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Distributed Averaging Via Lifted Markov Chains
Kyomin Jung, Devavrat Shah, and Jinwoo Shin

Abstract—Motivated by applications of distributed linear esti-
mation, distributed control, and distributed optimization, we con-
sider the question of designing linear iterative algorithms for com-
puting the average of numbers in a network. Specifically, our in-
terest is in designing such an algorithm with the fastest rate of con-
vergence given the topological constraints of the network. As the
main result of this paper, we design an algorithm with the fastest
possible rate of convergence using a nonreversible Markov chain
on the given network graph. We construct such a Markov chain
by transforming the standard Markov chain, which is obtained
using the Metropolis–Hastings method. We call this novel trans-
formation pseudo-lifting. We apply our method to graphs with ge-
ometry, or graphs with doubling dimension. Specifically, the con-
vergence time of our algorithm (equivalently, the mixing time of
our Markov chain) is proportional to the diameter of the network
graph and hence optimal. As a byproduct, our result provides the
fastest mixing Markov chain given the network topological con-
straints, and should naturally find their applications in the context
of distributed optimization, estimation and control.

Index Terms—Consensus, lifting, linear averaging, Markov
chain, nonreversible, pseudo-lifting, random walk.

I. INTRODUCTION

T HE recently emerging network paradigms such as sensor
networks, peer-to-peer networks, and surveilance net-

works of unmanned vehicles have led to the requirement of
designing distributed, iterative, and efficient algorithms for
estimation, detection, optimization, and control. Such algo-
rithms provide scalability and robustness necessary for the
operation of such highly distributed and dynamic networks. In
this paper, motivated by applications of linear estimation in
sensor networks [17], [7], [23], [31], information exchange in
peer-to-peer networks [21], [27] and reaching consensus in un-
manned vehicles [16], we consider the problem of computing
the average of numbers in a given network in a distributed
manner. Specifically, we consider the class of algorithms for
computing the average using distributed linear iterations. In
applications of interest, the rate of convergence of the algo-
rithm strongly affects its performance. For example, the rate
of convergence of the algorithm determines the agility of a
distributed estimator to track the desired value [7] or the error in
the distributed optimization algorithm [28]. For these reasons,
designing algorithms with fast rate of convergence is of a great
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recent interest [7], [3], [11] and the question that we consider
in this paper.

A network of nodes whose communication graph is denoted
by , where and

and can communicate . Each node has a distinct value and
our interest is designing a distributed iterative algorithm for
computing the average of these numbers at the nodes. A popular
approach, started by Tsitsiklis [31], involves finding a nonneg-
ative valued matrix such that

a) is graph conformant, i.e., if then ;
b) , where is the (column) vector of all

components ;
c) as for any , where

.
This is equivalent to finding an irreducible, aperiodic random
walk on graph with the uniform stationary distribution.

The quantity of interest, or the performance of algorithm, is
the time it takes for the algorithm to get close to starting
from any . Specifically, given , define the -computation time
of the algorithm as

(1)

It is well known that is proportional1 to the mixing time,
denoted as , of the random walk with transition matrix .
Thus, the question of interest in this paper is to find a graph
conformant with the smallest computation time or, equiva-
lently, a random walk with the smallest mixing time. Indeed,
the question of designing a random walk on a given graph with
the smallest mixing time in complete generality is a well-known
unresolved question.

The standard approach of finding such a is based on the
method of Metropolis [26] and Hastings [13]. This results in
a reversible random walk on . The mixing time is
known to be bounded as

where denotes the conductance of . Now, for expander
graphs, the resulting induced by the Metropolis–Hastings
method is likely to have and hence the mixing
time is which is essentially the fastest possible. For
example, a random walk on the complete graph has

with mixing time . Thus, the question of in-
terest is reasonably resolved for graphs that are expanding.

Now the graph topologies arising in practice, such as those
in wireless sensor network deployed in some geographic area
[7], [11] or a nearest neighbor network of unmanned vehicle
[30], do possess geometry and are far from being expanders. A

1Lemma 8 states the precise relation. Known terms, such as mixing time, that
are used here are defined in Section II-A.
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Fig. 1. (a): � on the ring graph � . (b): � on the lifted ring graph � .

simple example of graph with geometry is the ring graph of
nodes as shown in Fig. 1. The Metropolis–Hastings method will
lead to shown in Fig. 1(a). Its mixing time is
and no smaller than (e.g., see [5]). More generally, the
mixing time of any reversible random walk on the ring graph is
lower-bounded by [4] for its mixing time. Note that the
diameter of the ring graph is and obviously no random walk
can mix faster than the diameter. Hence, a priori it is not clear
if the fastest mixing time is or or something in between:
that is, does the smallest mixing time of the random walk on a
typical graph scale like the diameter of , the square of the
diameter or a power of the diameter in ?

In general, in most cases of interest the mixing time of the
reversible walk scales like . The conductance
relates to diameter of a graph as . Therefore,
in such situations the mixing time of random walk based on
the Metropolis–Hastings method is likely to scale like , the
square of the diameter. Indeed, Diaconis and Saloff-Coste [29]
established that for a certain class of graphs with geometry, the
mixing time of any reversible random walk scales like at least

and it is achieved by the Metropolis–Hastings’ approach.
Thus, reversible random walks result in rather poor performance
for graphs with geometry i.e., their mixing time is far from our
best hope, the diameter .

Motivated by this, we wish to undertake the following reason-
ably ambitious question in this paper: is it possible to design a
random walk with mixing time of the order of diameter for any
graph? We will answer this question in affirmative by producing
a novel construction of nonreversible random walks on the lifted
version of graph . And thus, we will design iterative averaging
algorithms with the fastest possible rate of convergence.

A. Related Work

In an earlier work, Diaconis, Holmes, and Neal [10] intro-
duced a construction of a nonreversible random walk on the ring
(and more generally ring-like) graph. This random walk runs on

the lifted ring graph, which is described as in Fig. 1(b). Here,
by lifting we mean making additional copies of the nodes of the
original graph and adding edges between some of these copies
while preserving the original graph topology. Fig. 1(b) explains
the construction in [10] for the ring graph. Note that each node
has two copies and the lifted graph is essentially composed of
two rings: an inner ring and an outer ring. The transition on the
inner circle forms a clockwise circulation and the transition on
the outer circle forms a counterclockwise circulation. And the
probability of changing from the inner circle to the outer circle
and vice versa are each time. By defining transitions in this
way, the stationary distribution is also preserved; i.e., the sum
of stationary distributions of copies is equal to the stationary
distribution of their original node. Somewhat surprisingly, the
authors [10] proved that this nonreversible random walk has the
linear mixing time .2 Thus, effectively (i.e., up to
factor) the mixing time is of the order of the diameter . It should
be noted that because lifting preserves the graph topology and
the stationary distribution, it is possible to simulate this lifted
random walk on the original graph by expanding the state ap-
propriately, with the desired output. Equivalently, it is possible
to use a lifted random walk for linear averaging by running it-
erations with extra states.3

The following question arose from the work of [10]: given
graph and random walk on , is it possible to design a
nonreversible random walk on the lifted version of which
mixes subsequently faster than ? Can it mix in ? This
question was addressed in a subsequent work by Chen, Lovász,
and Pak [8]. They provided an explicit construction of a random
walk on a lifted version of with mixing time .
Further, they showed that, under the notion of lifting (implicity)
introduced by [10] and formalized in [8], it is not possible to
design such a lifted random walk with mixing time smaller than

.

2For a function � � � � � ������ �� �������������	���.
3The details are given in Section V.
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Now note that can be much larger than the diam-
eter . As a simple example, consider a ring graph with ex-
actly the same as that in Fig. 1(a), but with a difference that for
two edges the transition probabilities are instead of
(and the transition probabilities of endpoints of these edges ap-
propriately adjusted). Then, it can be checked that is

which can be arbitrarily poor compared to the di-
ameter by choosing small enough . A more interesting
example showing this poorer scaling of compared to
diameter, even for the Metropolis–Hastings’ style construction,
is presented in Section III in the context of a “Barbell graph”
(see Fig. 2). Thus, the lifting approach of [10], [8] cannot lead
to a random walk with mixing time of the order of diameter and
hence the question of existence or design of such a random walk
remains unresolved.

As noted earlier, the lifted random walk can be used to design
iterative algorithms (for computing an average) on the original
graph since the topology of the lifted graph and the stationary
distribution of the lifted random walk “projects back” onto those
of the original graph and the random walk, respectively. How-
ever, running algorithm based on lifted random walks on the
original graph requires additional states. Specifically, the lifted
random walk based algorithm can be simulated on the original
graph by running multiple threads on each node. Specifically,
the number of operations performed per iteration across the net-
work depends on the size4 of the lifted walk (or graph). In the
construction of [8] for a general graph, this issue about the size
of the lifted walk was totally ignored as the authors’ interest was
only the time complexity, not the size. Therefore, even though
time may reduce under the construction of [8] the overall cost
(equal to the product of time and size) may not be reduced; or
even worse, it may increase.

Therefore, from the perspective of the application of iterative
algorithms we need a notion of lifting that leads to a design of
a random walk that has (a) mixing time of the order of diameter
of the original graph and (b) the smallest possible size.

B. Our Contributions

In this paper, we answer the above stated question affirma-
tively. As noted earlier, the notion of lifting of [10], [8] cannot
help in answering this question. For this reason, we introduce a
notion of pseudo-lifting which can be thought of as a relaxation
of the notion of lifting. Like lifting, the notion of pseudo-lifting
preserves the topological constraints of the original graph. But
the relaxation comes in preserving the stationary distribution
in an approximate manner. However, it should be noted that
is still possible to use the pseudo-lifted random walk to per-
form the iterative algorithm without any approximation errors
(or to sample objects from a stationary distribution without any
additional errors) since the stationary distribution of pseudo-
lifting under a restricted projection provides the original sta-
tionary distribution exactly. Thus, operationally our notion of
pseudo-lifting is as effective as lifting.

First, we use pseudo-lifting to design a random walk with
mixing time of the order of diameter of a given graph with the

4In this paper, the size of a random walk (resp., graph) is the number of
nonzero entries in its transition matrix (resp., number of edges in the graph).

desired stationary distribution. To achieve this, we first use the
Metropolis–Hastings method to construct a random walk on
the given graph with the desired stationary distribution. Then,
we pseudo-lift this to obtain a random walk with mixing time
of the order of diameter of . This approach is stated as The-
orem 5.

As discussed earlier, the utility of such constructions lies in
the context of graphs with geometry. The graphs with (fixed)
finite doubling dimension, introduced in [2], [14], [12], [9],
serve as an excellent model for such a class of graphs. Roughly
speaking, a graph has doubling dimension if the number of
nodes within the shortest path distance of any node of is

(i.e., polynomial growth of the neighborhood of a node).
We apply our construction of pseudo-lifting to graphs with fi-
nite doubling dimension to obtain a random walk with mixing
time of the order of diameter . In order to address the concern
with expansion in the size of the pseudo-lifted graph, we use
the geometry of the original graph explicitly. Specifically, we
reduce the size of the lifted graph by a clever combination of
clustering, geometry and pseudo-lifting. This formal result is
stated as follows and its proof is in Section VI-C.

Theorem 1: Consider a connected graph with doubling
dimension and diameter . It is possible to explicitly construct
a pseudo-lifted random walk on with mixing time chain
and size .

As a specific example, consider a -dimensional grid whose
doubling dimension is . The Metropolis–Hastings method has
mixing time , compared to our construction with mixing
time . Further, our construction leads to an increase in
size of the random walk only by factor. That is,
pseudo-lifting is optimal in terms of the number of iterations,
which is equal to diameter, and in terms of cost per iteration it is
lossy by a relatively small amount, for example,
for the -dimensional grid.

In general, we can use pseudo-lifting to design iterative al-
gorithms for computing the average of given numbers on the
original graph itself. We describe a precise implementation of
such an algorithm in Section V. The use of pseudo-lifting, pri-
marily effective for a class of graphs with geometry, results in
the following formal result whose proof is in Section V-B.

Theorem 2: Consider a given connected graph with di-
ameter and each node with a distinct value. Then (using a
pseudo-lifted random walk) it is possible to design an iterative
algorithm whose -computation time is . Fur-
ther, if has doubling dimension , then the network-wide total
number of operations (essentially, additions) per iteration of the
algorithm is .

As a specific example, recall a -dimensional grid with dou-
bling dimension and diameter . The Metropolis–Hastings
method will have mixing time and per iteration number
of operations . Therefore, the number of total operations
is (even the randomized gossip algorithm of [7]
will have this total cost). Compared to this, Theorem 2 im-
plies the number of iterations would be and per
iteration cost would be . Therefore, the total
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cost is which is essentially close to
for large . Thus, it strictly improves performance over the
Metropolis–Hastings method by roughly factor. It is
worth nothing that no algorithm can have the number of total
operations less than and the number of iterations
less than .

For the application of interest of this paper, it was neces-
sary to introduce a new notion of lifting and indeed we found
one such notion, i.e., pseudo-lifting. In general, it is likely that
for certain other applications such a notion may not exist. For
this reason, we undertake the question of designing a lifted (not
pseudo-lifted) random walk with the smallest possible size since
the size (as well as the mixing time) decides the cost of the al-
gorithm that uses lifting. Note that the average-computing algo-
rithm in Section V can also be implemented via lifting instead of
pseudo-lifting, and the size of lifting leads to the total number
of operations.5 As the first step, we consider the construction
of Chen, Lovász, and Pak [8]. We find that it is rather lossy
in its size. Roughly speaking, their construction tries to build
a logical complete graph topology using the underlying graph
structure. In order to construct one of edges of this com-
plete graph topology, they use a solution of a flow optimization
problem. This solution results in multiple paths between a pair
of nodes. Thus, in principle, their approach can lead to a very
large size. In order to reduce this size, we use two natural ideas:
one, use a sparse expander graph instead of the complete graph
and two, use a solution of unsplittable flows [20]. Intuitively,
this approach seems reasonable but in order to make it work,
we need to overcome rather nontrivial technical challenges. To
address these challenges, we develop a method to analyze hy-
brid nonreversible random walks, which should be of interest
in its own right. The formal result is stated as follows and see
Section VI for its complete proof.

Theorem 3: Consider a given connected graph with a
random walk . Then, there exists a lifted random walk with
mixing time and size , where

or

Note that the lifted random walk in [8] has size ,
hence our lifting construction leads to the reduction of its size by

factor when is sparse.6 Finally, we note that the methods
developed for understanding the expander-based construction
(and proof of Theorem 3) can be useful in making pseudo-lifting
more robust, as discussed in Section VII.

II. PRELIMINARIES AND BACKGROUNDS

A. Key Notions and Definitions

In this paper, is a given graph with nodes,
i.e., . We may use to represent vertices of of

. always denotes a transition matrix of a graph conformant
random walk (or Markov chain) on with its stationary dis-
tribution , i.e., only if , and .

5One can derive its explicit performance bound as Theorem 2. It turns out that
lifting is worse than pseudo-lifting in its performance, but it is more robust in
its construction.

6A graph � � ����� is sparse if ��� � ���� ��.

We will use the notion of “Markov chain” or “random walk”
depending on which notion is more relevant to the context. The
reverse chain of is defined as: for all

. We call reversible if . Hence, if is
uniform7, is a symmetric matrix. The conductance of is
defined as

where .
Although there are various (mostly equivalent) definitions of

Mixing time that are considered in the literature based on dif-
ferent measures of the distance between distributions, we pri-
marily consider the definition of Mixing time from the stop-
ping rule. A stopping rule is a stopping time based on the
random walk of : at any time, it decides whether to stop or
not, depending on the walk seen so far and possibly additional
coin flips. Suppose, the starting node is drawn from distribu-
tion . The distribution of the stopping node is denoted by

and call as a stopping rule from to . Let
be the infimum of mean length over all such stopping rules from

to . This is well-defined as there exists the following stop-
ping rule from to : select with probability and walk until
getting to . Now, we present the definition of the (stopping rule
based) Mixing time .

Definition 1 (Mixing Time): .

Therefore, to bound , we need to design a stopping rule
whose distribution of stopping nodes is .

B. Metropolis–Hastings Method

The Metropolis–Hastings method (or Glauber dynamics [19])
has been extensively studied in recent years due to its local con-
structibility. For a given graph and distribution

on , the goal is to produce a random walk on whose
stationary distribution is . The underlying idea of the random
walk produced by this method is choosing a neighbor of the
current vertex at uniformly random and moving to depending
on the ratio between and . Hence, its explicit transition ma-
trix is as follows:

if

if and
if

where is a degree of vertex and . It is easy to
check that and is reversible.

C. Lifting

As stated in the Introduction, motivated by a simple ring ex-
ample of Diaconis et al. [10], Chen et al. [8] use the following
notion of lifting.

Definition 2 (Lifting): A random walk on graph
is called a lifting of random walk on graph

if there exists a many-to-one function such
that the following holds: (a) for any only

7� is uniform when � � �����	.
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if ; (b) for any
and . Here and are ergodic
flow matrices for and respectively.

Here, the ergodic flow matrix of is defined as:
. It satisfies:

and . Conversely, every nonnegative matrix with
these properties defines a random walk with the stationary dis-
tribution . In this paper, means a lifted (or pseudo-lifted)
random walk of . Similarly, and are the lifted (or
pseudo-lifted) versions of their original one.

Chen et al. [8] provided an explicit construction to lift a given
general random walk with almost optimal speedup in terms
of mixing time. Specifically, they obtained the following result.

Theorem 4 ([8]): For a given random walk , it is possible to
explicitly construct a lifted random walk of with mixing time

. Furthermore, any lifted random walk of needs
at least time to mix.

D. Auxiliary Backgrounds

1) -Mixing Time: Here we introduce a different (and re-
lated) notion of Mixing time which measures more explicitly
how fast the random walk converges to the stationarity. The fol-
lowing notions, are related to . This relation can be
found in detail in the survey by Lovász and Winkler [23]. For
example, we will use this relation explicitly in Lemma 8.

Now we define these related definitions of mixing time. To
this end, as before, consider a random walk on a graph

. Let denote the distribution of the state after
steps under , starting from an initial state . For the
random walk of our interest, goes to as . We
present the definitions based on the total variation distance and
the -distance.

Definition 3 ( -Mixing Time): Given , let and
represent -Mixing time of the random walk with respect to the
total variation distance and the -distance respectively. Then,
they are

2) Additional Techniques to Bound Mixing Times: Various
techniques have been developed over past three decades or so to
estimate Mixing time of a given random walk. The relation be-
tween the conductance and the mixing time in the Introduction
is one of them. We review some of the key other techniques that
will be relevant for this paper.

Fill-up Lemma. Sometimes, due to the difficulty for designing
such an exact stopping rule, we use the following strategy for
bounding the mixing time .

Fig. 2. The Barbell graph with 12 nodes.

Step 1. For a positive constant and any starting distribu-
tion , we design a stopping rule whose stopping distribu-
tion is -far from (i.e., ). This gives the
upper bound for .
Step 2. We bound by using the following fact
known as fill-up Lemma in [1]:

where .

Eigenvalue. If is reversible, one can view as a self-adjoint
operator on a suitable inner product space and this permits us
to use the well-understood spectral theory of self-adjoint oper-
ators. It is well known that has real eigenvalues

. The -mixing time
is related as

where and . The
is also called the spectral gap of . When is nonreversible, we
consider . It is easy to see that the Markov chain with
as its transition matrix is reversible. Let be the spectral gap
of this reversible Markov chain. Then, the mixing time of the
original Markov chain (with its transition matrix ) is bounded
above as

(2)

III. PSEUDO-LIFTING

Here our aim is to obtain a random walk with mixing time
of the order of the diameter for a given graph and stationary
distribution . As explained in the Introduction, the following
approach based on lifting does not work for this aim: first obtain
a random walk with the desired stationary distribution using the
Metropolis–Hastings method, and then lift it using the method
in [8].

For example, consider the Barbell graph as shown in Fig. 2:
two complete graphs of nodes connected by a single edge.
And, suppose is uniform. Now, consider a random walk
produced by the Metropolis–Hastings method: the next transi-
tion is uniform among all the neighbors for each node. For such
a random walk, it is easy to check that and

. Therefore, the mixing time of any lifting is at least
. However, this random walk is ill-designed to begin with

because can be decreased up to by defining its
random walk in another way (i.e., increasing the probability of
its linkage edge, and adding self-loops to non-linkage nodes not
to change its stationary distribution). is still far from
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the diameter nevertheless. Hence, from Theorem 4,
lifting cannot achieve -mixing.

Motivated by this limitation, we will use the following new
notion of lifting, which we call pseudo-lifting, to design a

-mixing random walk.

Definition 4 (Pseudo-Lifting): A random walk is called a
pseudo-lifting of if there exists a many-to-one function

with such that the following holds:
(a) for any only if , and
(b) for any .8

The property (a) in the definition implies that one can simu-
late the pseudo-lifting in the original graph . Furthermore,
the property (b) suggests that (by concentrating on the set ), it
is possible to simulate the stationary distribution exactly via
pseudo-lifting. Next we present its construction.

A. Construction

For a given random walk , we will construct the pseudo-
lifted random walk of . It may be assumed that is given by
the Metropolis–Hastings method. We will construct the pseudo-
lifted graph by adding vertices and edges to , and decide
the values of the ergodic flows on , which defines its corre-
sponding random walk .

First, select an arbitrary node . Now, for each , there
exist paths and , from to and to , respectively.
We will assume that all the paths are of length : this can be
achieved by repeating same nodes. Now, we construct a pseudo-
lifted graph starting from .

First, create a new node which is a copy of the chosen
vertex . Then, for every node , add directed paths , a
copy of , from to . Similarly, add (a copy of )
from to . Each addition creates new interior nodes.
Thus, we have essentially created a virtual star topology using
the paths of the old graph by adding new nodes in total.
(Every new node is a copy of an old node.)

Now, we define the ergodic flow matrix for this graph as
follows: for an edge

if or
if

where is a constant we will decide later in (3). It is
easy to check that . Hence it
defines a random walk on . The stationary distribution of this
pseudo-lifting is

if
if
if

Given the above definition of and corresponding stationary
distribution , it satisfies the requirements of pseudo-lifting in
Definition 4 if we choose such that

(3)

and ; i.e., is the set of old nodes.

8In fact, can be replaced by any constant between � and �.

B. Mixing Time

We claim the following bound on the mixing time of the
pseudo-lifting we constructed.

Theorem 5: The mixing time of the random walk defined
by is .

Proof: We will design a stopping rule where the distribu-
tion of the stopping node is , and analyze its expected length.
At first, walk until visiting , and toss a coin with the fol-
lowing probability:

with probability

with probability
with probability

with probability

Depending on the value of , the stopping node is decided as
follows.

: Stop at . The probability for stopping at is
, which is exactly .

: Walk a directed path , and choose an interior
node of uniformly at random, and stop there. For a
given , the probability for walking is easy to check

. There are many interior nodes, hence, for an
interior node of , the probability for stopping at is

: Stop at the end node of . The probability
for stopping at is

: Walk until getting a directed path , and choose
an interior node of uniformly at random, and stop
there. Until getting a directed path , the pseudo-lifted
random walk defined by is the same as the original
random walk. Since the distribution of the
walk at the end of the previous step is exactly , it follows
that the distribution over the nodes of is preserved
under this walk till walking on . From the same calcu-
lation as for the case , the probability of stopping at
the interior node of is .

Therefore, we have established the existence of a stopping rule
that takes an arbitrary starting distribution to the stationary
distribution . Now, this stopping rule has an average length

: since the probability of getting on a directed path
at is , the expected

numbers of walks until visiting and getting a directed path
when are from (3) in both cases.
This completes the proof.

IV. PSEUDO-LIFTING: USE OF GEOMETRY

The graph topologies arising in practice, such as those in
wireless sensor network deployed in some geographic area or
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Fig. 3. For a given line graph with � nodes, (a) is the star topology which
used in the construction of the pseudo-lifted graph in Section III-A and (b) is
the hierarchical star topology which will be used in this section for the new
construction of pseudo-lifting.

a nearest neighbor network of unmanned vehicles [30], do pos-
sess geometry and are far from being expanders. A good model
for graphs with geometry is a class of graphs with finite dou-
bling dimension which is defined as follows.

Definition 5 (Doubling Dimension): Consider a metric space
, where is the set of point endowed with a metric

. Given , define a ball of radius around as
. Define

Then, the is called the doubling
constant of and is called the doubling dimension
of . The doubling dimension of a graph is defined
with respect to the metric induced on by the shortest path
metric.

For graphs with finite doubling dimension, we will design a
pseudo-lifting with its efficient size. Recall the basic idea for
the construction of the pseudo-lifting in Section III is creating
a virtual star topology using paths from every node to a fixed
root, and the length of paths grows the size of the pseudo-lifting.
To reduce the overall length of paths, we consider clusters of
nodes such that nodes in each cluster are close to each other,
and pick a subroot node in each cluster. And then, build a star
topology in each cluster around its subroot and connect every
subroot to the root. This creates a hierarchical star topology (or
say a tree topology) as you seen in the example of the line graph
in Fig. 3(b). Since it needs paths of short length in each cluster,
the overall length of paths would be decreased.

For a good clustering, we need to decide which nodes would
become subroots. A natural candidate for them is the -net

of a graph defined as follows.

Definition 6 ( -Net): For a given graph
is an -net if the following conditions are fulfilled.

a) For every , there exists such that the shortest
path distance between is at most .

b) The distance between any two is more than .

Such an -net can be found in greedily, and as will be
seen in the proof of Lemma 7, the small doubling dimension of

guarantees the existence of a good -net for our purpose.

A. Construction

For a given random walk , we will construct the pseudo-
lifted random walk of using a hierarchical star topology.
Denote and be the stationary distribution and the
underlying graph of again. As the previous construction in
Section III-A, we will construct the pseudo-lifted graph by
extending , and define the ergodic flow matrix on , which
leads to its corresponding random walk .

Given an -net , match each node to the nearest
(breaking ties arbitrarily). Let for

. Clearly, . Finally, for each and
for any , we have paths between and
of length exactly. Also, for each , there exit
between and of length exactly (we allow the repetition of
nodes to hit this length exactly).

Now, we construct the pseudo-lifted graph . As the con-
struction in Section III-A, select an arbitrary node and
create its copy again. Further, for each , create two
copies and . Now, add directed paths , a copy of ,
from to and add , a copy of , from to . Simi-
larly, add and between and . In total, this
construction for adds edges to . Now, the
ergodic flow matrix on is defined as follows: for any
of

if or

if or
if

where and is a constant decided

later.9 It can be checked that .
Hence it defines a random walk on . The stationary distribution
of this pseudo-lifted chain is given at the bottoom of the page.
To guarantee that this chain is indeed the pseudo-lifting of the
original random walk , consider and , where

(4)

Note that has exactly edges.

9See (4) and check � � ���.

if

if

if

if
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B. Mixing Time and Size: Proof of Theorem 1

We prove two lemmas about the performance of pseudo-
lifting we constructed, and they imply Theorem 1. At first, we
state the following result about its mixing time, and the proof
can be done similarly as the proof of Theorem 5.

Lemma 6: The mixing time of the random walk defined by
is .

Proof: Consider the following stopping rule. Walk until
visiting , and toss a coin with the following probability.

with probability

with probability

with probability

with probability

with probability

with probability

Depending on the value of

: Stop at .

: Walk on a directed path , and choose its inte-
rior node uniformly at random, and stop there.

: Walk until getting a directed path , and choose
its interior node uniformly at random, and stop there.

: Walk until getting an old node in , and stop
there.

: Walk until getting a directed path , and choose
its interior node uniformly at random, and stop there.

: Walk until getting a directed path , and choose
its interior node uniformly at random, and stop there.

It can be checked, using arguments similar to that in proof of
Theorem 5, that the distribution of the stopped node is precisely

. Also, we can show that the expected length of this stopping
rule is from (4). This is primarily
true because the probability of getting on a directed path at

is .

Now we apply the hierarchical construction to the case of
graphs with constant doubling dimension, and show the guar-
antee for the size of the pseudo-lifting in terms of its doubling
dimension.

Lemma 7: Given a graph with a constant doubling dimen-
sion and its diameter , the hierarchical construction gives a
pseudo-lifted graph with its size .

Proof: The property of doubling dimension graph implies
that there exists an -net such that (cf.
[2]). Consider . This is an appropriate choice
because

(the second inequality is from ). Given this, the size of
the pseudo-lifted graph is

Since and , we have that
.

V. APPLICATION: BACK TO AVERAGING

As we stated in the Introduction, consider the following
computation problem of the distributed averaging. Given a con-
nected network graph , where ,
each node has a value . Then the goal is to
compute the average of only by communications
between adjacent nodes

(5)

This problem arises in many applications such as distributed es-
timation [31], distributed spectral decomposition [18], estima-
tion and distributed data fusion on ad hoc networks [24], dis-
tributed subgradient method for eigenvalue maximization [6],
inference in Gaussian graphical models [25], and coordination
of autonomous agents [16].

A. Linear Iterative Algorithm

A popular and quite simple approach for this computation is
a method based on linear iterations [32] as follows. Suppose we
are given with a graph conformant random walk which has
the uniform stationary distribution i.e., . The linear
iteration algorithm is described as follows. At time , each node

has an estimate of and initially .
At time for each edge of , node sends
value to node . Then each node sums up the values
received as its estimate at time , that is

Under the condition that is ergodic, i.e., is connected and
aperiodic, it is known that [32]

where

Specifically, as we already saw in the Introduction, -computa-
tion time is defined as

(6)

The quantity is well known to be related to the mixing
time . More precisely, we prove Lemma 8, which implies

(7)
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Since each edge such that performs an exchange
of values per each iteration, the number of operations performed
per iteration across the network is at most . Thus, the total
number of operations of the linear iterations to obtain the ap-
proximation of scales like

(8)

Therefore, the task of designing an appropriate with small
is important to minimize both and .

B. Linear Iterative Algorithm With Pseudo-Lifting:
Proof of Theorem 2

We present a linear iterative algorithm that utilizes the
pseudo-lifted version of a given matrix on the original graph

. The main idea behind this implementation is to run the
standard linear iterations in with the pseudo-lifted
chain . However, we wish to implement this on
and not . Now recall that has the following properties: (a)
each node is a copy of a node , and (b) each edge

is a copy of edge , where are copies of
, respectively. Therefore, each node can be sim-

ulated by a node where is a copy of for the purpose
of linear iterations. Thus, it is indeed possible to simulate the
pseudo-lifted version of a matrix on by running multiple
threads (in the language of the computer programming) on each
node of . We state this approach formally as follows:

1. Given graph , we wish to compute the average
at all nodes. For this, first produce a matrix using the

Metropolis–Hastings method with the uniform stationary
distribution.

2. Construct the pseudo-lifting based on as explained
in Section IV. This pseudo-lifted random walk has a sta-
tionary distribution on a graph .

3. As explained below, implement the linear iterative algo-
rithm based on on the original graph .

Let be the index of iterations of the algorithm and
initially it be equal to .

For each node , maintain a number at the
th iteration. This is maintained at the node

where is a copy of . The initialization of these
values is stated as follows.
• Recall that, contains as its subset. Recall

that they are denoted as , and each
has its copy .

• For each , initialize .
• For each , initialize .

In the th iteration, update

This update is performed by each node through re-
ceiving information from its neighbors in , where

is a copy of and neighbors (of ) are copies of
neighbors (of ) .

4. At the end of the th iteration, each node produces its
estimate as .

It can be easily verified that since the above algorithm is indeed
implementing the linear iterative algorithm based on , the

computation time is and the total number of communi-
cations performed is . In what follows, for the complete-
ness we bound and .

Lemma 8: .
Proof: Here, we need the -mixing time based on the

total variance distance, and recall its definition in Section II-D

The following relation between two different mixing time
and is known (see [23]):

If is larger than of , which is

where is from ,
and is because for every old node

, and otherwise. This completes the proof.

From the proof of Lemma 8, note that the relation
holds for any random walk

. Therefore, and

since

and from Lemmas 6 and 7. This also
completes the proof of Theorem 2.

C. Comparison With Other Algorithms

Even considering any possible algorithms based on passing
messages, the lower bound of the performance guarantees in the
averaging problem is for the running time, and for
the total number of operations. Therefore, our algorithm using
pseudo-lifting gives the best running time, and possibly loses

the factor in terms of the total
number of operations compared to the best algorithm. For ex-
ample, when is a -dimensional grid graph, this loss is only

since the
doubling dimension of is and its diameter is .
The standard linear iterations using the Metropolis–Hastings
method loses the factor in both the running time and
the total number of operations (see Table I).

We take note of the following subtle matter: the nonre-
versibility is captured in the transition probabilities of the
underlying Markov chain (or random walk); but the linear
iterative algorithm does not change its form other than this
detail.
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TABLE I
COMPARISON OF PSEUDO-LIFTING WITH THE METROPOLIS–HASTINGS METHOD.

HERE, WE ASSUME � HAS ���� EDGES

VI. LIFTING USING EXPANDERS

We introduced the new notion of pseudo-lifting for the appli-
cations of interest, one of which was the distributed averaging.
However, since it may not be relevant to certain other applica-
tions, we optimize the size of lifting (not pseudo-lifting) in [8].
The basic motivation of our construction is using the expander
graph, instead of the complete graph in [8], to reduce the size of
the lifting.

A. Preliminaries

In what follows, we will consider only such that .
This is without loss of generality due to the following reason.
Suppose such is not the case, then we can modify it as ;
the mixing time of is within a constant factor of the
mixing time of .

1) Multi-Commodity Flows: In [8], the authors use a multi-
commodity flow to construct a specific lifting of a given random
walk to speed up its mixing time. Specifically, they consider
a multi-commodity flow problem on with the capacity con-
straint on edge given by . A flow from a source

to a destination , denoted by , is defined as a nonnegative
function on edges of so that

for every node . The value of the flow is defined by

and the cost of flow is defined as

A multi-commodity flow is a collection of flows,
where each is a flow from to . Define the congestion of a
multi-commodity flow as

Consider the following optimization problem, essentially trying
to minimize the congestion and the cost simultaneously under
the condition for the amount of flows:

Let be the optimal solution of the above problem. It is easy
to see that . Further, if is reversible, then result
of Leighton and Rao [22] on the approximate multi-commodity
implies that

Let the optimal multi-commodity flow of the above problem be
, and we can think of as a weighted collection of directed

paths. In [8], the authors modified , and got a new multi-
commodity flow that has the same amount of flows as

, while its congestion and path length are at most . They
used to construct a lifting with mixing time such that

Also, they showed that the mixing time of any lifting is greater
than , hence their lifted Markov chain has almost optimal
speedup within a constant factor.

To obtain a lifting with the smaller size than that in [8], we
will to study the existence of the specific -commodity flow with
short path lengths. For this, we will use a balanced multi-com-
modity flow, which is a multi-commodity flow with the fol-
lowing condition for the amount of flows:

and satisfies the balanced condition

Therefore, and are also balanced multi-commodity flows
with . Given a multi-commodity flow , let
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be its congestion and be the length of the longest flow-
path. Then, the flow number is defined as follows:

where the minimum is taken over all balanced multi-commodity
flows with . Hence, implies . The
following claim appears in [20].

Claim 9 (Claim 2.2 in [20]): For any satisfying the
balanced condition (not necessarily ), there ex-
ists a balanced multi-commodity flow with such that

.

2) Expanders: The expander graphs are sparse graphs which
have high connectivity properties, quantified using the edge ex-
pansion as defined as

where is the set of edges with exactly one endpoint in .
For constants and , a family of -regular
graphs is called a -expander family if for every

. There are many explicit constructions of a -ex-
pander family available in recent times. We will use a -ex-
pander graph (i.e., ), and a transi-
tion matrix defined on this graph. For a given , we can
define a reversible so that its stationary distribution is as
follows:

if
if

In the case of , it is easy to check that
, where is the conductance of .

Hence, , and the random walk defined by
mixes fast. In this section, we will consider only such .

B. Construction

We use the multi-commodity flow based construction which
was introduced by Dasgupta and Freund in [8]. They essentially
use a multi-commodity flow between source–destination pairs
for all . Instead, we will use a balanced multi-com-
modity flow between source–destination pairs that are obtained
from an expander. Thus, the essential change in our construc-
tion is the use of an expander in place of a complete graph used
in [8]. A caricature of this lifting is explained in Fig. 4. How-
ever, this change makes the analysis of the mixing time a lot
more challenging and requires us to use different analysis tech-
niques. Further, we use arguments based on the classical linear
programming to derive the bound on the size of lifting.

To this end, we consider the following multi-commodity flow:
let be an expander with a transition matrix

and a stationary distribution as required—this is feasible
since we have assumed . We note that this as-
sumption is used only for the existence of expanders. Consider
a multi-commodity flow so that

a) ;
b) ;

Fig. 4. A caricature of lifting using expander. Let line graph � be a line graph
with four nodes. We wish to use an expander � with four nodes, shown on
the top-right side of the figure. � is lifted by adding paths that correspond to
edges of expander. For example, an edge ��� �� of expander is added as path
���� � ��. We also draw the lifting in [8] which uses the complete graph.

Lemma 10: There is a feasible multi-commodity flow in the
above flow problem with congestion and path-length at
most , where .

Proof: The conclusion is derived directly from Claim 9
since the flow number is less than and
the flow considered is a balanced multi-commodity flow i.e.,

.

Now, we can think of this multi-commodity flow as a
weighted collection of directed paths ,
where the total weight of paths from node to is ,
where . Let be the length of path . From
Lemma 10, we have the following:

(9)

for

(10)

for (11)

Using such a collection of weighted paths, we construct the
desired lifting next. As in Fig. 4, we construct the lifted graph

from by adding a directed path of length
connecting to if goes from to . Subsequently,
new nodes are added to the original graph. The ergodic flow on
an edge of the lifted chain is defined by

if
if

It is easy to check that it defines a Markov chain on , and a nat-
ural way of mapping the paths onto the paths collapses
the random walk on onto the random walk on . The sta-
tionary distribution of the lifted chain is

if
if

Thus, the above stated construction is a valid lifting of the given
Markov chain defined on .
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C. Mixing Time and Size: Proof of Theorem 3

We prove two lemmas about the performance of lifting we
constructed, and they imply Theorem 3. At first, we state and
prove the lemma which bounds the mixing time of the lifted
chain we constructed.

Lemma 11: The mixing time of the lifted Markov chain
represented by defined on is .10

Proof: By the property of expanders, we have
. Therefore, it is sufficient to show that

First, note that for any node (i.e., an original node in )

(12)

Now, under the lifted Markov chain, the probability of getting
on any directed path starting at is

Hence, the probability of getting on any directed path starting
at is

From (12), this is bounded between and .
To study the , we will focus on the induced random walk (or

Markov chain) on original nodes by the lifted Markov
chain . Let be the transition matrix of this induced random
walk. Then

Now, , because
. Here we have assumed that

as discussed earlier. Now

Also, its stationary distribution is . Therefore, by
(12) we have . Now, we can apply Claim 14 to
obtain the following:

(13)

We are ready now to design the following stopping rule that
will imply that the desired bound on .

10The precise bound is ��� ��� �.

(i) Walk until visiting old nodes of for times, where
. Let this old node be

denoted by .
(ii) Stop at with probability .

(iii) Otherwise, continue walking until getting onto any di-
rected path ; choose an interior node of uniformly
at random and stop at .

From the relation (2) in Section II-D with , it fol-
lows that after time as defined above the Markov chain ,
restricted to old nodes , has distribution close to i.e.,

According to the above stopping rule, we stop at an old node
with probability . Therefore, for any , we have that
the stopping time stops at with probability at least

. With probability , the rule does not stop at
the node . Let be the th point in the walk starting from

. Because at any old node , the probability of getting on any
directed path is between and , a coupling argument shows
that for any old node

are old nodes

If is a new point on the directed path which connects the
old node to . Then

stop at

are old points

at get on the path

The average length of this stopping rule is . By (13)

Thus, we have established that the stopping rule has the av-
erage length and the distribution of the stopping
node is . Therefore, using the fill-up lemma stated in [1], it
follows that .

Also, we bound the size of the lifted chain we constructed as
follows.
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Lemma 12: The size of the lifted Markov chain can be
bounded above as .11

Proof: We want to establish that the size of the lifted chain
in terms of the number of edges, i.e., .
Note that, the lifted graph is obtained by adding paths that
appeared in the solution of the multi-commodity flow problem.
Therefore, to establish the desired bound we need to establish a
bound on the number of distinct paths as well as their lengths.

To this end, let us reformulate the multi-commodity flow
based on expander as follows. For each ,
we add a flow between and . Let this flow be routed along
possibly multiple paths. Let denote the th path from
to and be the amount of flow sent along this path. The
length of is at most as the discussion in Lemma 10.
Let the overall solution, denoted by , give a feasible
solution in the following polytope with as its variables:

Clearly, any feasible solution in this polytope, say ,
will work for our lifting construction. Now, the size of its sup-
port set is . If we consider the extreme point of this
polytope, the size of its support set is at most

because the extreme point is an unique solution of a sub-
collection of linear constraints in this polytope. Hence, if we
choose such an extreme point for our lifting, the size
of our lifted chain is at most since each path is
of length . Thus, we have established that the size of the
lifted Markov chain is at most .

D. Useful Claims

We state and prove two useful claims which plays a key role
in proving Lemma 11.

Claim 13: Let be reversible Markov chains with their
stationary distributions , respectively. If there exist pos-
itive constants such that and

, then

Proof: From the min-max characterization of the spectral
gap (see, e.g., [15, p. 176]) for the reversible Markov chain, it
follows that

11The precise bound is ������ �.

The smallest eigenvalue of is greater than because
. So, the distance between the smallest eigenvalue and

is greater than . This completes the proof.

Claim 14: Let be Markov chains with their stationary
distributions , respectively. Now, suppose is reversible.
( is not necessarily reversible.) If there exist positive constants

such that and ,
then

Proof: is a reversible Markov chain which
has as its stationary distribution. Because

. Also, . Now, the proof
follows from Claim 13.

VII. CONCLUSION

Motivated by applications arising in emerging networks such
as sensor networks, peer-to-peer networks, and surveillance net-
work of unmanned vehicles, we consider the question of de-
signing fast linear iterative algorithms for computing the av-
erage of numbers in a network. We presented a novel construc-
tion of such an algorithm by designing the fastest mixing non-
reversible Markov chain on any given graph. Our Markov chain
obtained through a new notion denoted by pseudo-lifting. We
apply our constructions to graphs with geometry, or graphs with
doubling dimension. By using their topological properties ex-
plicitly, we obtain fast and slim pseudo-lifted Markov chains.
The effectiveness (and optimality) of our constructions are ex-
plained through various examples. As a byproduct, our result
provides the fastest mixing Markov chain for any given graph
which should be of interest in its own right. Our results should
naturally find their applications in the context of distributed op-
timization, estimation, and control.

We note that the pseudo-lifting presented here is based on a
two-level “hierarchical star” topology. This construction is less
robust to node failures. For example, failure of “root” node can
increase the mixing time drastically. To address this, one may
alternatively use a “hierarchical expander” based pseudo-lifting.
That is, in place of the “star” topology in the pseudo-lifting, uti-
lize the “expander” topology. This will naturally make the con-
struction more robust without loss of performance. Of course,
this will complicate the mixing time analysis drastically. This is
where our method developed in the expander-based lifting will
be readily useful.
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