 0 (a) every node within a distance 4t/�541 − �5
of v∗ is in one of the Ti4t5, and (b) no node beyond distance
4t/�541 + �5 of v∗ is in any of the Ti4t5. Such a tight
characterization of the “shape” of Ti4t5 along with the
polynomial growth will provide sharp enough bound on
Ti4t5 that will result in establishing Theorem 3.4. This result
is summarized below with its proof in §4.8.1.

Proposition 4. Consider a geometric tree with parameters
�> 0 and 0 < b ¶ c as assumed in Theorem 3.4 and let the
rumor spread from source v∗ starting at time 0 as per the SI
model with spreading time distribution F such that the mean
is � and E6exp4�X57 <� for � ∈ 4−�1�5 for some �> 0
where X is distributed as per F . Define � = t−1/2+� for any
0 <�< 1/2. Let G4t5 be the rumor infected tree at time t.
Let Gt be the set of all trees rooted at v∗ (rumor graphs)
such that all nodes within distance 4t/�541 − �5 from v∗ are
in the tree and no node beyond distance 4t/�541 + �5 from
v∗ is in the tree. Then

P4Gt ∈Gt5= 1 −O4e−t�5
t→�

−→ 10

Define Et as the event that Gt ∈ Gt . Under event Et ,
consider the sizes of the sub-trees Ti4t5 for 1 ¶ i ¶ dv∗ .
Because of the polynomial growth condition and Et , we
obtain the following bounds on each Ti4t5 for all 1 ¶ i¶ dv∗ :

4t/�541−�5−1
∑

r=1

br� ¶ Ti4t5¶
4t/�541+�5−1

∑

r=1

cr�0

Now bounding the summations by Riemann integrals, we
have
∫ L−1

0
r� dr ¶

L
∑

r=1

r� ¶
∫ L+1

0
r� dr0
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Therefore, it follows that under event Et , for all 1 ¶ i¶ dv∗

b

1 +�

(

t

�
41 − �5− 2

)�+1

¶ Ti4t5¶
c

1 +�

(

t

�
41 + �5

)�+1

0

In the most “unbalanced” situation, dv∗ − 1 of these
sub-trees have minimal size Tmin4t5 and the remaining one
sub-tree has size Tmax4t5 where

Tmin4t5=
b

1 +�

(

t

�
41 − �5− 2

)�+1

1

Tmax4t5=
c

1 +�

(

t

�
41 + �5

)�+1

0

Since by assumption c < b4dv∗ − 15, there exists � > 0
such that 41 +�5c < b4dv∗ − 15. Therefore, for any choice of
� = t−1/2+� for some � ∈ 4011/25, we have

4d∗ − 15Tmin4t5+ 1
Tmax4t5

=
b4dv∗ − 15

c

(

t/�− t1/2+� − 2
t/�+ t1/2+�

)�+1

+
1 +�

c

(

1
t/�+ t1/2+�

)�+1

4i5

> 41 +�5

(

1 − t−1/2+��− 2�t−1

1 + t−1/2+��

)�+1

+
1 +�

c

(

1
t/�+ t1/2+�

)�+1

> 1 +�

> 11

for t large enough since as t → � the first term in inequality
(i) goes to 1 and the second term goes to 0. From this, it
immediately follows that under event Et for t large enough

max
1¶i¶dv∗

Ti4t5 <
1
2

(dv∗
∑

i=1

Ti4t5+ 1
)

0

Therefore, by Lemma 1 it follows that the rumor center
is unique and equals v∗. We also have that Et ⊂C1

t . Thus,
from above and Proposition 4 we obtain

lim
t
P4C1

t 5¾ lim
t
P4Et5

= 10

This completes the proof of Theorem 3.4.

4.8.1. Proof of Proposition 4. We recall that Propo-
sition 4 stated that for a rumor spreading for time t as
per the SI model with a general distribution with mean
spreading time � the rumor graph on a geometric tree is
full up to a distance 4t/�541 − �5 from the source and does
not extend beyond 4t/�541 + �5, for � = t−1/2+� for some
positive � ∈ 4011/25. To establish this, we shall use the
following well known concentration property of renewal
processes. We provide its proof later for completeness.

Proposition 5. Consider a renewal process P4 · 5 with hold-
ing times with mean � and finite moment generating function
in the interval 4−�1�5 for some �> 0. Then for any t > 0
and any � ∈ 401 �′5 for a small enough �′ > 0, there exists a
positive constant c such that

P
(

∣

∣

∣

∣

P4t5−
t

�

∣

∣

∣

∣

¾ t�

�

)

¶ 2e−4�2�/48c55t

Now we use Proposition 5 to establish Proposition 4.
Recall that the spreading time along each edge is an indepen-
dent and identically distributed random variable with mean
�. Now the underlying network graph is a tree. Therefore,
for any node v at distance r from source node v∗, there is a
unique path (of length r) connecting v and v∗. Then, the
spread of the rumor along this path can be thought of as a
renewal process, say P4t5, and node v is infected by time
t if and only if P4t5¾ r . Therefore, from Proposition 5 it
follows that for any node v that is at distance 4t/�541 − �5
for � = t−1/2+� for some � ∈ 4011/25 (for all t large enough),

P4v is not rumor infected5¶ 2e−�2�t/48c5

= 2e−4�/48c55t2�
0

Now the number of such nodes at distance 4t/�541−�5 from
v∗ is at most O44t/�5�+15 (which follows from arguments
similar to those in the proof of Theorem 3.4). Therefore, by
an application of the union bound it follows that

P
(

a node at distance
t

�
41 − �5 from v∗ isn’t infected

)

=O

(

2
(

t

�

)�+1

e−4�/48c55t2�

)

=O4e−4�/48c55t�50

Using similar argument and another application of Proposi-
tion 5, it can be argued that

P4a node at distance t41 + �5 from v∗ is infected5

=O4e−4�/48c55t�50

Since the rumor is a “spreading” process, if all nodes at
distance r from v∗ are infected, then so are all nodes at
distance r ′ < r from v∗; if all nodes at distance r from v∗ are
not infected then so are all nodes at distance r ′ > r from v∗.
Therefore, it follows that with probability 1 −O4e−4�/48c55t�5,
all nodes at distance up to 4t/�541 − �5 from v∗ are infected
and all nodes beyond distance 4t/�541 + �5 from v∗ are not
infected. This completes the proof of Proposition 4.

4.8.2. Proof of Proposition 5. We wish to provide
bounds on the probability of P4t5¶ �t41 − �5 and P4t5¾
�t41 +�5 for a renewal process P4·5 with holding times
with mean � and finite moment generating function. Define
the nth arrival time Sn as

Sn =

n
∑

i=1

Xi

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.1

55
.5

.7
] 

on
 1

2 
O

ct
ob

er
 2

01
7,

 a
t 1

2:
21

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Shah and Zaman: Finding Rumor Sources
Operations Research 64(3), pp. 736–755, © 2016 INFORMS 753

where Xi are non-negative i.i.d. random variables with a well
defined moment generating function MX4�5= E6exp4�X57 <
� for � ∈ 4−�1�5 for some � > 0 and mean E6Xi7=�> 0.
We can relate the arrival times to the renewal process by the
following relations:

P4P4t5¶ n5= P4Sn ¾ t5

and

P4P4t5¾ n5= P4Sn ¶ t50

The first relation says that the probability of less than n
arrivals in time t is equal to the probability that the nth
arrival happens after time t. The second relation says that
the probability of more than n arrivals in time t is equal to
the probability that the nth arrival happens before time t.

We now bound P4Sn ¾ t5. To that end, for � ∈ 401 �5 it
follows from the Chernoff bound that

P4Sn ¾ t5= P4e�Sn ¾ e�t5

¶MX4�5
ne−�t0

We can use the following approximation for MX4�5 which is
valid for small �, say � ∈ 401 �+5 for 0 <�+ ¶ �.

MX4�5= 1 + ��+ �2 E6X
27

2
+ �3

�
∑

i=3

�i−3 E6X
i7

i!

¶ 1 + ��+ c1�
2

for some finite positive constant c1. Using this along with
the inequality log41 + x5¶ x for −1 < x, we obtain

log4P4Sn ¾ t55¶ n log4MX4�55− �t

¶ n log41 + ��+ c1�
25− �t

¶ �4�n− t5+ nc1�
20

To minimize this probability, we find the � that minimizes
�4�n− t5+nc1�

2. This happens for � = 41/42c1554t/n−�5.
We set n= 4t/�541 −�5, so the minimum value is achieved
for �∗ = ��/42c141 −�55. Therefore, there exists �1 > 0
so that for � ∈ 401 �15, the corresponding �∗ = ��/42c1 ·

41 −�55 < �+, so that the quadratic approximation of MX4�5
is valid. Given this, we obtain

log4P4S4t/�541−�5 ¾ t55

¶−
��

2c141 −�5
4�t5+

tc1

�
41 −�5

�2�2

4c2
141 −�52

¶−
�2�t

2c141 −�5
+

�2�t

4c141 −�5

¶−
�2�t

4c141 −�5

¶−
�2�t

8c1

0

With this result, we obtain

P
(

P4t5¶ t

�
41 −�5

)

¶ e−�2�t/48c151

for any t and � ∈ 401 �15. For the upper bound, we have for
� > 0

P4Sn ¶ t5= P4e−�Sn ¾ e−�t5

¶MX4−�5ne�t0

We can use the following approximation for MX4−�5 which
is valid for small enough � ∈ 401 �−5 with 0 <�− ¶ �.

MX4−�5= 1 − ��+ �2 E6X
27

2
− �3

�
∑

i=3

�i−34−15i−3 E6X
i7

i!

¶ 1 − ��+ c2�
2

for some finite positive constant c2. Using this we obtain

log4P4Sn ¶ t55¶ n log4MX4−�55+ �t

¶ n log41 − ��+ c2�
25+ �t

¶ �4t −�n5+ nc2�
20

To minimize this probability, we find the � that minimizes
�4t−�n5+nc2�

2. This happens for � = 41/42c2554�− t/n5.
We set n= 4t/�541 +�5, so the minimum value is achieved
for �∗ = ��/42c241 + �55. There exists, �2 > 0 so that
for all � ∈ 401 �25, �

∗ = ��/42c241 + �55¶ �− and thus
guaranteeing the validity of quadratic approximation of
MX4−�5 that we have assumed. Subsequently, we obtain

log4P4S4t/�541+�5 ¶ t55

¶−
��

2c241 +�5
4�t5+

tc2

�
41 +�5

�2�2

4c2
241 +�52

¶−
�2�t

2c241 +�5
+

�2�t

4c241 +�5

¶−
�2�t

4c241 +�5

¶−
�2�t

8c2

0

With this result, we obtain

P
(

P4t5¾ t

�
41 +�5

)

¶ e−�2�t/48c251

for any t and � ∈ 401 �25.
If we set c = max4c11 c25 and �′ = min4�11 �25 and com-

bine the upper and lower bounds then we obtain

P
(

∣

∣

∣

∣

P4t5−
t

�

∣

∣

∣

∣

¾ t�

�

)

¶ 2e−4�2�/48c55t1

for any t and � ∈ 401 �′5 with �′ > 0. This completes the
proof of Proposition 5.
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5. Conclusion
Finding the source of a rumor in a network is an important
and challenging problem in many different fields. Here we
characterized the performance of the rumor source estimator
known as rumor centrality for generic tree graphs. Our
analysis was based upon continuous time branching processes
and generalized Polya’s urn models. As an implication of
this novel analysis method, we recovered all the previous
results for regular trees from Shah and Zaman (2010) as a
special case. We also showed that for rumor spreading on a
random regular graphs, the probability that the estimated
source is more than k hops away from the true source decays
exponentially in k. Additionally, we showed that for general
random trees and hence for sparse random graphs like
Erdös-Rényi graphs, there is a strictly positive probability of
correct rumor source detection. Thus, even though rumor
centrality is an ML estimator only for a very specific setting,
it is still very effective for a wide range of other graphs
and spreading models. In summary, we have established
the universality of rumor centrality as a source estimator
across a variety of tree structured graphs and spreading time
distributions.
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Endnote

1. We shall call an undirected graph a tree if it is connected and it
does not have any cycles.
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