1368

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

Fair Scheduling in Networks Through Packet Election

Srikanth Jagabathula and Devavrat Shah

Abstract—We consider the problem of designing a fair sched-
uling algorithm for discrete-time constrained queuing networks.
Each queue has dedicated exogenous packet arrivals. There
are constraints on which queues can be served simultaneously.
This model effectively describes important special instances like
network switches, interference in wireless networks, bandwidth
sharing for congestion control and traffic scheduling in road
roundabouts. Fair scheduling is required because it provides
isolation to different traffic flows; isolation makes the system
more robust and enables providing quality of service. Existing
work on fairness for constrained networks concentrates on flow
based fairness. As a main result, we describe a notion of packet
based fairness by establishing an analogy with the ranked election
problem: packets are voters, schedules are candidates, and each
packet ranks the schedules based on its priorities. We then obtain
a scheduling algorithm that achieves the described notion of
fairness by drawing upon the seminal work of Goodman and
Markowitz (1952). This yields the familiar Maximum Weight
(MW) style algorithm. As another important result, we prove
that the algorithm obtained is throughput optimal. There is no
reason a priori why this should be true, and the proof requires
nontraditional methods.

Index Terms—Fair scheduling, packet-based fairness, ranked
election, throughput optimality.

1. INTRODUCTION

N this paper, we focus on the problem of scheduling in con-
I strained queuing networks. Specifically, we consider a col-
lection of queues operating in discrete time with constraints on
which queues may be served simultaneously. Such queuing sys-
tems serve as effective modeling tools for a large array of im-
portant practical problems, and their performance is crucially
dependent on the effectiveness of the scheduling algorithm.

In this setup, the basic question is to design a scheduling al-
gorithm that is optimal. There are several performance criteria,
with often inherent tradeoffs, that determine the optimality of
a scheduling algorithm. The first is throughput optimality. A
queuing system has a limited amount of resources. The nat-
ural constraints imposed result in an inherent limitation on the
amount of traffic load that can be supported. This is called the

Manuscript received August 17, 2008; revised March 01, 2010; accepted July
01, 2010. Date of current version February 18, 2011. This work was supported
in part by the NSF CAREER CNS 0546590 and the NSF CCF 0728554. The
material in this paper was presented in part at the IEEE INFOCOM, Phoenix,
AZ, April 2008. The conference version was co-authored with V. Doshi, whose
contribution we acknowledge.

The authors are with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: jskanth@alum.mit.edu; devavrat@mit.edu).

Communicated by A. Nosratinia, Associate Editor for Communication Net-
works.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2010.2103851

capacity of the system. Roughly speaking, a scheduling algo-
rithm that achieves the capacity utilizes system resources opti-
mally. Such an algorithm is called throughput optimal.

Apart from being throughput optimal, a scheduling algorithm
should allocate resources in a fair manner. The queuing system
is a common resource shared by various traffic flows, and the
scheduling algorithm should ensure that no flow is receiving
more than its “fair” share of resources. It is important to realize
that fairness in queuing systems is not only an intuitively desired
goal but also one with an immense practical impact.

A very important consequence of fairness is isolation of
various traffic flows. Throughput optimality is oblivious to the
identities of the different flows. But, identities are important for
the following two important reasons: 1) Being oblivious to flow
identities, throughput optimal algorithms often favor flows with
a high data rate. Therefore, a particular flow might ill-behave
and flood the system with a high data rate maliciously resulting
in the deterioration of service to other flows. Since the system is
a shared resource, the algorithm should identify the rogue flow
and limit the negative impact on well-behaved flows. 2) Second,
isolation is important to provide performance guarantees, and
thereby Quality of Service (see [1]), to various flows in the
system. Designing a scheduling algorithm that is fair will over-
come these issues. Other benefits of fairness include reducing
burstiness of flows, eliminating bottlenecks and reducing the
impact of certain kinds of Denial-of-Service (DoS) attacks
[2], and [3]). In essence, a fair scheduling algorithm makes
the queuing system robust and less prone to manipulation by
individuals.

A natural way to achieve isolation among flows, in order to
provide protection and performance guarantees, is to dedicate
resources to each of the flows. In fact, this is the approach taken
in most of the work done on designing fair algorithms for input
queued switches (details in Section I-B). This approach, though,
is limited for the following reasons: First, because of constraints,
it is not straightforward to determine the amount of resources
to be allocated to each flow in a queuing network. Moreover,
such determination would require the knowledge of flow arrival
rates; whereas, in the spirit of being implementable, we require
the scheduling algorithm to be online, i.e., use only current net-
work state information like queue-sizes, age of packets, etc., and
myopic, i.e., oblivious to flow arrival rates. Second, resource al-
location takes place on an average over a long period of time.
This is appropriate in a flow level model where the arrival sta-
tistics remain constant for long time periods. This assumption,
though, is questionable in many applications like Internet traffic
where short flows predominate.

We note that designing a fair scheduling algorithm comprises
two subproblems: defining a reasonable notion of fairness, and
designing an algorithm to achieve the desired notion of fair-
ness. The notion of fairness is utilized to determine the resources

0018-9448/$26.00 © 2011 IEEE

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

(more specifically, the rate or bandwidth) to be allocated, and
the scheduling algorithm ensures that the resources are allo-
cated on an average over a long period of time. Inspired by this,
our approach would be to first define a notion of packet based
fairness and then design a scheduling algorithm to achieve the
defined notion of fairness. For obvious reasons, we also need
to reconcile the benefits of fairness with achieving throughput
optimality.

Motivated by the above discussion, we attempt to achieve the
following three goals in this paper: 1) Define a notion of packet
based fairness. 2) Design an online and myopic algorithm, that
is also throughput optimal, to achieve the notion of fairness. 3)
Provide the throughput optimality proof of the algorithm.

A. Our Contributions

The need for a packet based notion of fairness that can be
used in a constrained network is clear. But, defining a precise
mathematical notion of fairness that achieves the desired intu-
itive and practical benefits of fairness is quite challenging. Un-
fortunately, none of the existing notions of fairness directly ex-
tend to a packet based constrained queuing network. Existing
notions of flow based fairness are based on the utility maximiza-
tion framework (proposed by Kelly, Maullo, and Tan [4]), which
is a concept borrowed from Economics literature. In a similar
spirit, we define a notion of fairness by establishing a novel
analogy between scheduling in constrained queuing networks
and a ranked election problem!. Ranked election is a widely
studied problem in the Economics (and Political Science) liter-
ature and this analogy provides a ready framework to leverage
this work. We draw upon the work of Goodman and Markowitz
[5] to obtain a unique characterization of the schedule. This,
rather surprisingly, yields a maximum weight (MW) style algo-
rithm. MW style algorithms are very popular in the literature and
are very well understood. Thus, MW algorithms choose sched-
ules in a “fair” manner, though the definition of “fair” for dif-
ferent weights is different. It should be noted that the choice of
weights is crucial for obtaining the intuitive desirable properties
of fairness, and we make an important contribution here.

As another important contribution, we prove that our algo-
rithm is throughput optimal. There is no a priori reason for
this to be true. Even though the algorithm we design is the fa-
miliar MW style algorithm, it is not queue size or waiting time
based. Therefore, traditional methods of proving throughput op-
timality, which include the popular Lyapunov-Foster method
and Fluid models, cannot be applied in a direct manner. The
proof technique we introduce to prove throughput optimality is
potentially applicable to a wider class of problems.

B. Related Work

We first begin with the work on single queue fairness. Fair
scheduling in single queues has been widely studied since the
early 1990s. In one of the earliest works, Nagle [6] proposed
a fair algorithm for single queues called “Fair Queuing.” As
aforementioned, fair scheduling is required to minimize starva-
tion and limit the negative impact of rogue sources. In order to

IA ranked election problem deals with choosing a winning permutation of
candidates using a set of votes, where each vote is a permutation of the candi-
dates. Refer to Section IV.

1369

achieve this, Nagle proposed maintaining separate queues for
different flows and serving them in a round-robin fashion. This
is a great and simple to implement solution, but it works only
when all the packets are of equal size. In order to overcome this
problem Demers, Keshav, and Shenker [7] proposed the notion
of Weighted Fair Queueing (WFQ) and its packetized imple-
mentation. Parekh and Gallager [8] and [9] analyzed the perfor-
mance of this packetized implementation and showed it to be a
good approximation of Generalized Processor Sharing (GPS).
Shreedhar and Varghese [10] designed a computationally effi-
cient version of weighted fair queuing called Deficit Weighted
Round Robin (DWRR). Even though all these algorithms are
fair, they are very complex and expensive to implement. Hence,
there was a lot of work done on achieving approximate fair-
ness for Internet routers through FIFO queuing and appropriate
packet dropping mechanisms. Examples include RED by Floyd
and Jacobson [11], CHoKe by Pan, Prabhakar, and Psounis [12],
and AFD by Pan, Prabhakar, Breslau, and Shenker [13].

To address the issue of fairness in a network, Kelly, Maullo,
and Tan [4] proposed a flow-level model for the Internet. Under
this model, the resource allocation that maximizes the global
network utility provides a notion of fair rate allocation. We refer
an interested reader to survey-style papers by Low [14] and
Chuang et al. [15] and the book by Srikant [16] for further de-
tails. We take a note of desirable throughput property of the dy-
namic flow-level resource allocation model (see, for example,
[2], and [17]). This approach, though valid for a general network
with arbitrary topology, does not take scheduling constraints
into account.

We next review the work done on the design of fair sched-
uling algorithms for Input Queued (IQ) switches. Switches are
the most simple—at the same time, highly nontrivial—exam-
ples of constrained networks. They form the core of Internet
routers and there is extensive literature dealing with the design
and analysis of various switch architectures and scheduling
algorithms. A switch is essentially a bipartite network with
input ports and output ports. The function of a network switch
is to move packets from the input ports to the output ports
using the switch fabric, just like the traffic at a traffic junction.
Depending on the placement of buffers and the switch fabric,
there are mainly two kinds of switch architectures—input
queued switches (IQ) and output queued (OQ) switches. As
their names suggest, input queued switches have buffers only
at input ports, while output queued switches have buffers only
at the output ports. The input queued switch has a cross-bar
switch fabric that imposes the following natural constraints:
only one packet can be moved from (to) each input (output)
port in each time slot. On the other hand, since an output
queued switch has buffers only at output ports, packets arriving
at the input ports are immediately transferred to their respective
output buffers. Thus, there are no scheduling constraints at the
switch fabric in an output queued switch. Because of this, the
memory in an output queued switch has to operate much faster
than the memory in an input queued switch. In most high-speed
switches, memory bandwidth is the bottleneck and hence input
queued switches are more popular and widely deployed, while
output queued switches are idealized versions that are easy to
study.

1370

It is clear from the description that scheduling in output
queued switches is equivalent to that of single queues. Hence,
fair scheduling in output queued switches just corresponds to
implementing single queue fair algorithms at different output
queues. Unfortunately, such extension is not possible for input
queued switches because of the presence of constraints. One
approach is to emulate the performance of an OQ switch by
means of a IQ switch running with a minimal speedup. An
IQ switch is said to be running with a speedup S if it can be
scheduled S times in each time slot. This approach was taken
by Prabhakar and McKeown [18] and Chuang, Goel, McK-
eown, and Prabhakar [19], where they showed that essentially
a speedup of 2 is necessary and sufficient for emulating an OQ
switch. With the OQ switch operating under any of the various
policies like FIFO, WFQ, DWRR, strict priority, etc. fairness
can be achieved. Equivalently, if an IQ switch is loaded up to
50% of its capacity and the notion of fairness is defined by
policies like FIFO, WFQ, DWRR, strict priority, etc., then by
emulating an OQ switch with these policies, it is possible to
have fair scheduling for the IQ switch. However, for higher
loading this approach will fail due to inability of emulating an
0OQ switch.

This necessitates the need for defining an appropriate notion
of fairness that cleverly, and in a reasonable manner, combines
the preferences of packets based on some absolute notions along
with the scheduling constraints. In principle, this question is
very similar to the question answered by utility maximization
based framework for bandwidth allocation in a flow network.
In fact, most of the existing literature on fair scheduling algo-
rithms for input-queued switches is concerned with the notion
of flow-based fairness. In these approaches, a flow is identified
with all the packets corresponding to an input-output pair. There
are two main approaches taken in the literature for the design of
fair algorithms for IQ switches. One class of fair algorithms im-
plement a fair scheduling scheme at each of the servers in the
switch and then carry out an iterative matching. This approach
is based on the Distributed Packet Fair Queuing architecture.
Examples of this approach include iPDRR proposed by Zhang
and Bhuyan [20], MFIQ proposed by Li, Chen, and Ansari [21],
and iFS proposed by Ni and Bhuyan [22]. This approach com-
pletely ignores fairness issues that arise because of scheduling
constraints and hence need not guarantee an overall fair band-
width allocation. In order to overcome this, Hosaagrahara and
Sethu [23] and more recently, Pan and Yang [24] propose al-
gorithms to calculate overall max-min rates of different flows,
taking into account contention at all levels. But this approach re-
quires knowledge of rates of flows and hence, the system should
either learn these rates or know them a priori.

Thus, most of the literature on the design of fair scheduling
algorithms for constrained networks is limited because it ei-
ther ignores fairness issues caused due to scheduling constraints
or directly borrows flow-based fairness notions and allocates
bandwidth accordingly. Here, it is important to emphasize the
limitations of a flow-based approach: (a) network traffic pre-
dominantly contains “short-flows”, while flow-based approach
requires existence of everlasting traffic thereby inducing huge
delays when applied naively; (b) flow-based approach requires
knowledge of traffic rates, which it may have to learn; (c) our

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

unit of data is a packet and modeling it as a flow is just an ap-
proximation, and (d) packets have priorities and they lack ex-
plicit utility functions.

In summary, our question is inherently combinatorial which
requires dealing with hard combinatorial constraints unlike the
resource allocation in a flow network which deals with soft ca-
pacity constraints in a continuous optimization setup.

C. Organization

The rest of the paper is organized as follows: Section II
describes the model, introduces the notation and states the
problem formally. Section III motivates and describes our ap-
proach. Section IV takes a digression into Economics literature
to explain the ranked election problem. Section V establishes
the analogy between the ranked election problem and network
scheduling. Sections VI and VII present the main results of
this paper. Section VI formally states our algorithm, while
Section VII provides the details of the proof of throughput
optimality. We provide some simulation results in Section VIII
and then finally conclude in Section IX.

II. MODEL AND NOTATION

We now describe a generic abstract model of a constrained
queuing network. The model corresponds to a single-hop net-
work. This generic model describes important special instances
like an input queued switch, wireless network limited by inter-
ference, congestion control in TCP or even traffic in a road junc-
tion. In each of these instances, the model effectively captures
the constraints imposed by nature on simultaneous servicing
of queues. We will describe the examples of an input queued
switch and a wireless network in detail. We focus on these two
examples because they encapsulate a large class of scheduling
problems.

A. Abstract Formulation

Consider a collection of N queues. Time is discrete and is
indexed by 7 € {0, 1,...}. Each queue has a dedicated exoge-
nous process of packet arrival. The arrival processes of different
queues are independent. All packets are assumed to be normal-
ized to unit length. Arrivals to each queue occur according to a
Bernoulli process.

The service to the queues is subject to scheduling constraints
in that not all queues can be served simultaneously. The sched-
uling constraints present are described by a finite set of feasible
schedules . C {0, 1}"V. In each time slot a feasible schedule
m € . is chosen and queue n is offered a service 7, in that
time slot. Since each packet is of unit length, when a nonempty
queue receives service, a packet departs from the queue. We as-
sume that . is monotone, i.e., if 7 € .7, then for any 0 < 7
component-wise, i.e., o, < T,, 0 € .. Further, we assume
that for each n, there exists a schedule 7 € .~ that serves it,
ie., ™, = L.

Packets exit the system from any of the M output lines. The
lines are assumed to operate at unit speed and hence at most
one packet can leave the network from each line in each time
slot. Each of the M output lines maintain buffers termed output
queues to store packets that are ready to depart. We assume that
routing is predetermined and, hence, the destination output line

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

As

—_—

e

N-Queue Constrained
Queuing System

L]

L]

L]
= —
M Output Queues

Fig. 1. Abstract model of the constrained queuing system.

of each packet is known. After service, each packet is moved to
its destination output queue. Each output queue operates using
a single queue scheduling policy [e.g., First Come First Serve
(FCFS), Weighted Fair Queuing (WFQ), etc.]. The served
packets are queued and served according to the single queue
scheduling policy. Fig. 1 illustrates this model.

Under this setup, the problem of scheduling is to choose a fea-
sible schedule in each time slot to serve the queues and move the
packets to their respective output queues. Since the scheduling
policy for each of the output queues can be chosen indepen-
dently, the problem reduces to that of the constrained collection
of queues.

1) Notation: First, some general notation. R denotes the set
of real numbers and R the set of nonnegative real numbers, i.e.,
Ry = {z € R: 2 > 0}. N denotes the set of natural numbers
{1,2,...} and Z, the set of nonnegative integers {0,1,2,...}.
Let 0 and 1 denote the vectors of Os and 1s, respectively. All
the vectors in this paper are length N vectors. Let 1;.y denote
the indicator function, Liyye = 1 and Igee = 0. 2T denotes
max{z,0} and we use the ¢ norm |z| =) z,,. We also use
the standard inner product {(a,b) = Y a;b;.

Recall that we are assuming Bernoulli i.i.d. arrivals. Let
Ap(m) € {0,1} denotes the number of arrivals to queue n,
n = 1,2,..., N, during time slot 7. The arrival rate to queue
n is denoted by A, i.e., Pr(4,(7) = 1) = A\, V7. A = (\)
denotes the arrival rate vector. @, (7) denotes the length of
queue n at the beginning of time slot 7. Q(7) = (Qn(7)) de-
notes the queue length vector. S(7) € .# denotes the feasible
schedule chosen in time slot 7 to serve the queues. Without loss
of generality, we assume that a feasible schedule is chosen and
service happens at the middle of the time slot, and exogenous
arrivals occur at the end of the time slot. This is shown in Fig. 2.
With Q,,(7) denoting the queue length at the beginning of time
slot 7, we have

Qn(T+1) = (Qu(r) — Sn('r))+ + Ap (7). (D

Finally, let D,,(7) denote the cumulative departure process of
queue n, i.e.,

Dy (1) = Z Sn(O) Q. (t)>0}- 2

t<t

1371

Qn(

B
-
>

=~
3

SH(T)I{Qn(‘r)>0)

Fig. 2. The order in which service and arrivals happen during time slot 7.

2) Definitions: We now introduce some definitions. We call a
system rate stable, or simply stable in this paper, if the following
holds with probability 1: for1 < n < N

lim —Dn (r)

T—00 T

= A 3)

An arrival rate vector A = ()\,,) is called admissible if 3 a
scheduling policy under which the queuing network loaded with
A has a queue size process (), (7) such that

limsup E[|Q(7)]] < oo. 4)

Let A denote the set {\ € RY : X is admissible}. A is
called the throughput region or capacity region of the network.
Tassiulas and Ephremides [25] proved that

relintco(.7) C co(.) 5)

where co(.#") denotes the convex hull of ., i.e., {1 € RY :
po=>,ar 0 > 0,1 €.7,% o < 1} relintco(s)
denotes the relative interior of co(.#) and co(.#) denotes the
closure of co(.#). Denote relintco(.#) by A’. It was also shown
by Tassiulas and Ephremides [25] that

A = {,U,E Rf:u:Zam’i;
i
Oé,;ZO,ﬂiGY,ZOé7‘,< 1}.

3

We call a scheduling algorithm throughput optimal if VA € A’,
the system is rate-stable.

3) Constraint Free Network (CFN): We now introduce
the notion of a CFN. A constraint free network is defined
as a queuing network in which all the queues can be served
simultaneously. Therefore, for a CFN, .# = {0,1}". Thus,
scheduling just entails moving arriving packets immediately to
their respective destination output queues.

As discussed in Related Work (Section I-B), fairness is well
understood for single queues. Therefore, using a single queue
fair scheduling scheme for each of the output queues yields a fair
scheduling algorithm for the CFN. We assume throughout that a
CFN is operating using a fair scheduling algorithm. Along with
a CFN we define a shadow CFN as follows: Given a constrained
queuing network NV, a CFN A/’ with the same number of queues

1372

and fed with copies of exogenous arrivals to N, is called the
shadow CFN of N.

We conclude this section with a brief motivation for the def-
inition of CFN. This also serves as a preview to our approach
to the problem. As aforementioned, the difficulty in designing
a fair scheduling algorithm for networks arises because of the
presence of constraints. In the absence of such constraints, the
notion of fairness is equivalent to that of a single queue. Thus,
we define an ideal network that is constraint-free, whose perfor-
mance we want to emulate. This is in some sense the best we
can do in providing fairness and, thus, serves as a benchmark
for defining notions of fairness.

B. Scheduling Algorithms

We consider the problem of designing scheduling algorithms
for constrained queuing networks. A scheduling scheme or al-
gorithm is a procedure whereby an appropriate feasible schedule
is chosen in each time slot. In this paper, we will be interested
in a class of scheduling algorithms termed the maximum weight
(MW) scheduling algorithms. In general, a maximum weight al-
gorithm works as follows: In each time slot 7, each queue n is
assigned a weight w,, (7). This weight is usually—but not neces-
sarily—a function of the queue size Q,,(7). Then, the algorithm
chooses the schedule with the maximum weight, i.e.

S(7) = arg max(w(r),). (6)
eSS

A feasible schedule 7 € .7 is said to be maximal if Vo €
&, m % o component wise. The set of all maximal feasible
schedules will be denoted by . ,,ax. It is reasonable to assume
that we want to serve as many queues as possible in each time
slot. Therefore, when the algorithm chooses a feasible schedule
m, we serve the queues according to a maximal schedule i €
% max such that p > .

Remark: Animportant special instance of the MW scheduling
algorithm is the one with queue sizes as the weights, i.e., w,, (7) =
Q. (7). In their seminal work, Tassiulas and Ephremides [25]
(and independently McKeown et al. [26]) showed that the MW
algorithm with queue sizes as weights is rate stable.

Since these results, there has been a significant work on de-
signing high-performance, implementable packet scheduling al-
gorithms that are derivatives of maximum weight scheduling,
where weight is some function of queue-sizes. All of these al-
gorithms are designed to optimize network utilization as well as
minimize delay (for example, see recent work by Shah and Wis-
chik [27]). However, these algorithms ignore the requirement of
fairness. Specifically, it has been observed that the maximum
weight based algorithm can lead to unwanted starvation or very
unfair rate allocation when switch is overloaded (for example,
see [28]). We provide a simple example of a switch (detailed
description given in the next subsection) to illustrate this: Con-
sider a 2 X 2 switch with arrival rate matrix A\1; = Ao; = 0,
A12 = 0.6, A22 = 0.5. Here \;; corresponds to the arrival rate
of traffic at input port ¢ for output port 5. Under this loading,
output port 2 is overloaded. If OQ switch has Round Robin
(or Fair) policy at output 2 so that traffic from both inputs is
served equally, then input 1 will get rate 0.5 and input 2 will get

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

Input 1

Input 2

Input jr
31

Output 1 Output 2 Output 3

Fig.3. A 3 portinput queued switch showing two different possible matchings.

rate 0.5 from output 2. However, the maximum weight matching
policy, with weight being queue-size (or for that matter any in-
creasing continuous function of queue-size), the algorithm will
try to equalize lengths of queues at both inputs. Therefore, input
1 will get service rate 0.55 while input 2 will get service rate 0.45
from output 2.

C. Input Queued Switch

We now discuss an input queued switch as a special instance
of the abstract model that we have described. As mentioned
before, a switch is present at the core of an Internet router. A
router moves packets from input ports to output ports. Based on
the final destination of the arriving packet, a router determines
the appropriate output port and then transfers the packet accord-
ingly. The transfer of packets to the corresponding output ports
is called switching.

There are various switching architectures, but we discuss
the one that is commercially the most popular. Consider an
input queued switch containing M input ports and M output
ports. The queues at the output ports correspond to the output
queues aforementioned, and, hence, we retain the notation M
for the number of output of queues; since we are considering
only switches with equal number of input and output ports, the
number of input ports is also M. Packets arriving for input port
¢ and destined for output port j are stored at input port ¢ in @Q;;.
Note that for a switch, it is convenient to denote the queues as
Q;; instead of as (),,, as we do in the generic model. Further,
note that the total number of queues N = M?. The switch
transfers packets from input ports to output ports using the
switching fabric. The crossbar switching fabric implemented
in an input queued switch imposes the following constraints
on packet transfer from input to output ports: in each time
slot, each input port can transmit at most one packet and each
output port can receive at most one packet. Therefore, feasible
schedules are matchings from input to output ports. This is
illustrated in Fig. 3. The left and right hand figures illustrate
two different possible matchings.

The scheduling algorithm in the input queued switch chooses
an appropriate matching in each time slot. To link back to the
abstract model that we described, note that an M port switch has
N = M? constrained queues; for the queues we use the notation
-i; and not -,, for all terms to clearly reference the input and
output ports. The set of all feasible schedules .# corresponds to
the set of all matchings in an M Xx M bipartite graph

M
S = {7T = (W)ij € {071}A[XM : Zwik <1

k=1

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

Fig. 4. A 3 node wireless network.

M
D om SL1<ij<M
k=1

Packets leave the switch from their respective output ports
and hence the output ports correspond to the output queues.
Since at most one packet arrives at each output port in each
time slot, the packet immediately departs from the output queue.
Thus, scheduling reduces to choosing an appropriate matching
in each time slot. We point an interested reader to [19] for a more
detailed exposition on switch architectures.

D. Wireless Networks

We now consider wireless networks as a special instance of
the abstract model. Consider a collection of devices (e.g., sensor
nodes, WiFi nodes, etc.) that are using the wireless medium
to transmit messages. The devices share the same frequency to
transmit and hence interfere when they transmit simultaneously.
Because of power constraints, only devices that are close to each
other geographically can communicate. This is often modeled
by a graph with a node for each device and an edge between
two nodes if they can communicate.

Power constraints also limit interference to nodes that are
close to each other; in other words, only nodes that are con-
nected by an edge interfere. Therefore, the graph also models
the interference constraints on scheduling. In other words, trans-
mission to a node is successful only if none of its neighbors in
the graph is transmitting at the same time. This model of inter-
ference is termed the independent set model of interference.

We assume that the network is modeled as a graph G = (V, €)
with V) denoting the node set {1,2,..., N} and £ denoting the
directed edge set {(4, j) : ¢ communicates with j}. Each node
¢ maintains a queue ();; for each of its neighbors j. We as-
sume a single hop network in which packets arrive at nodes, get
transmitted to one of the neighbors and then leave the network
through output queues. Fig. 4 illustrates a wireless network with
three nodes operating under interference constraints.

In this setup, the scheduling problem is to decide which di-
rected links will be active simultaneously. Constraints limit fea-
sible schedules to those in which none of the neighbors of a re-
ceiver is transmitting; in other words, if link (i, 7) is active then
none of the links in the set {(I,k) € £ : (I,5) € £ OR (4,1) €

1373

&} should be active. For each network represented by graph
G = (V,€&), we can construct a conflict graph G’ = (V',&’)
with a node for each of the directed links and an edge between
two links if they cannot be active simultaneously. The feasible
schedules then reduce to independent sets in the conflict graph.
Formally

v = {ﬂ e {01}V w47, <1, forall (i,5) € 5'}
@)

It should be noted that using the conflict graph, more general
constraints in the network can be modeled as independent set
constraints. Thus, the model we are considering encapsulates
the essence of a large class of scheduling problems.

III. OUR APPROACH

Network resources are shared by different users and our goal
is to design a scheduling algorithm that allocates resources
in a fair manner. Before we can design such an algorithm,
there is a need to give a precise definition of the users and
the resources of the network. Traditionally, different traffic
flows were considered the users and the bandwidth allocated
to them the resource of the network. Link capacity constraints
limited the total amount of resources available, and each flow
was allocated its “fair” share of bandwidth. This is the basis
of the utility maximization framework in which the utility of
each flow was a function of the allocated bandwidth—the
more the bandwidth allocated, the greater the utility. Different
utility functions yield different fairness criteria. An inherent
limitation of this approach is that it considers entire flows as
users, disregarding the fact that flows are not continuous but are
composed of packets. Moreover, bandwidth is a resource that
is allocated on an average over a long period of time assuming
that flow statistics remain constant over such long periods.

We overcome this limitation by treating the Head-of-Line
(HoL) packet of each flow as the user of the network resources
(we assume that each queue is associated with a flow and hence
we use these terms interchangeably). This takes into account
the packetized nature of a flow and is a consequence of the re-
alization that in each time slot the decision is whether to serve
the HoL packet or not, unlike the case of a continuous flow that
can be given fractional service. Therefore, utilities should cor-
respond to HoL packets and not entire flows. With HoL packets
as the users, the network resource becomes the service they re-
ceive in each time slot. The network resource is limited by the
constraint set . and the algorithm should choose a feasible
schedule 7 € . in a manner that is “fair” to all the HoL packets.
Inspired by the utility maximization framework, we could de-
fine utility functions for the HoL packets and choose a feasible
schedule that maximizes the overall utility. But, there is no nat-
ural choice of the utility function and hence we take a different
approach.

We begin with the realization that packets do not have
natural utility functions, but they do have a natural preference
order of the feasible schedules. For each packet, there are two
classes of schedules—one class containing all schedules that
serve it and the other containing all schedules that do not. The
packet is indifferent to all the schedules in the same class and

1374

the preference relation between schedules in different classes
depends on how “urgently” the packet wants to get served. Fair
scheduling now reduces to combining individual preferences in
a fair manner to come up with a “socially” preferred schedule.
This is equivalent to a ranked election problem: HoL packets
(queues) are voters, schedules are candidates and each packet
has a preference list of the schedules (refer to Section IV for
more details on the ranked election problem). The problem of
ranked election is very well studied in the Economics literature
(also called the theory of social choice). In their seminal work
in 1952, Goodman and Markowitz [5] prove that under certain
socially desirable postulates (detailed in Section IV), when the
voters have cardinal (quantitative) preferences over candidates,
a simple function of those quantitative preferences yields a
uniquely preferred outcome.

In order to use the Goodman and Markowitz result, we require
not just relative preferences, but quantitative preferences over
the feasible schedules. By quantitative preferences we mean that
each packet assigns numerical weights to schedules; the higher
the weight, the more preferred the schedule. In principle, the
packet can assign any weights consistent with its relative order
of preferences to obtain quantitative preferences over the sched-
ules. But it is important to realize that the choice of quantitative
preference is crucial for obtaining the practically desired ben-
efits of the fair scheduling. In our setup, each packet has two
classes of schedules: one that it prefers to the other while being
indifferent to schedules within the same class. Therefore, the
packet assigns the same weight to all the schedules within the
same class. Since only relative preferences matter, we assume
that each packets assigns the same weight O to all schedules in
the class it does not prefer. Assigning quantitative preferences
now reduces to choosing a weight for each packet to assign to
the class of schedules it prefers.

One feasible option would be to use queue sizes as weights.
The problem with this choice is that it is oblivious to flow iden-
tities and is susceptible to manipulation (a flow can gain ad-
vantage by overloading system with packets resulting in large
queue sizes). Another option would be to use the age (waiting
time in the system) of the packet. This choice is still oblivious
to flow and packet identities and it is difficult to provide QoS
by giving priority to one flow (packet) over other. We overcome
these problems by using the idea of emulation of the shadow
CFN. As mentioned in Section I-B, one way of designing a
fair scheduling algorithm would be to perfectly emulate a CFN
using a fair queuing policy at each of the output queues. But
this results in a loss of throughput of the system. Therefore, our
approach would be to emulate the shadow CFN as closely as
possible. In this spirit, we use a function of the departure time
of the packet from the shadow CFN as the weight; the earlier the
departure time, the higher the weight. The details of the exact
function used are covered in Sections V and VL.

We now tie this back to the utility maximization framework.
Using the Goodman and Markowitz algorithm with the above
choice of weights yields a MW style algorithm with the weight
of each queue equal to the weight assigned to the packet. This is
identical to the result we obtain by using the assigned weights
as utilities of packets and choosing a schedule that maximizes
overall utility. Therefore, our algorithm yields utility functions

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

for packets that can be used in the utility maximization frame-
work. This rather surprising result connects our approach back
to utility maximization very nicely.

We then establish that such an algorithm is throughput op-
timal under the standard stochastic model of a network. To prove
throughput optimality (rate stability to be precise), we use an ap-
propriate quadratic Lyapunov function. However, we cannot use
the standard stability proof technique based on Foster’s criterion
because the Lyapunov function is not a function of queue-sizes,
but is function of preferences derived from the shadow CFN.
This makes the analysis rather nontrivial.

To explain the consequences of our algorithm on fair emula-
tion, we present simulations for algorithms based on FIFO OQ
switch. Intuitively, our fair algorithm should be able to reduce
the queue-size (or delay) as well as get rid of starvation caused
by well-known throughput optimal algorithms. Our simulation
results clearly confirm this intuition.

IV. RANKED ELECTION

In this section, we take a digression into Economics literature
to describe the ranked election problem.

Definition 1 (Ranked Election): There are M voters that vote
for C' candidates. Vote of each voter consists of a ranking (or
permutation) of all C' candidates. These votes can additionally
carry quantitative values associated with their preferences. Let
a.m. denote the value voter m gives to candidate ¢, for 1 < m <
M, 1 < ¢ < C. The goal of the election is to relative order all
the C' candidates as well as produce the ultimate winner in a
manner that is consistent with the votes.

The key for a good election lies in defining consistency of
the outcome of election with votes. The following are canonical
postulates that are used in the literature on ranked election:

P1. Between any two candidates c and ¢/, suppose that none
of the M voters prefers ¢’ to ¢ and at least one voter prefers
c to . Then ¢’ should not be ranked higher than c¢ in the
output of the election. This property corresponds to the
economic notion of weak Pareto optimality.

P2. Suppose the voters are renumbered (or renamed) while
keeping their votes the same. Then the outcome of election
should remain the same. In other words, the election out-
come is blind to the identity of the voters, that is election
outcome is symmetric.

P3. Now, consider the setup when the votes are cardinal
(i.e., quantitative). Suppose candidate ¢ is preferred to ¢’
by the election. Then, by adding the same fixed constant to
all a,,. and @, for 1 < m < M, the relative order of
candidates ¢ and ¢’ should not change. This makes sense
because what matters is the difference in preference levels
for the two candidates, not the actual values.

In the absence of cardinal (or quantitative) preferences, the
question of ranked election with postulates P1, P2 (and some
additional postulates) was first studied by Arrow in [29]. In his
celebrated work, he established the (then) very surprising im-
possibility of the existence of any election scheme that satis-
fies P1, P2 (and additional postulates) simultaneously. We note
that this result has been an important corner stone in the field of
theory of social choice.

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

Subsequent to Arrow’s impossibility result, many economists
started looking for positive results. Among many other cele-
brated results, the result that is relevant to this paper is that of
Goodman and Markowitz in [5]. They showed that if voters have
cardinal preferences, as in our setup, then there is a unique or-
dering of candidates that satisfies P1-P2-P3 simultaneously. To
describe their result, consider the following: let the net score of
a candidatec be s. = Zﬁle Q. Goodman and Markowitz ob-
tained the following remarkable result.

Theorem 2: Suppose the scores of all candidates are dis-
tinct. Rank candidates as follows: candidate c has higher ranking
than ¢ if and only if s. > s’.. This ranking satisfies postulates
P1-P2-P3. Further, this is the only such ranking.

For a proof of this result, we refer the reader to [5].

V. ANALOGY BETWEEN FAIR SCHEDULING
AND RANKED ELECTION

In this section, we motivate our fair scheduling algorithm by
establishing an equivalence between fair scheduling in a con-
strained queuing network A and the problem of ranked elec-
tion. In our context, the packets (queues) are the voters and the
feasible schedules 7 € . are the candidates. In order to use
the Goodman and Markowitz setup, we need to derive prefer-
ences for packets over schedules. For each packet, there are two
classes of schedules—one class containing all schedules that
serve it and the other containing all schedules that do not. The
packet is indifferent to all the schedules in the same class. Since
only the relative weights matter, we assume that a packet assigns
a weight of 0 to all schedules that do not serve it.

We derive preferences for packets over schedules that serve
them from the corresponding shadow CFN A that is operating
with a single queue fair scheduling policy at each of its output
queues. As defined before, a copy of every packet arriving to
the network A\ is fed to the shadow CFN N’ That is, (a copy
of) a packet arriving at queue n for output queue m of N im-
mediately joins the output queue m in N”. The departures from
the output queues of A happen according to an appropriate fair
scheduling policy, say P, such as strict priority scheme, last-in-
first-out or simply first-in-first-out. Specifically, our objective
in assigning preferences is to have the departures of packets
from A be as close as possible to the departures from the cor-
responding shadow CFN N’ Ideally, we want N to exactly em-
ulate N\, i.e., we want the departure times of packets from both
the networks to be exactly the same. However, we settle with ap-
proximate emulation because, as shown by Chuang et al. [19],
exact emulation is not possible at speedup 1. Since the prefer-
ences of packets are chosen from N and these preferences are
combined in a fair manner, the fair scheduling polices at the
output queues of N”can now be chosen according to the desired
requirements.

Based on the above discussion, our approach is to use a
value that is a function of the departure time of the packet
from N — the earlier the departure time, the higher the value
assigned. More specifically, let p;, denote the HoL packet
in queue n of network N at time 7. Let d,,(7) denote the
departure time of p” from A, For the following discussion we
assume that the queue is nonempty and, hence, d,,(7) is well

1375

defined. We defer the discussion of empty queues to the next
section. Now, each queue n assigns a value of 7 — d,,(7) to
all the schedules that serve it. (The choice of 7 — d,,(7) seems
arbitrary, when we could have taken any decreasing function
of d,(7). Indeed we can, though it should have some “nice”
properties to maximize throughput. Details are in Section VII.)
This completes the equivalence.

Taking a closer look at the weight 7 — d,,(7), note the fol-
lowing. Suppose at time 7 the packet p;, is already late, i.e.,
dn(7) < 7. 1In this case, the weight 7 — d,(7) > 0, which
means that p;, prefers all schedules that serve it to all the sched-
ules that do not by weight 7 — d,,(7). Thus, the more delayed
the packet is, the higher the weight it assigns. On the other hand,
when the packet is not late, i.e., d], > 7, p], prefers schedules
that do not serve it in order to give a chance to packets that are
late to get served.

Now, with the above assignment of values to each schedule
by each queue, the value of a schedule 7 € .# is given as

N
value(m) = Zﬂn(T — dn(7))
= <’r—d(7‘),7r>.

The postulates P1-P2-P3 translate into the following postu-
lates for network scheduling.
P1’. Between any two schedules n; and ng, suppose that
none of the NV HoL packets prefer n to n; and at least one
HoL packet prefers 11 to ny. Then, we should not choose
no.
P2’. For given HoL packets, let m be the outcome of the
election as per the above preferences for schedules. Then,
by renumbering queues while retaining the same HoL pref-
erences, the outcome of election should be only renum-
bered 7. In other words, the election does not give unfair
priority to any port and thus is symmetric in its inputs.
P3’. Suppose schedule 7 is preferred to 72 by the election.
By adding the same fixed constant to 7 — d,,(7) for all n,
the outcome of the election should remain unchanged.
The election algorithm of Goodman and Markowitz suggests
that the following schedule S(7) should be chosen:

S(r) € arg max (7 —d(7), 7).
7€ max

VI. MOST URGENT CELL FIRST (MUCF(f)) ALGORITHM

Based on the discussion in the previous section, we propose
a fair scheduling algorithm called the most urgent cell first al-
gorithm. According to this algorithm, packets are scheduled ac-
cording to the maximum weight schedule (MWS) with urgen-
cies of queues as weights with the urgency U, (7) of queue n
defined as 7 — d,,(7) if it is nonempty, i.e., the more “late” the
packet is, the higher is its urgency. If queue n is empty we define
its urgency as — max{0, — min.q, (r)>0 Un(7)}. Note that ac-
cording to this definition, the weight assigned to a schedule by
an empty queue is always less than or equal to the weight as-
signed by any nonempty queue in the system. Therefore, as de-
sired, the fair schedule chosen by the algorithm tries to minimize
the number of empty queues it serves. Of course, as mentioned

1376

in the previous section, we could have used any increasing func-
tion of the urgency. In particular, suppose f : R — R denotes
a nondecreasing bi-Lipschitz continuous function with Lips-
chitz constant p > 1, i.e., for any z,y € R, 1/plz —y| <
|f(z) = f(y)] < plz — y|. Without loss of generality, we as-
sume that f(0) = 0; thus, f(z) > 0 for x > 0. The MUCF(f)
algorithm now chooses the MWS with weight of queue n equal
to U (), defined as f(U,,(7)). Formally, the three components
of the algorithm are as follows:

1) The arriving packets are queued according to the
FIFO queuing policy in each of the N constrained
queues.

2) For a packet p in AV, let d(p) denote its departure
time from N”. Then, the arriving packets in each of
the M output queues are queued in the order of their
respective departure times from N”. More formally,
in every output queue m, a packet p will be ahead of
every packet p'that satisfies d(p) > d(p).

3) In each time slot 7, the algorithm chooses a feasible
schedule S(7) from .» using a MW criterion as
follows:

S(r) € arg max (UY(7),x).
7€ max

®)

VII. THROUGHPUT OF MUCEF(f) ALGORTIHM

The previous section described how we arrived at MUCEF al-
gorithm as a fair algorithm based on preferences obtained from a
shadow CFN. As established in the previous section, Theorem 2
implies that MUCF is the only algorithm that satisfies the desir-
able postulates P1°-P2°-P3’. In this section, we state and prove
the throughput optimality property of the MUCF algorithm. The
proof of the algorithm is nontraditional and requires new tech-
niques that may be of interest for analysis of such nonqueue
based weighted algorithms.

Theorem 3: Consider a constrained queuing system with an
arbitrary set of constraints .7 . Suppose the system is loaded with
an i.i.d. Bernoulli arrival process, and is operating under the
MUCEF(f) algorithm withf(-) a bi-Lipschitz function. Then,
if the rate vector is strictly admissible, the queuing network is
rate stable.

Before we prove Theorem 3 we need the following notation
and lemmas.

Notation: First, some useful notation. Consider the HoL
packet p? of queue n in network N at the beginning of the
time slot 7. As before, let a,,(7) be its time of arrival and d,,(7)
be the time of its departure from N, U, (7) be its urgency as
defined above, and W,,(7) be its waiting time (i.e., 7 — a,,(7) if
the queue is nonempty and 0 if it is empty). Let W,/ (7) denote
f(W(7)) and F(y) denote [¥ f(xz)dz. Also, define A, (7)
as W, (1) — U,(7). We note that if queue n is empty, then
W, (1) = 0 and U, (7) is as defined earlier. Hence, A, (7) is

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

always nonnegative. Let B’;z, m = 1,2,..., M, denote the
length of the kth busy cycle at output queue m in N”. Finally,
for any function g : R — R and a vector v € RY, g(v) € RY
denotes (g(v,)). Before we state the lemmas and prove The-
orem 3, note the following property of F'(-):
F(0)=0, F(y)>0,foralyeR. ©)
The equality F'(0) = 0 follows directly from the definition
of F(-). Coming to F(y) > 0, note that since f(-) is nonde-
creasing and f(0) = 0, it follows that f(z) < 0 for z < 0 and
f(z) > 0forz > 0.Hence, fory > 0, F(y) = [; f(z)dz >0
since f(z) > 0 for z > 0. Similarly, for y < 0, F(y) =
J§ f@)dz = [(= f(x))dz > 0since — f(z) > 0 for z < 0.

Lemma4: Let L(1) := (F(W(7)),A) = >, F(Wn(7))An.
Then, under the MUCF(f) algorithm with f(-) a bi-Lipschitz
function and A being strictly admissible, there exists an ¢ > 0
such that

E[L(T +1) = L(7)] < —eE[[W(7)]] + 2E[|A(7)[] + K

for some constant K.

Lemma 5: Under the MUCF(f) algorithm, with f(-) a
bi-Lipschitz function and A being strictly admissible, suppose
Zr = mogr 2iet [W()] and E[Z;] < O(1) < oo for all 7.
Then, we must have

1
Pr < lim —|W(r)| = 0) =1. (10)
T—00 T
Lemma 6: Let ©O,,(r) denote maxo<p<r BF ., for

m = 1,2,..., M. Then, under a strictly admissible A with the
output queues of A operating under a Work Conserving Policy
(WCP), the following is true forallt and 1 < m < M

E[©nm(7)] < O(log).

We will first prove the result of Theorem 3 assuming the re-
sults of Lemmas 4 and 6, and defer their proof until after the
proof of Theorem 3.

Proof of Theorem 3: We first note that if queue n is
nonempty then

A < Bk
”(T)—o?;?%i m

(1)

where m is the destination output queue of packet p;,. This is
true because when queue n is nonempty, A, (7) denotes the
waiting time of p!, in its destination output queue in N’, and
hence cannot be more than the length of the busy cycle it belongs
to. Since there can be at most 7 busy cycles up to time 7 and
p? arrived to N before 7, (11) should be true. Therefore, from
lemma 6 and (11) it follows that:
E[A,(7)] < O(log 7). (12)
If queue n is empty, then by definition it follows that either
An(r) = 0or Ap(1) = dy (1) — 7, for some queue n’ that
is nonempty. Since, A;(7) > 0 VI, 7, we have from (12) that

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

E[A.(7)] < E[A,/(7)] < O(log 7). Hence, (12) is valid even

for empty queues and it thus follows that:
E[lAn(7)[] < O(log 7). (13)

From Lemma 4 and (13), we obtain the following:

E[L(T + 1) = L(7)] < —eE[|[W(7)|] + O(log 7) + K.
(14)
Telescopic summation of (14) from 1,2,...,7, we obtain
(after cancellations)
E[L(r + 1)] < E[L(0)] — ¢E [Z IW('L')I]
=1
+O0(rlogT)+ 7K. (15)

Now, the network starts empty at time 0. Therefore,
E[L(0)] = 0. Further, L(-) is nonnegative function. Therefore,
(15) gives us

eE [Z W (i)|| < O(rlog7) + 7K. (16)
Dividing both sides by 7 log 7, we obtain
1 T
E Wi 1). 17
[TIOng (i)l <o) an

Let X, = 137 |W(i)| and Z,
have E[Z;] < O(1) < oo for all 7. It now follows from Lemma

5 that:
1
Pr (hm —|W(r)| = 0) =1
T

Using (18), we complete the proof of rate stability of the algo-
rithm as follows. At time 7, the waiting time of the HoL packet
of queue n is W, (7). Because of FIFO policy and at most one
arrival per time slot, we have that the queue-size of queue n at
time 7, @, (7) < W, (7). From (18), we have that

(18)

lim Qn—(T) =0, with probability 1. (19)
T—00 7—

Now, Q.,,(7) observes the following dynamics:
Qn(1) = Qn(0) + > An(t) — Dp(7) (20)

t<t

where the second term on RHS is the cumulative arrival to queue
n till time 7 while the third term is the cumulative departure
from queue n till time 7. By strong law of large numbers (SLLN)
for Bernoulli i.i.d. process we have that

1
lim — Z A, (t) =
T—00 T i<
Using this along with (19) and (20), we obtain
D,
lim ﬁ

T—00 T

= \,, with probability 1, Vn.

1377

This completes the proof of Theorem 3. [|

Proof of Lemma 5: Suppose (10) is not true. Then, since
|W ()| > 0 we have that for some § > 0
Pr(|W(r)| > 67,i.0.) > § 21)
where “1.0.” means infinitely often. Now if |W (7)| > é7, then
there exists an HoL packet that has been waiting in the net-
work for time at least 67/N. This is true because |W(7)| is
the sum of waiting times of at most N HoL packets. Call this
packet p. This packet must have arrived at time < 7 — 67 /N =
7(1— §)N~1L. Since waiting time of a packet increases only by
1 each time-slot, the waiting time of packet p must be at least
0.567/N in time interval [y, 7], where 7, = 7 — 0.567N~1 =
7(1 — 0.56N~1). Now, consider any time 7/ € [r;,7]. The
packet waiting at the HoL of the queue that contains p must
have waiting time higher than that of p due to the FIFO ordering
policy. Therefore, the contribution to |W (7')| by HoL packets
of the queue that contains packet p is at least 0.567 N ~1. There-
fore, we obtain

i , ot
> W) 2 (7)o =

T'=71

527'2
o (22)

Therefore, by the definition of X, and nonnegativity of |W (-)|,
we have the following logical implication:

W) > br = X, > 0T 23)
4N
Thus, if (21) holds then by (23) we have
52
Pr <X >4N2’ >>6 (24)

Now observe the following relation of X;: since |W(-)| > 0

1
X 1-—) X,
t+1_< t—|—1> t

For any integer L > 0 and any integer t' € [t,t + L], we can

now write
t+L t+L
Xoip > H <1__>Xf, > H (1——>X,,
i=t/+1 i=t+1

1
> (1-4) %
t

|ta] — t, which implies that
[t, at]

Now, for any o > 1, let L =
L < (a — 1)t. We can then write for any integer ¢’ €

1 L 1 (a—1)t
Kz (1) s ()

Since

1378

taking « = 1.5, for t large enough, it follows that
(1 — Hle=bt ~ exp(—1/2) > 1/2. Thus, for ¢ large

enough and any integer ¢’ € [t, 1.5t_]

1
X5t > EXt’- (25)
Define Y, = X 1.5 for k£ > 0. Then, the following are direct
implications of (25): for any § > 0

X, >60rio. =Y, >601.5/3,i0.;

Yy, > 01.5% i0. = X, > 01, io. (26)
The first implication is true because for any 7 such that X, >
67, we can find a k such that 7 € [1.5¥=1, 1.5%]. It then follows
from (25) that Y, = X1 5] > 1/2X; > 67/2 > 61.5%71/2.
Similarly, for the second implication, whenever Y; > 61.5%,
taking 7 = |[1.5%], we can write X, > #1.5F > 7.

It follows from (26) that Pr(X, > 67) < Pr(Y, >
61.5%/3). Thus, in order to complete the proof of (18) by
contradicting (24), and thereby (21), it is sufficient to show that
for § = 6%/(4N?)

Pr(Y; > 01.5%/3,1.0.) = 0.

For this, let event B}, = {Y} > 01.5%/3}. Then, from E[Z;] <

O(1), relations Y, = X5, Z = ék, and Markov’s in-
equality we obtain that
3E[Y:] 3log [1.5*| E [Z)154]
PriBy) < 575m =

k
< — .
—O<1.5k>

;Pr(Ek) < ;o (%) < oo0.

Therefore, by Borel-Cantelli’s Lemma, we have that

Therefore

PI‘(Ek 10) =0.
This completes the proof of the lemma. [|

Proof of Lemma 4: Define the following: for all n

Wi (T +1) = Wa(7) +1 = 53(7)

where S (7) is the schedule of MUCEF algorithm and /3,, is the
interarrival time for the arrival process to queue n. When the
queue is empty, treat (3, as an independent r.v. without any
meaning, while if queue is not empty then treat it as the inter-ar-
rival time between the packet being served and the packet behind
it. In either case, due to the FIFO policy (3,, is totally indepen-
dent of the scheduling decisions performed by the algorithm till
(and including) time 7 and the information utilized by the algo-
rithm. Therefore, we will treat it as an independent random vari-
able with Geometric distribution of parameter \,, (since arrival
process is Bernoulli i.i.d.). Consider the following: for any 7,

W, (r+1)

fﬂmw+nrwumv»=/ @)z @)

W, (1)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

It is easy to see that,

Whn (‘r—l—l) 1-8,5 (‘r)
[@i = [fy e Wty @8)

JWa ()

Since f(-) is nondecreasing bi-Lipschitz continuous with
f£(0) = 0, we have

@+ W) = fy + Wa(r) = F(Wa(r) + F(Wa(r))
< |f(y + Wa()) = F(Wa(r))] + WE ()
< plyl + Wi (7). 29)

Now, it follows from (27), (28), and (29) that
< (1= BuSi(1))? + (1= BuS5 (1) Wi (7).

Using (30) and the fact that 3,, is a Geometric r.v. with mean
1/An, we have the following:

E Y MF(W.(r+1)) - Z)\nF(W
<nz W (T)A, — ZW;
- QpZS* +2p25*
Here we have used the fact that S(7) € {0,1} and hence
(Sx(1))? = Si(7), and E[32] = 2/A2 — 1/\,, < 2/A%. Using

the fact that >, A\, < N, Y., Sk(7) < N and \;! < oo for
all n» such that \,, # 0, we obtain

E D AFWa(r+1)) =Y A F(W,(r)) W(T)]

S (Wl A=S*(r))+ K (32

(30)

7)) W(T)]
Y+ p Z An

€1V

where K is a large enough constant. Now, define S*(7) as

SY(r) = arg max Z (W1 (r),x).
we.s

max T

That is, S*(7) is the maximum weight schedule with weight of
queue n as W7 (7). Consider the following:

(W (r),A = 8%(1))
= (W'(r), A~ S“’(T)>

+ (W (r) = U7 (r), 5%

+ (U (7), 8" () -

Bl
~
[
[95)

*
—~
.
~—

(33)

From the definition of S*(7), S™(7), A(7)(= W(r) = U(7)),
and bi-Lipschitz continuity of f(-) it follows that

(U7 (r),8"(r) = §*(1))
U'(r),8"(r) = 8*(r))

(34)

0
p(A(7),1). (39)

Now, for strictly admissible A such that A = Y, ax7® with
> 0 =1 — forsome vy € (0,1), we obtain that

INIA

(W (r) -

(WI(r), A= 8%(r))

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

= <Wf(7),§k:ak7rk>
g

= :E:: (073 <I¢’f(7'),7r
k

7),58%(7))

_ Sw > y <Wf

)5"(r).
(36)

Since S™(7) is the maximum weight schedule with weight of
queue n as W, (7):

(W1 xh —8“(r)) <0 Vk (37)
Thus, it follows from (36) and (37) that
(W), A= 8"(r)) < =y (W/(7),8"(r)). (38

Now since all N entries can be covered by N distinct feasible
schedules, it follows that the weight of maximum weight
matching is at least 1/N the sum of weights of all the entries.
That is

(W), 5°(r)) >+ S Wi (r)
_ Wl 1w
- 2; N 09

The last inequality follows from the bi-Lipschitz continuity of
f(+). Combining (32)—(39) and taking further expectation with
respect to W (7), we obtain

S A E(Wo(r +1)) - ZAnF(W(T))]
< eE[[W(r)[] + pE [[A(T)[] + K (40)

where ¢ = . To complete the proof, note that if queue n is

nonempty after service at time 7, then W, (7 +1) = W, (7 +1).

Else, W, (7+1) = 0 and thus it follows from (9) that F(Wn(7+
1)) > 0= F(0) = F(W,(r + 1)). This inequality along with
(40) implies the desired claim of Lemma 4. [|

Proof of Lemma 6: This result corresponds to a constraint-
free network in which scheduling at different output queues is
independent. Hence, we will prove the result for a single queue
operating under a WCP and strictly admissible loading. We use
the same notation, but with subscript m’s dropped. For a single
queue operating under a WCP and strictly admissible loading,
busy cycle lengths form an i.i.d. process, i.e., B* are i.i.d. We
now look at the large deviation behavior of this process. For
a particular k£ and time ¢ = 0 starting from the beginning of
busy cycle B*, let I(t) denote the cumulative arrival process
during B*. Now consider the event B* > ¢. If the length of the
busy cycle is greater than ¢, it implies that the queue has been
nonempty up to time ¢. Further, since the service process is work
conserving, it follows that there has been one departure every
time slot and hence a total of ¢ departures up to time ¢. Since the
total number of departures cannot be more than the total number
of arrivals, it follows that I(¢) > ¢. Thus, we conclude that the

1379

event B¥ > t implies the event I(t) > t. For large enough t,
we can now write

Pr(B* > t) <Pr(I(t) —t > 0) < Cexp(—Dt) (41)

where C' and D are some nonnegative constants. The last in-
equality follows from Chernoff bound, which can be used be-
cause arrivals happen according to a Bernoulli process. Let ©
denote the random variable maxj< B¥. Then, we have the

following:
= ZPr(@ >t) = ZPr(@ >t) + ZPr(@ > t)
t t<T t>T

<T+> Pr(©>1)
t>T

(42)

Equation (42) is true for any nonnegative integer I'. In particular,
choose I' large enough such that (41) is true V¢ > T'. It now
follows from union bound that

> Pr@©>1) <y Y Pr(B*

t>T k<7 t>T

< O(texp(=DT)). (43)

The second inequality follows from (41). Now by choosing I" =
O(log 7) we can bound)", Pr(© > t) by 1. It now follows
from (43) that B

< O(log).

E [max B
k<t

VIII. EXPERIMENTS

We carried out simulations to evaluate the performance of our
algorithm in the context of IQ switches. We assumed a FIFO
queuing policy at the input ports of the IQ switch. We com-
pared the performance of our algorithm to the Longest Queue
First (LQF) and Oldest Cell First (OCF) algorithms. We used
the fixed-length packet switch simulator available at http://kla-
math.stanford.edu/tools/SIM/.

We first explain the simulation setting: The switch size is
N = 16. The buffer sizes are infinite. The policy used is
FIFO. All inputs are equally loaded on a normalized scale, and

€ (0,1) denotes the normalized load. The arrival process is
Bernoulli i.i.d. We use a Uniform load matrix, i.e., A\;; = p/N
Vi, j. We ran our simulation for 2.1 million time steps removing
the first 100 000 time steps to achieve steady-state.

Because we are approaching this problem from the perspec-
tive of fairness, we evaluate the aforementioned switching al-
gorithms in terms of Latency and Output-Queue (OQ) Delay.
0Q delay is defined as the difference of the departure times of
a packet in the input queued switch and the shadow OQ switch.
Further, the goal cannot only be to achieve a better expected
latency, but in fact, we wish to value consistency, or relatively
few deviations from the mean. One measure for this are higher
moments of the variables. Thus, here we provide plots for the
logarithm of first and second moments of both Latency and the
0OQ Delay versus a uniform load of p. Figs. 5 and 6 plot, re-
spectively, the logarithm of the first and second moments of
the latency. We observe that for lower loads, i.e., for p < 0.45

1380

—L0F

Expected Latency

Fig. 5. Comparison of the logarithm of Expected latencies of different sched-
uling algorithms.

1
—L0F
0CF
—huer| |

Expected Latency2

Fig. 6. Comparison of the logarithm of second moments of the latencies of
different scheduling algorithms.

the performance of all the three algorithms is almost the same.
But for higher loads, the first moment of LQF and MUCF are
better than OCF. Fig. 6 shows that in terms of the second mo-
ment, MUCF performs the best and LQF the worst, with OCF
lying between. This is in line with our expectations because, as
mentioned earlier LQF is not fair and hence performs badly at
higher moments. MUCF performs better than OCF for both the
moments.

Figs. 5 and 6 correspond to latency and Figs. 7 and 8 corre-
spond to OQ delay. We observe that MUCF performs better than
the other two algorithms for both the metrics at all the loads, es-
pecially for the second moments illustrating fairness. Thus, the
simulations illustrate that MUCF tracks the performance of an
0OQ switch better than LQF and OCF.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

—LOF
OCF
—— MUCF

Expected OQ Delay

Fig. 7. Comparison of the logarithm of expected output queued delays of dif-
ferent scheduling algorithms.

—LOF
OCF
: —— MUCF| |

Expected (OQ Delay)®

Fig. 8. Comparison of the logarithm of second moments of the output queued
delays of different scheduling algorithms.

IX. CONCLUSION

In this paper, we considered the problem of designing a fair
scheduling algorithm for constrained queuing systems. Fairness
in networks is not only an intuitively desired goal, but also one
with many practical benefits. Most of the existing work concen-
trates on fairly allocating bandwidth to different flows in the
network. A major limitation of this approach is that it disre-
gards the packetized nature of flows. We overcame this problem
and proposed a packet based notion of fairness by establishing
anovel analogy with the ranked election problem. Ranked elec-
tion is a widely studied problem in the Economics literature, and
this analogy allowed us to leverage that work. This results in a
packet based notion of fairness and an algorithm to achieve this
fairness.

JAGABATHULA AND SHAH: FAIR SCHEDULING IN NETWORKS

Rather surprisingly, the algorithm turned out be the familiar
MW style algorithm. Moreover, it does not require the knowl-
edge of flow arrival rates. Our fairness algorithm also fits into
the utility maximization framework that is more popular for de-
signing fair algorithms. This, in some sense, validates our ap-
proach. We also proved that our algorithm is throughput op-
timal. This result is very crucial since the emulation approach
already achieves fairness, but with a loss of throughput. Also,
the proof is nontrivial and requires some nontraditional tech-
niques to be introduced because existing proof techniques don’t
directly apply. We believe that the proof techniques we intro-
duced are more widely applicable to similar problems and this
is another important contribution of the paper. Finally, our sim-
ulation results corroborate the fact that our algorithm is better at
providing fairness than the more popular algorithms in the con-
text of input queued switches.

REFERENCES

[1] S. Keshav, An Engineering Approach to Computer Networking: ATM
Networks, the Internet, and the Telephone Network. Boston, MA: Ad-
dison-Wesley Longman, 1997.

[2] T. Bonald and L. Massoulié, “Impact of fairness on internet perfor-
mance,” in Proc. 2001 ACM SIGMETRICS Int. Conf. Measure. Model.
Comput. Syst., 2001, pp. 82-91.

[3] D.K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam, “Defending against

distributed denial-of-service attacks with max-min fair server-centric

router throttles,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 29-42,

2005.

F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication net-

works: Shadow prices, proportional fairness and stability,” J. Operat.

Res. Soc., vol. 49, no. 3, pp. 237-252, 1998.

[5]1 L. A. Goodman and H. Markowitz, “Social welfare functions based
on individual rankings,” Amer. J. Sociol., vol. 58, pp. 257-262, Nov.
1952.

[6] J. Nagle, “On packet switches with infinite storage,” IEEE Trans.
Commun. [Legacy, Pre—I1988], vol. 35, no. 4, pp. 435-438, Apr.
1987.

[7]1 A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. Symp. Commun. Architectures Pro-
tocols SIGCOMM’89 , New York, 1989, pp. 1-12, ACM.

[8] A.Parekh and R. Gallager, “A generalized processor sharing approach

to flow control in integrated services networks: The single-node case,”

IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344-357, 1993.

A. Parekh and R. Gallager, “A generalized processor sharing approach

to flow control in integrated services networks: The multiple node

case,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137-150, 1994.

[10] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round-robin,” IEEE/ACM Trans. Netw. (TON), vol. 4, no. 3, pp.
375-385, 1996.

[11] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp.
397-413, 1993.

[12] R.Pan, B. Prabhakar, and K. Psounis, “Choke: A stateless agm scheme
for approximating fair bandwidth allocation,” IEEE Infocom, 2000.

[13] R. Pan, B. Prabhakar, L. Breslau, and S. Shenker, “Approximate fair
allocation of link bandwidth,” IEEE Micro, vol. 23, no. 1, pp. 36-43,
2003.

[14] S. H. Low, “A duality model of TCP and queue management algo-
rithms,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 525-536, 2003.

[15] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as opti-
mization decomposition: A mathematical theory of network architec-
tures,” Proc. IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007.

[16] R. Srikant, The Mathematics of Internet Congestion Control.
MA: Birkhiuser, 2004.

[4

=

[9

[

Boston,

1381

[17] G. de Veciana, T. Konstantopoulos, and T. Lee, “Stability and perfor-
mance analysis of networks supporting elastic services,” IEEE/ACM
Trans. Netw. , vol. 9, no. 1, pp. 2-14, 2001.

[18] B. Prabhakar and N. McKeown, “On the speedup required for com-
bined input and output queued switching,” Automatica, vol. 35, no. 12,
pp. 1909-1920, 1999.

[19] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input output queued switch,” IEEE
J. Sel. Areas Commun., vol. 17, no. 6, pp. 1030-1039, 1999.

[20] X. Zhang and L. Bhuyan, “Deficit round-robin scheduling for input-
queued switches,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp.
584-594, May 2003.

[21] S. Li, J.-G. Chen, and N. Ansari, “Fair queueing for input-buffered
switches with back pressure,” in Proc. Ist IEEE Int. Conf. ATM,
ICATM-98., Jun. 22-24, 1998, pp. 252-259.

[22] N. Ni and L. N. Bhuyan, “Fair scheduling in internet routers,” IEEE
Trans. Comput., vol. 51, no. 6, pp. 686-701, 2002.

[23] M. Hosaagrahara and H. Sethu, “Max-min fairness in input-queued
switches,” in Proc. ACM SIGCOMM Poster Session, Philadelphia, PA,
Aug. 2005.

[24] D. P. Y. Yang, “Max-min fair bandwidth allocation algorithms for
packet switches,” in Proc. IEEE Int. Parallel and Distrib. Process.
Symp. IPDPS 2007, Mar. 26-30, 2007, pp. 1-10.

[25] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp- 1936-1948, Dec. 1992.

[26] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input-queued switch,” IEEE Trans.
Commun., vol. 47, no. 8, pp. 1260-1267, 1999.

[27] D. Shah and D. Wischik, “Optimal scheduling algorithms for input-
queued switches,” in Proc. IEEE Infocom, 2006.

[28] N. Kumar, R. Pan, and D. Shah, “Fair scheduling in input-queued
switches under inadmissible traffic,” in Proc. IEEE Globecom, 2004.

[29] K. Arrow, Social Choice and Individual Values. New Haven, CT:
Yale Univ. Press, 1951.

Srikanth Jagabathula received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology (IIT), Bombay, in 2006, and the M.S.
degree in electrical engineering and computer science from the Massachusetts
Institute of Technology (MIT), Cambridge, in 2008.

He is currently a doctoral student with the Department of Electrical Engi-
neering and Computer Science, MIT. His research interests are in the areas
of revenue management, choice modeling, queuing systems, and compressed
sensing.

Mr. Jagabathula received the President of India Gold Medal from IIT Bombay
in 2006. He was also awarded the “Best Student Paper Award” at the NIPS 2008
conference and the Ernst Guillemin award for the best EE SM Thesis.

Devavrat Shah received the B.Tech. degree in computer science and engi-
neering from the Indian Institute of Technology (IIT), Bombay, in 1999 with
the honor of the President of India Gold Medal. He received the Ph.D. degree
from the Computer Science Department, Stanford University, Stanford, CA, in
October 2004.

He is currently a Jamieson Career Development Associate Professor with the
Department of Electrical Engineering and Computer Science, Massachusetts In-
stitute of Technology (MIT), Cambridge. He is a member of the Laboratory of
Information and Decision Systems (LIDS) and affiliated with the Operations Re-
search Center (ORC). His research focus is on theory of large complex networks
which includes network algorithms, stochastic networks, network information
theory, and large scale statistical inference. He was a postdoctoral researcher
with the Statistics Department, Stanford University, during 2004-2005.

Dr. Shah was co-awarded the Best Paper awards at the IEEE INFOCOM’ 04,
ACM SIGMETRICS/Performance’06; and Best Student Paper awards at the
Neural Information Processing Systems’08 and ACM SIGMETRICS/Perfor-
mance’09 conferences. He received the 2005 George B. Dantzig Best Disser-
ation award from the INFORMS. He received the first ACM SIGMETRICS
Rising Star Award 2008 for his work on network scheduling algorithms.

