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Caching in Wireless Networks
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Abstract—We consider the problem of delivering content cached
in a wireless network of nodes randomly located on a square of
area . The network performance is described by the -di-
mensional caching capacity region of the wireless network. We
provide an inner bound on this caching capacity region, and,
in the high path-loss regime, a matching (in the scaling sense)
outer bound. For large path-loss exponent, this provides an in-
formation-theoretic scaling characterization of the entire caching
capacity region. The proposed communication scheme achieving
the inner bound shows that the problems of cache selection and
channel coding can be solved separately without loss of order-op-
timality. On the other hand, our results show that the common
architecture of nearest-neighbor cache selection can be arbitrarily
bad, implying that cache selection and load balancing need to be
performed jointly.

Index Terms—Caching, capacity scaling, multicommodity flow,
wireless networks.

I. INTRODUCTION

W IRELESS networks are an attractive communication ar-
chitecture in many applications as they require only

minimal fixed infrastructure. While unicast and multicast traffic
in wireless networks has been widely studied, the influence of
caches on the network performance has received considerably
less attention. Nevertheless, the ability to replicate data at sev-
eral places in the network is likely to significantly increase sup-
portable rates. In this paper, we consider the problem of char-
acterizing achievable rates with caching in large wireless net-
works.
In a rather general form, this problem can be formulated as

follows. Consider a wireless network with nodes, and assume
a node in the network requests a message available at the set
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of caches (a subset of the nodes) at a certain rate . The
collection of all can be represented as a caching traffic
matrix . The question is then to characterize the set
of achievable caching traffic matrices .

A. Related Work

Several aspects of caching in wireless networks have been in-
vestigated in prior work. In the computer science literature, the
wireless network is usually modeled as a graph induced by the
geometry of the node placement. This is tantamount to making a
protocol model assumption (as proposed in [1]) about the com-
munication scheme used. By definition, such an approach as-
sumes separation of source and channel coding. The quantity
of interest involves the distance from each node to the closest
cache that holds the requested message. The problem of optimal
cache location for multicasting from a single source has been in-
vestigated in [2] and [3]. Optimal caching densities under uni-
form random demand have been considered in [4] and [5]. Sev-
eral cache replacement strategies are proposed, for example, in
[6].
To the best of our knowledge, caching has not been directly

considered in the information theory literature. However, the
more general problem of transmitting correlated sources over
a network has been studied. Caching is a special case of this
problem, in which sources are either independent or identical.
While for a single point-to-point channel separation of source
and channel coding was shown to be optimal by Shannon [7],
the work by Cover et al. [8] established that separation is strictly
suboptimal for the transmission of correlated sources over a
multiple access channel. Hence, even for simple networks,
source and channel coding have to be considered jointly. We
note that for some special cases separate source and channel
coding is optimal, for example, for transmitting arbitrarily
correlated sources over a network consisting of independent
point-to-point links [9]–[11]. The general problem of joint
source-channel coding for noisy networks is unsolved.
Finally, it is worth mentioning the problem of transmitting

unicast traffic over a wireless network, which is a special case of
the caching problem with each message being available at only
a single cache. This problem has been widely studied. Approx-
imate characterizations of the unicast capacity region of large
wireless networks (also known as scaling laws) were derived,
for example, in [1] and [12]–[22].

B. Summary of Results

We consider the general caching problem from an infor-
mation-theoretic point of view. Compared to the prior work
mentioned in the last section, there are several key differences.
First, we do not make a protocol channel model assumption,
and instead allow the use of arbitrary communication proto-
cols over the wireless network including joint source-channel
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coding. Second, we allow for general traffic demands, i.e.,
arbitrary number of caches, and arbitrary demands at each
destination. Third, we do not impose that each destination
requests the desired message from only the closest cache, nor
do we impose that the entire message be requested from the
same cache. Rather, we allow parts of the same message to be
requested from different caches.
We present a communication scheme for the caching

problem, yielding an inner bound on the caching capacity
region . This communication scheme performs separate
source and channel coding. For large values of path-loss expo-
nent, we provide a matching (in the scaling sense) outer bound,
proving the approximate optimality of our proposed scheme for
large values of . Together, this provides a scaling description
of the entire caching capacity region of the wireless network
in the large path-loss regime. This result further implies that
for caching traffic the loss due to source-channel separation is
small (again in the scaling sense) in the large path-loss regime.
Since caching traffic is a special case of correlated sources,
in which two sources are either identical or independent, this
result is a step toward understanding the loss incurred due to
source-channel separation for the transmission of arbitrarily
correlated sources.

C. Organization

The remainder of this paper is organized as follows. Section II
introduces the channel model and notation. Section III presents
the main results of the paper. Section IV analyzes the proposed
communication scheme and establishes its optimality (up
to scaling) for large path-loss exponent. Section V contains
concluding remarks.

II. NETWORK MODEL AND NOTATION

Consider a square of area , denoted by

Let be a set of nodes placed in-
dependently and uniformly at random on . We assume the
following complex baseband-equivalent channel model. The re-
ceived signal at node and time is

for all , and where is the channel input
at node at time . Here are independent and identi-
cally distributed (i.i.d.) circularly symmetric complex Gaussian
random variables with mean 0 and variance 1, and

for path-loss exponent , and where is the Euclidean
distance between and . Due to physical constraints, the path-
loss exponent satisfies ; we adopt the slightly stronger
assumption because it simplifies the statements and
derivations of some of the results. The phase terms

are assumed to be i.i.d. with uniform distribution on .1

We either assume that is stationary and ergodic as a
function of , which is called fast fading in the following, or we
assume that is constant as a function of , which is
called slow fading in the following. In either case, we assume
full channel state information (CSI) is available at all nodes, i.e.,
each node knows all at time .2 We also impose an
average unit power constraint on the channel inputs for
every node .
A caching traffic matrix is an element . Consider

and . Assume a message that is requested
at destination node is available at all of the caches .
denotes then the rate at which node requests the message from
the caches .3 Note that we do not impose that any particular
cache provides with the desired message, rather mul-
tiple nodes in could provide parts of the message. Note also
that and could both be strictly positive for ,
i.e., the same destination could request more than one message
from different collection of caches. We assume that messages
for different pairs are independent. The caching capacity
region of the wireless network is the closure of the
set of all achievable caching traffic matrices .
Example 1: Consider with . Assume

that requests a message available at the caches
, and at rate 1 bit per channel use, and an independent mes-

sage available only at at a rate of 2 bits per channel
use. Node requests a message available at the
caches and at a rate of 4 bits per channel use. The mes-
sages , , and are assumed to be
independent. This traffic pattern can be described by a caching
traffic matrix with , ,

, and otherwise. Note that in this
example node is destination for two (independent) caching
messages, and node and serve as caches for more than
one message (but these messages are again assumed indepen-
dent).
To simplify notation, we assume when necessary that large

reals are integers and omit and operators. For the same
reason, we suppress dependence on within proofs whenever
this dependence is clear from the context. We use bold font to
denote matrices whenever the matrix structure is of importance.
We use the symbol to denote the conjugate transpose of a ma-
trix. Finally, and represent the logarithms with respect to
base 2 and , respectively.

1It is worth pointing out that the i.i.d. assumption on the phase terms has to be
made with some care. In particular, it is shown in [21], [23], and [24] that this
assumption is valid only if the wavelength of the carrier frequency is less than

. For a wide range of scenarios, this is the case, and we assume
throughout this paper that this assumption holds.
2We make the full CSI assumption in all the converse results in this paper.

Achievability can be shown to hold under weaker assumptions on the avail-
ability of CSI. In particular, for , no CSI is necessary, and for ,
a 2-bit quantization of the channel state available at all nodes at
time is sufficient.
3Note that several rates are trivial. For example for pairs with

, or for pairs with . We allow these trivial choices for
notational convenience. For such that , the results will show that

is achievable; for , they will show that only is
achievable, as would be expected.
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Fig. 1. Subsquares with , i.e., with . The
subsquare at level is the area itself. The subsquares at level
are indicated by dashed lines, the subsquares at level by dotted lines.
Assume for the sake of example that the subsquares are numbered from left to
right and then from bottom to top (the precise order of numbering is immaterial).
Then, are all the nodes , are the nine nodes in the lower
left corner (delineated by dashed lines), and are the three nodes in the
lower left corner (delineated by dotted lines).

III. MAIN RESULTS

The main results of this paper are an achievable scheme
and an outer bound for the caching capacity region .
Section III-A describes a construction used in Section III-B to
establish an inner bound for . The communication scheme
achieving this inner bound respects source-channel separation
and is valid for any value of path-loss exponent . In
Section III-C, we provide an outer bound that matches (in the
scaling sense) the inner bound for large values of path-loss
exponent . This leads to an approximate characterization
of for . This characterization is given in terms of
a linear program and is hence computationally tractable as is
discussed in Section III-D. The communication architecture
achieving the inner bound on the caching capacity region
is presented in Section III-E. Various example scenarios are
presented in Section III-F.

A. Tree Graph and Linear Program

We describe the construction of a capacitated tree graph
induced by the wireless network and a corresponding linear
program. These will be needed for the communication scheme
achieving the inner bound. This tree graph construction was
introduced first in [22].
Partition the square into subsquares of

side length , and let be the nodes in . The
integer parameter varies between 0 and

The partitions at various levels form a dyadic decomposition
of , as illustrated in Fig. 1. The choice of is made
such that with high probability the number of nodes in each set

at the finest grid level is growing to infinity, but not too
quickly. See [22] for a detailed discussion.
We now construct an undirected, capacitated tree graph

, as depicted in Fig. 2. The vertex set of consists
of the nodes in the wireless network plus some additional
nodes. The tree has levels numbered 0 to :
the root node is at level 0 and leaf nodes are at level
. The leaf nodes of are the nodes in the wireless

Fig. 2. Construction of the tree graph . We consider the same nodes as in
Fig. 1 with . The leaves of are the nodes of the wireless
network. They are always at level (i.e., 3 in this example). At
level in , there are nodes. The tree structure is induced by
the decomposition of into subsquares , delineated by dashed
and dotted lines. Level 0 contains the root node of .

network. The nodes of at level with are
elements of and correspond to subsets
of the nodes in the wireless network. The root node of
at level 0 corresponds to all the nodes in the wireless

network. A child node at level is connected to a parent node
at level as follows. For , a node at level
(which is a leaf node of and hence also an element of the nodes

in the wireless network) is connected to the node
in corresponding to if belongs to .
For , a node in at level corresponding
to is connected to the node in corresponding to

if .
Note that through this construction, each set for

, is represented by exactly one internal
node in . Thus, the cardinality of is

(1)

We assign to each edge at level in (i.e., between
nodes at levels and ) a capacity

if
if .

With slight abuse of notation, we let for

The capacity associated with an edge is to be
interpreted as follows. Recall that the nodes and in corre-
spond to a subset of nodes in the wireless network. Let nodes
and in be at levels and with . The corre-
sponding subsets and (for some and ) have
approximately and nodes with high probability.
Assume we could cooperatively communicate from
to the nodes in the wireless network. This results in a
large multiple-input multiple-output (MIMO) channel with ap-
proximately transmit and receive antennas. The
capacity of this MIMO channel can be evaluated to be approx-
imately . Similarly, for a node at level

, the capacity from to the set it is contained
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in is approximately equal to one. Thus, we see that the edge ca-
pacity is approximately equal to the MIMO capacity between
the subsets in the wireless network corresponding to the nodes
in connected by .
Recall that the leaf nodes of are equal to the nodes

in of the wireless network. Hence, any caching traffic matrix
for the wireless network is also a valid trafficmatrix

between leave nodes of . Assume the leaf nodes of request
messages according to the caching traffic matrix . Specifically,
we wish to route data from caches in to a node

over at rate . We say that is supportable
on if this is possible. Let denote the collection of all
caching traffic matrices that are supportable on .
It can be verified that is a closed convex set containing
the origin.
Given the tree structure of , there is unique path connecting

any two of its nodes. The only way to satisfy the rate demand
by routing is to split it amongst different pairs with
. Specifically, let denote the set of unique paths

in between nodes of and . For a path between
and , let be the rate at which demand is routed from

node to along path for request . A caching
traffic matrix is supportable on the capacitated graph if
and only if for each of the pairs there exists a
decomposition

so that the resulting load on each edge of is no more than its
capacity. Formally, consider the following linear program:

(2)

with , and where the maximization is over the vari-
ables and . Denote the maximum value of by .
The caching traffic matrix is supportable on the graph , if
and only if .
Note that for any , the caching traffic matrix

is supportable on , i.e., . Thus

In words, is the largest multiple such that the scaled traffic
matrix is supportable on . Since is a closed
convex set containing the origin, knowledge of for all

completely specifies . We can think of ,
evaluated for all , as an equivalent description of the region

.

B. Inner Bound

The first result provides an inner bound for the caching ca-
pacity region in terms of the set of supportable
caching traffic matrices over the graph . This result is valid
for all , i.e., for all values of the path-loss exponent of
interest (excluding the boundary point as discussed in
Section II).
For , define

In words, is the largest multiple such that the scaled traffic
matrix is achievable over the wireless network. The
caching capacity region is a closed convex set containing
the origin, and hence, is an equivalent description of .

Theorem 1: Under either fast or slow fading, for any ,
there exists such that

for all with probability as .
The proof of Theorem 1 is provided in Section IV-A. We

point out that Theorem 1 holds only with probability
for different reasons in the fast and slow fading case. For fast
fading, the theorem holds only for node placements that are
“regular” enough. A random node placement satisfies these reg-
ularity conditions with high probability as . For slow
fading, Theorem 1 holds under the same regularity conditions
on the node placement, but additionally only holds with proba-
bility for the realization of the channel gains.
Given the equivalence of and as

mentioned above, Theorem 1 states that
with high probability. This links the tree graph to the wireless
network: Every caching traffic matrix that can be routed over
the graph can also (up to a small, in the scaling sense, factor)
be transmitted reliably over the wireless network.
The communication scheme achieving the inner bound in

Theorem 1 consists of three layers. The lower two layers handle
channel coding and load balancing, and effectively transform
the wireless network into the tree graph . The top layer as-
signs caches to destination nodes and routes data over . Thus,
this scheme performs separate source coding (in the top layer)
and channel coding (in the two bottom layers). See Section III-E
for a detailed description of this communication architecture.

C. Outer Bound

The next result provides an outer bound for the caching ca-
pacity region in terms of the . This result is valid
for , i.e., for large path-loss exponents.

Theorem 2: Under either fast or slow fading, for any ,
there exists such that

for all with probability as .
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Fig. 3. For , the set approximates the caching capacity region
of the wireless network in the sense that (with
) provides an inner bound to and (with
) provides an outer bound to . The figure shows two dimensions

(namely and ) of the -dimensional sets and
.

The proof of Theorem 2 is provided in Section IV-B. As with
Theorem 1, Theorem 2 holds with probability for the
realization of the node placement and, in the slow fading case,
the realization of the channel gains.
Using again the equivalence of and ,

Theorem 2 states that with high proba-
bility. Comparing Theorems 1 and 2, we see that, for and
with high probability

for all or, equivalently

In other words, for , the set of caching traffic matrices
supportable by routing over the tree graph scales as

the caching capacity region . This is illustrated in Fig. 3.

D. Computational Aspects

Theorems 1 and 2 show that, for large , .
Computationally, the question of interest is that of membership,
i.e., determining if a given belongs to or,
equivalently, determining if . Since ,
computation of answers the membership question approx-
imately (up to a multiplicative error of ).
The linear program (2) defining can be solved in poly-

nomial time in the number of its constraints and variables [25].
Define

as the number of pairs with positive demand .
The number of constraints in the linear program (2) scales lin-
early in . And the number of variables scales as

. Noting that is polynomial in by (1), this im-
plies that the approximate membership of any in can
be checked in time polynomial in and .
Note that this need not be polynomial in , since could

be exponential in . However, even just to ask the membership
query, one needs to specify distinct numbers. Therefore,

the above discussion shows that the computational cost of ap-
proximate membership testing takes time polynomial in the ef-
fective problem statement, which is the best one can hope for.
Moreover, in many situations of practical interest, the number
of pairs with positive demand can be expected to be only
polynomial in the network size . In these cases, approximate
membership can be tested in polynomial time also in .

E. Content Delivery Protocol

Theorem 1 provides an inner bound for the caching capacity
region of a wireless network. We now describe the communi-
cation scheme achieving this inner bound. The matching outer
bound shows that, for , this scheme is optimal in the
scaling sense.
Our proposed communication scheme consists of three

layers, similar to a protocol stack. From the highest to lowest
level of abstraction, these three layers are the data layer, the
cooperation layer, and the physical layer. From the view of
the data layer, the wireless network is treated as the abstract
capacitated tree graph , up to a loss of a factor in the
capacity of each link. Let us assume that .
Solve the corresponding linear program (2), and let
be its solution. Since , routing traffic according
to this solution allows to support the caching traffic matrix
in this layer. The next two layers transform this routing solution
for over the graph into a communication strategy for the

wireless network.
The cooperation layer provides this tree graph abstraction to

the data layer. Recall that the leaf nodes of are the nodes
of the wireless network and that each internal node of repre-
sents a subset of nodes within the subsquare

in the wireless network. The cooperation layer provides
the tree abstraction by ensuring that, whenever a message
is located in the data layer at a particular node , the message
is evenly distributed in the wireless network among the nodes

represented by the node . Recall that the sets
are nested and increasing as decreases. Hence, as a message
travels toward the root node in in the data layer, it is dis-
tributed over a larger area in the wireless network by the coop-
eration layer. Similarly, as a message travels away from the root
node in in the data layer, it is concentrated on a smaller area in
the wireless network by the cooperation layer. Thus, sending a
message up or down an edge in the tree in the data layer corre-
sponds in the cooperation layer to distributing or concentrating
the same message in the wireless network (see also Fig. 4).
Formally, this distribution and concentrating of messages is

performed as follows. To send a message from a child node to
its parent in (i.e., toward the root node of ), the message at
the wireless nodes in represented by the child node in
is evenly distributed over the wireless channel among all nodes
in represented by the parent node in . This distribution
is performed by splitting the message at each node in rep-
resented by the child node in into equal sized parts and by
transmitting one part to each node in represented by the
parent node in . To send a message from a parent node to a
child node in (i.e., away from the root node of ), the mes-
sage at the wireless nodes in represented by the parent
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Fig. 4. Example operation of the three-layer architecture. A message available
at the caches is requested at the destination node . The figure
shows the induced actions by this request in the data layer (top plane), cooper-
ation layer (middle plane), and physical layer (bottom plane).

node in is concentrated on the wireless nodes in repre-
sented by the child node in . This concentration is performed
be collecting at each node in corresponding to the child
node in the message parts of the previously split up message
located at the nodes in corresponding to the parent node
in .
Finally, the physical layer performs this concentration and

distribution of messages induced by the cooperation layer over
the physical wireless channel. Note that the kind of traffic re-
sulting from the operation of the distribution or cooperation
is highly uniform in the sense that within each subsquare, all
nodes receive data at the same rate. Uniform traffic of this sort
is well understood. Depending on the path-loss exponent , we
use either hierarchical cooperation [19], [20] (for )
or multi-hop communication (for ). It is this operation of
each edge in the physical layer that determines the edge capacity
of the graph as seen from the data layer.
Note that the value of the path-loss exponent only signif-

icantly affects the operation of the physical layer. The cooper-
ation layer is completely invariant under changes in , and the
data layer is only affected through the value of the edge capac-
ities of the graph . In particular, even when so that the
physical layer performs multihop communication, the construc-
tion of the tree structure is still necessary. In fact, the role of
routing over can be understood as load balancing of traffic,
which is required no matter how the physical layer operates.
We point out that this scheme respects source-channel sepa-

ration. In fact, source coding is only performed at the data layer
(through the selection of message parts from the various avail-
able caches). Channel coding is only performed in the coopera-
tion and physical layers.
The next example illustrates the operation of this scheme. For

more details on this architecture, see [22].

Example 2: Consider the three layers of the proposed com-
munication architecture depicted in Fig. 4. From top to bottom

in the figure, these are the data layer, the cooperation layer, and
the physical layer. In this example, we consider a single
pair. The set of caches consists of two nodes in
the wireless network shown at the bottom left, and the corre-
sponding destination is in the top right of the network. At the
data layer, traffic is balanced by choosing which fraction of the
message requested at and available at is delivered from
each node and in . This load balancing is performed by
solving the linear program (2). In this simple example, a reason-
able choice is to deliver half the message from and half from
. The routes between and chosen at the data layer

are indicated in black-dashed lines.
Consider now the second edge along the path in from to
labeled by in the figure. The middle plane in the

figure shows the induced behavior in the cooperation layer from
using this edge in the data layer. Note that and are not leaf
nodes of , and hence correspond to subsets of through
the construction of . Let and be the subsets of

corresponding to , and , respectively. Since is a
child node of , we must have . When a message is
present at in the data layer, it is distributed evenly over the
three nodes in in the cooperation layer; in other words,
each of the three nodes in has access to a distinct third of
the original message. To send the message over edge from
to in the data layer, the cooperation layer splits the message
part at each node in into smaller parts and distributes
these subparts evenly over the nodes in . Thus, when the
message reaches in the data layer, each of the nine nodes in

has access to a distinct ninth of the original message in
the cooperation layer.
The bottom plane in the figure shows part of the corre-

sponding actions induced in the physical layer. The distribution
of message parts from to is properly scheduled
to minimize interference, and channel coding is performed.
The precise nature of the operation of this layer depends on the
path-loss exponent , as explained previously.

F. Example Scenarios

We provide two examples illustrating various aspects of the
caching capacity region. Example 3 shows that the strategy of
always selecting the nearest cache can be arbitrarily bad. Ex-
ample 4 illustrates the potential benefit of caching on achievable
rates in the wireless network.

Example 3 (Nearest-Neighbor Cache Selection): A simple
and intuitive strategy for selecting caches is to request the entire
message from the nearest available cache. In fact, this is the
strategy implicitly assumed in most of the prior work on caching
in wireless networks cited in Section I-A. This example shows
that this strategy can be arbitrarily bad.
We consider the scenario illustrated in Fig. 5. Assume

and are subsets of , and is a subset of
. Consider a node geographically close to
, and label the nodes in and in

. Construct the traffic matrix

if
otherwise.
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Fig. 5. Caching traffic pattern for Example 3. Each destination node
requests a message available at a dedicated cache and

at a shared cache .

In words, each node in requests a message avail-
able at a dedicated cache and at a shared cache

. We want to determine , the largest multiple of
such that the resulting traffic matrix is achievable in the wire-

less network. In this setting with unit demands, can also be
interpreted as the largest uniformly achievable per-node rate.
For every destination node , the nearest cache (both in

terms of geographic as well as graph distance) is . Assume
each node requests the entire message from its nearest cache
. It is easy to show that each node in the wireless network,

and, in particular, node , can reliably transmit information at
a sum rate of at most . With high probability, there will
be nodes in requesting a message at equal rate
from . Hence, this strategy achieves a per-node rate of at
most regardless of the value of the path-loss exponent

.
Assume now each uses only the more distant cache .

The routes from to for different values of intersect only
at the four edges closest to the root node of . These four edges
have a capacity of order , and hence it can be
seen that over the graph these messages can be routed at a
per-node rate of . Together with Theorem 1,
this shows that

is achievable in the wireless network with high probability. For
this simple example, it is easily checked that this strategy is
order-optimal for routing over the graph . Together with The-
orem 2, this confirms that, for , no scheme can achieve a
better scaling in the wireless network. Hence

for .4 With some additional work, it can be shown that
this is the correct scaling of also for . This shows
that the strategy of always selecting the nearest cache can result
in a scaling exponent that is considerably worse than what is
achievable with optimal cache selection.

4The notation is used to indicate that is an upper and is
a lower bound.

Example 4 (Complete Caches): Assume we randomly pick
caches for , each holding a complete copy of

all the messages. More precisely, letting be the
collection of caches, we consider a caching traffic matrix

of the form

if
otherwise

for every . In other words, every node requests
a message that is available at a common set of caches . As
before, can in this setting with uniform demands be inter-
preted as the largest uniformly achievable per-node rate.
Assume every node chooses the nearest cache (as discussed

in Example 3). With high probability, there will be
nodes accessing the same cache. The bottleneck limiting the
flows from this cache to the destination nodes is the edge with
capacity one connecting the cache to the tree. Hence, with this
strategy, we can achieve a per-node rate of over the
graph with high probability. By Theorem 1, this implies that
a per-node rate of

is achievable with probability as in the wireless
network. A short calculation reveals that this is an order-optimal
routing strategy over , which, by Theorem 2, shows that

for . Hence, for

Moreover, it can be shown that this is the correct scaling of
also for .
This example illustrates that in situations in which the traffic

demand and location of caches are regular enough, the strategy
of selecting the nearest cache (as analyzed also in Example 3,
and which is shown there to be arbitrarily bad in general) can
actually be close to optimal.

IV. PROOFS

In Section IV-A, we provide the proof of the inner bound in
Theorem 1. The proof relies on the communication scheme pre-
sented earlier in Section III-E. The outer bound in Theorem 2
is proved in Section IV-B. It consists of two key steps, sum-
marized by Lemmas 4 and 5 below. The first step is informa-
tion-theoretic, outer bounding the caching capacity region in
terms of cuts in the wireless network and then relating these cuts
to cuts in the graph . The details of this first step are provided
in Section IV-C. The second step relates these cuts in the graph
to supportable flows over . The details of this second step

are provided in Section IV-D.

A. Proof of Theorem 1 (Inner Bound)

We wish to show that for some
uniform in . Equivalently, we will argue
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that implies . Assume ;
then . Let

be the corresponding solution of the linear program (2). By def-
inition of (2), the load induced by on each edge of is no
more than its capacity.
We now use this solution to construct a unicast traffic

matrix solving the caching problem. Formally, a unicast traffic
matrix is an element associating with each
source–destination pair the rate
at which destination node requests data from source node .
The unicast capacity region is the closure of
the collection of all achievable unicast traffic matrices in the
wireless network. In analogy to caching traffic, every unicast
traffic matrix for the wireless network induces a unicast
traffic matrix between the leaf nodes of the graph , and we
can define as the collection of unicast traffic matrices
that can be routed (i.e., are supportable) over .
Consider again the flows as defined above. Construct the

unicast traffic matrix as

where is the unique path in the tree graph between
and . In words, is the sum of the flows for the
caching problem from to . The load induced by this unicast
traffic on the edges of is the same as that due to .
In particular, the total demand of across each edge is at
most its capacity. Since is a tree, this implies that is
supportable over , i.e., .
We have thus transformed the problem of routing caching

traffic over into one of routing unicast traffic over . The
following result, established in [22], links the set of supportable
unicast traffic matrices over to the unicast capacity
region of the wireless network.

Proposition 3: Under either fast or slow fading, for any
, there exists such that

with probability as .
Proof: See [22, Lemma 10].

Proposition 3 is established by means of an explicit com-
munication architecture, consisting of the three layers (data
layer, cooperation layer, physical layer) as described in detail
in Section III-E.
Proposition 3 implies that . Given

that the unicast traffic matrix was created through de-
composing the caching traffic matrix , it follows that
can be supported using these unicast transmissions over the
wireless network. That is, for

This shows that

completing the proof of Theorem 1.

B. Proof of Theorem 2 (Outer Bound)

We aim to show that

for some uniform in . The proof proceeds in two
steps. First, we relate achievable traffic in the wireless network
(characterized by ) to cuts in the graph (characterized
by defined below). Second, we relate these cuts in to
supportable flows over (characterized by ).
Define

with and . Furthermore, let, for any
caching traffic matrix

(3)

The set corresponds to the restrictions on the set of sup-
portable caching traffic matrices on the graph by all possible
cuts in . Consider one such cut . For any
caching traffic matrix that can be routed over , the total flow

across this cut can not be larger than the capacity of the cut

The region is the set of caching traffic matrices satisfying
all these constraints. The scalar yields an equivalent de-
scription of . Note that we can rewrite the definition of
as

(4)

Recall that is the set of supportable caching traffic ma-
trices on , and that is its equivalent description. From the
discussion in the last paragraph, it is clear that ,
or, equivalently, that . The next lemma shows that

is also an approximate upper bound on the equivalent de-
scription of the caching capacity region of the wire-
less network.

Lemma 4: Under either fast or slow fading, for any ,
there exists such that
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for all caching traffic matrices with probability
as .

The proof of Lemma 4 is presented in Section IV-C.
Lemma 4 shows that, for , . This

implication is much less obvious than the statement
. The proof of Lemma 4 first uses the information-theo-

retic cut-set bound to upper bound achievable rates for caching
traffic by cuts in the wireless network and then relates these cuts
in the wireless network to cuts in the graph . We point out that
it is this step that limits the applicability of the outer bound in
Theorem 2 to large path-loss exponents . The reason for
this is that evaluation of the cut-set bound for the wireless net-
work for small path-loss exponents is quite difficult. While it
is known how to evaluate “rectangular” cuts for small [19],
these techniques do not extend to the arbitrary cuts that are re-
quired for the analysis of caching traffic.
Lemma 4 allows us to upper bound the equivalent descrip-

tion of the caching capacity region by the equivalent
description of the set of caching traffic matrices satis-
fying all cut constraints in the graph . We now show that
can be upper bounded by the equivalent description of the
set of supportable caching traffic matrices on .

Lemma 5: For any , there exists such
that

for all caching traffic matrices .
The proof of Lemma 5 is presented in Section IV-D.
Lemma 5 shows that, for any , .

From the above discussion, we already know that
. Hence, we deduce from Lemma 5 that .

This can be understood as an approximate max-flow min-cut re-
sult for caching traffic on undirected capacitated graphs. Lemma
5 is, in fact, valid for any tree graph (with mild assumptions
on the edge capacities, see the proof for the details) and might
be of independent interest.
Combining Lemmas 4 and 5 shows that, for any

Setting

and noting that is uniform in , concludes the proof of
Theorem 2.

C. Proof of Lemma 4

We start with several auxiliary results. We first introduce
some regularity conditions that are satisfied with high prob-
ability by a random node placement. Define to be the

collection of all node placements that satisfy the fol-
lowing conditions:

The first condition is that the minimum distance between node
pairs is not too small. The second condition is that all squares
of area 1 contain at most nodes. The third condition is
that all squares of area contain at least one node. The
fourth condition is that all squares up to level

contain a number of nodes proportional to their
area.
The next lemma, quoted from [22], states that a random node

placement satisfies these conditions with high probability.

Lemma 6:

as .
Proof: See [22, Lemma 5].

We continue with results upper bounding the MIMO capacity
between subsets of nodes in . Formally, for disjoint subsets

, denote by the MIMO capacity be-
tween the nodes in and . Let

be the matrix of channel gains between the nodes in and .
Under fast fading

where the maximization is over all positive semidefinite ma-
trices such that for all . Under slow
fading

where the maximization is over all positive semidefinite ma-
trices such that for all . See, e.g., [26]. To
simplify notation, define furthermore

for . The next lemma provides an upper bound on
the MIMO capacity between the nodes in and
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in terms of the number of nodes close to the boundary between
them.

Lemma 7: Under either fast or slow fading, for every ,
there exists a constant such that for large enough and all

and

Proof: Set and , and denote by the nodes
in that are at distance between and from , i.e.,

Note that

and

Applying the generalized Hadamard inequality, we obtain
that under either fast or slow fading

(5)

For the first term in (5), using Hadamard’s inequality once more
yields

By [22, Lemma 6]

for some constant depending only on , and thus

(6)

For the second term in (5), we have the following upper bound
from slightly adapting [13, Theorem 2.1]: Under either fast or
slow fading

By definition of , for , the (open) disk of radius
around does not contain any node in . Moreover, since
, there are at most nodes inside every subsquare of of
side length 1.5 Thus, given that , we have for any

for some constant depending only on . Therefore

(7)

Consider now some with , and let be
the closest node in to . Since , we must have

Consider the (open) disk of radius around and the disk of
radius around . Since is the closest node to in , all
nodes in the disk around are in . Moreover, the intersection
of the two disks has an area of at least . Since
, this implies that, for large enough, this intersection must
contain at least one point, say , and by construction

This shows that for every node in , there exists a node in
such that

Now, since , for every node , there are at most

nodes at distance for some constant .
Hence, the number of nodes in is at most

(8)

Combining (8) with (7) yields

(9)

5To simplify notation, we suppress dependence of
within proofs whenever this dependence is clear from the context.
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for some constant depending only on , and where
we have used that . Finally, substituting (6) and (9) into
(5) shows that

with

The next lemma shows that, for large path-loss exponents
, every cut is approximately achievable, i.e., for every

cut there exists an achievable unicast traffic matrix that has a
sum rate across the cut that is not much smaller than the cut
capacity.

Lemma 8: Under fast fading, for every , there exists
and such that for any ,

, and

(10)

Moreover, there exists a collection of channel gains such
that

as , and such that, for , (10) holds for
slow fading as well.

Proof: By Lemma 7, for

(11)

Construct a unicast traffic matrix as

if
otherwise

for some function . We now argue that for
there exists such that
. This follows from [22, Th. 1] (see also [22,

Sec. IX.C]), once we show that for every
and we have

(12a)

(12b)

and, for all

Since we assume that , we have for all

for some constant . By the locality of the unicast traffic
matrix , it can be verified that this is sufficient for (12) to
hold with

Hence [22, Th. 1] applies, showing that for fast
fading, and the same holds for slow fading for with

as .
Now, by construction of the unicast traffic matrix

Combined with (11), this implies that

Since , this proves the lemma with

We are now ready for the proof of Lemma 4.
Proof of Lemma 4: We wish to show that, for , there

exists such that

with as defined in (3). Consider the traffic matrix
and a cut in the wireless network. Assume we allow the
nodes on each side of the cut to cooperate without any restric-
tion—this can only increase achievable rates. The total amount
of traffic that needs to be transmitted across the cut is at least

The maximum achievable sum rate (with the aforementioned
node cooperation) is given by , the MIMO capacity
between the nodes in and in . Therefore



NIESEN et al.: CACHING IN WIRELESS NETWORKS 6535

Since this is true for all cuts , we may optimize over the
choice of to obtain the bound

(13)

We proceed by relating the cut in the wireless network to
a cut in the graph . By Lemma 8, for , there exists

such that for fast fading

(14)

and (14) holds also for slow fading if with defined
as in Lemma 8. By [22, Th. 1] (see also the discussion in [22,
Sec. IX.D]), for and , there exists such that if

then , where is the tree
graph defined in Section III-A.
Now, consider any such that . Note that

is a cut in separating from . Since
, we thus have

By minimizing over the choice of such that , we
obtain

(15)

Combining (14) and (15) shows that

Together with (13), and using Lemma 6, this yields that with
probability

as , we have for any caching traffic matrix

with

and where we have used (4) for the last equality.

Fig. 6. Construction of the directed graph from the undirected graph .

D. Proof of Lemma 5

We wish to show that there exists such that
for any

(16)

with as defined in (3). To this end, we need to argue that
whenever a caching traffic matrix can be supported over the
graph , then there exists at least one cut in the graph that is ap-
proximately saturated. In other words, we need to argue that an
approximate max-flow min-cut result holds for caching traffic
over .
The proof of the lemma proceeds as follows. We first trans-

form the undirected graph into an directed graph such that
caching traffic can be supported over if and only if a corre-
sponding unicast traffic can be supported over . We then argue
that for unicast traffic over an approximate max-flow min-cut
result holds. Finally, we map this result for unicast traffic on
back to to obtain the desired max-flow min-cut result for

caching traffic over .
Pick any . For , and are both

infinite, and the lemma trivially holds. Assume then that .
By rescaling if required, we can then assume without loss of
generality that

(17)

Furthermore, we can assume that whenever ,
since then already has access to the message it requests.
Recall that is an undirected capacitated graph. We con-

struct a directed capacitated graph as illustrated
in Fig. 6. Take the undirected graph and turn it into a directed
graph by splitting each edge into two directed edges
each with the same capacity as . Add additional nodes to
, one for each subset . Connect the new node

corresponding to to each node by a directed
edge with infinite capacity .
We call the directed version of that is contained in as a

subgraph its core. Note that if some flows can be routed through
, then the same flows can be routed through the core of , and

if some flows can routed through the core of , then at least
half of each flow can be routed through . Hence, for scaling
purposes, the two are equivalent.
Now, assume we are given a caching traffic matrix for .

Construct a unicast traffic matrix for by making for each



6536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 10, OCTOBER 2012

pair in (i.e., , ) the node in
corresponding to a source for with rate

For all other node pairs, the traffic demand is set to zero. Note
that with this construction, all traffic over originates at a node
in of and is destined for a node in .
Denote by the set of such unicast traffic matrices that
are supportable on , and define

to be the equivalent description of . By construction of
from , and by the above argument relating to the core of
, we have

(18)

We have thus related caching traffic in the undirected graph
to unicast traffic in the directed graph .
We are then left with the problem of analyzing unicast traffic

over . Recall that we have seen earlier that trivially
(since the total flow over each cut can be at most equal to

the cut capacity). By (18), this implies that .
The goal here is to establish that is also an approximate
lower bound to . This is nontrivial because it requires
showing that the polytope with fewer constraints is closely
approximated by the polytope with more constraints.
Specifically, we are looking for this approximation to be of the
form

where .
In the recent literature on multicommodity flows, starting

with works by Leighton and Rao [27], and by Linial et al. [28],
such approximate max-flow min-cut results for unicast traffic
for undirected graphs have been studied. However, in our con-
text, two difficulties arise. First, is a directed graph. While
for undirected graphs with nodes approximation
results for the unicast capacity region of such graphs in terms of
cut-set bounds are known [28], the best known approximation
result for general directed graphs is up to polylog
factors in [29]. Second, the graph is exponentially big in
. More precisely, . Hence, even a logarithmic (in
the size of the graph) approximation result will only yield
a polynomial approximation in . We are interested here in an
approximation ratio that scales like , i.e., strictly subloga-
rithmic in the size of . Nonetheless, as we shall see, the spe-
cial structure of can be used to obtain an
approximation for in terms of .
We use an idea from [30], namely that the unicast traffic

problem can be reduced to a maximum sum-rate problem. More
precisely, for a subset of pairs in , define
the maximum sum rate as

where here and in the following:

The quantity is the largest sum rate that can be supported
between the source–destination pairs in over the graph .
We now argue that for every unicast traffic matrix there

exists such that the ratio is not too much bigger than

.

Lemma 9: Given on as described above, there exists
a set of pairs with and
so that

(19)

Recall that the unicast traffic matrix is the
largest scalar multiple of that is supportable over by
definition of . Hence, Lemma 9 shows that for a point

on the boundary of the region , there exists
a set of source–destination pairs such that the total demand

between the pairs in is almost as large as the
maximum sum rate that is supportable between . Thus, for

, the pairs in can be understood as the approximate
bottleneck, limiting further scaling of beyond the multiple

. The next lemma links the ratio appearing in
the right-hand side of (19) to the equivalent description of
the region .

Lemma 10: For any set of pairs with
and

Combining Lemmas 9 and 10 with (18) shows that

This establishes Lemma 5 with

It remains to prove Lemmas 9 and 10.
Proof of Lemma 9: Given a unicast traffic matrix on

as described above, we want to find a set of node pairs such
that is not too much smaller than the ratio .

First, note that is the solution to the following linear
program:

(20)
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where is the collection of all paths in from node to
node , and

The corresponding dual linear program is

(21)
Since the all-zero solution is feasible for the primal program
(20), strong duality holds, i.e., the maximum in the primal (20)
is equal to the minimum in the dual (21). Moreover, by weak
duality, any feasible solution to the dual problem (21) yields an
upper bound to the maximum in the primal (20).
Second, is the solution to the linear program

(22)

and its dual is

(23)

Again strong and weak duality hold.
Let , be a minimizer for the dual

(21) of the unicast traffic problem. By strong duality, the min-
imum of the dual (21) is equal to the maximum of the corre-
sponding primal (20). We now show how , can be
used to construct a feasible solution to the dual (23) of the max-
imum sum-rate problem for a specific choice of subset . By
weak duality, this feasible solution for the dual (23) yields an
upper bound on the maximum in the corresponding primal (22).
This will allow us to lower bound in terms of the ratio

as required.
Note first that we can assume without loss of optimality that

if
otherwise.

(24)

Now, since whenever , we have
for those edges. Since, in addition, only if
and if is a leaf node of , this implies that can
take at most different nonzero values, since there are at most
that many distinct paths between leaf nodes in the tree graph .
Order these values in decreasing order

with , and define for

(25)

We now argue that for all . In fact,
assume , then by (24) there exists at least one edge
such that , because in any path , there are at most
edges with non-zero value. Hence

since for all . Due to strong duality, this implies
that the solution of the linear program (20), i.e., the value
of , is strictly larger than . But that is not possible.
Indeed, due to the normalization assumption (17), we have

. By construction, all destination nodes

in are in , and hence, there are at most nodes
with nonzero . Together, this implies that for at least one
node the total traffic into satisfies

By definition, must be supportable in . Since
, and since, by assumption, whenever

, this will induce a load strictly greater than one on the
finite capacity edge incident on . As , this edge has
unit capacity, which contradicts that is supportable.
Therefore, must be no more than , and hence, we
obtain that for all .
We now argue that at least one of in is not too

small. To that end, let be such that

(26)

with as defined in (25). Note that since otherwise

contradicting the normalization assumption (17). Define

Using that is feasible for the dual (21), that , and
that , we have

(27)



6538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 10, OCTOBER 2012

We argue that this implies existence of such that

(28)

Indeed, assume (28) is false for all . Then

where we have used that in , that for
every in , and that by (17) and in
. This contradicts (27), showing that (28) must hold for some

. Consider this value of in the following.
Now, consider the following set of pairs:

Note that, by (24), contains only pairs such that
and (i.e., nodes in corresponding to

leaf nodes in ). Set

for all . Note that, for

and that for all ,

by feasibility of and for the dual (21). Hence, for
this , the choice of and is feasible for the dual
(23). By weak duality, any feasible solution for the dual (23)

yields an upper bound for the corresponding primal (22). There-
fore

By (28)

and, since for all

(note that the last equality is simply the definition of ).
Therefore

Since, by assumption, is optimal for the dual (21), and by
strong duality, we have

and hence

Proof of Lemma 10: Wewish to analyze maximum sum rates
in for sets such that for we have

and . Notice that, due to this form of
and since the edges in have infinite capacity, this

analysis can be done by considering only the core of . More
precisely, for a collection of node pairs in as above, we
construct a collection of node pairs in as follows. For each

, note that by construction is connected to a subset
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of nodes. For each , add
to for each such . Denote by the maximum sum
rate for in . Since is the undirected version of the core of
, we have

(29)

For a collection of node pairs in , we call a set of edges
a multicut for if in the graph each pair in
is disconnected. For a subset , define

From the definition of a multicut, it follows directly that
. More surprisingly, it is shown in [31, Th. 8] that if is

an undirected tree, then for every there exists a
multicut for such that

(30)

Next, we show how the edge cut can be transformed
into a node cut . Denote by the connected compo-
nents of . We can assume without loss of gener-
ality that

since otherwise we can remove the additional edges from to
create a smaller multicut for . We, therefore, have

(31)

since every edge in appears exactly twice in the sum on the
right-hand side. Define for

as the total caching traffic that needs to be transmitted between
and . is a multicut for induced by , and

hence for every and the corresponding pair ,
separates from all the nodes in . Therefore, for each such

pair, there exists a set such that , . This
shows that

(32)

Equations (30)–(32) imply that there exists such that

where in the last equality we have used (4). This completes the
proof of Lemma 10.

V. CONCLUSION

We have analyzed the influence of caching on the perfor-
mance of wireless networks. Our approach is information-the-
oretic, yielding an inner bound on the caching capacity region
for all values of path-loss exponent, and a matching (in
the scaling sense) outer bound for . Thus, in the high
path-loss regime , this provides a scaling characterization
of the complete caching capacity region. Even though this
region is -dimensional, i.e., exponential in the number
of nodes in the wireless network, we have presented an algo-
rithm that checks approximate feasibility of a particular caching
traffic matrix efficiently, namely in polynomial time in the de-
scription length of the caching traffic matrix. Achievability is
proved using a three-layer communication architecture. The
three layers deal with optimal selection of caches, choice of
amount of necessary cooperation, noise, and interference, re-
spectively. The matching (again in the scaling sense) converse
proves that addressing these questions separately is without
loss of order-optimality in the high path-loss regime. That is,
source-channel separation is close to optimal for caching traffic
in this regime.
We view this result as a step toward understanding the per-

formance loss incurred due to source-channel separation for the
transmission of arbitrarily correlated sources. Determining the
performance loss for such a separation based strategy for all
values of for caching traffic and more generally for
sources with arbitrary correlation are interesting questions for
future research.
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